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Abstract
Purpose  Consumption of fructose has repeatedly been discussed to be a key factor in the development of health disturbances 
such as hypertension, diabetes type 2, and non-alcoholic fatty liver disease. Despite intense research efforts, the question if 
and how high dietary fructose intake interferes with human health has not yet been fully answered.
Results  Studies suggest that besides its insulin-independent metabolism dietary fructose may also impact intestinal homeo-
stasis and barrier function. Indeed, it has been suggested by the results of human and animal as well as in vitro studies that 
fructose enriched diets may alter intestinal microbiota composition. Furthermore, studies have also shown that both acute 
and chronic intake of fructose may lead to an increased formation of nitric oxide and a loss of tight junction proteins in small 
intestinal tissue. These alterations have been related to an increased translocation of pathogen-associated molecular patterns 
(PAMPs) like bacterial endotoxin and an induction of dependent signaling cascades in the liver but also other tissues.
Conclusion  In the present narrative review, results of studies assessing the effects of fructose on intestinal barrier function 
and their impact on the development of health disturbances with a particular focus on the liver are summarized and discussed.
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Introduction

The idea that the intake of certain macronutrients like sugar 
may be linked to and even trigger the development of dis-
eases is not a new concept. Already at the beginning of the 
last century, Emerson and Larimore reported a strong asso-
ciation of dietary intake of refined sugar with diabetes [1]. In 
line with these findings, in 1929, Banting also hypothesized 
that the intake of refined sugar may be a major cause of 
adult-onset diabetes [2]. However, similar to the ongoing 
discussion nowadays (also see [3, 4]), others suggested that 
the increase in obesity and the prevalence of diabetes type 2 
may simply result from overnutrition [5, 6]. Following this 
hypothesis which is based on the first law of thermodynam-
ics, weight gain would simply result from the imbalance 
of energy ingestion vs. energy expenditure. Supporting the 
latter, at the time food became more plentiful and easier to 

obtain. Along with the introduction of new inventions like 
elevators and cars but also machines in industrial produc-
tion leading to an easier ‘avoidance’ of physical activity, 
lifestyle started to change dramatically. On the other hand, 
results from epidemiological [7–10] and intervention stud-
ies [11–14] as well as animal experiments [15, 16] provide 
evidence that the consumption of certain foods like sugar-
sweetened beverages may impact the development of over-
weight and metabolic abnormalities like hypertension, insu-
lin resistance, dyslipidemia, and non-alcoholic fatty liver 
disease (NAFLD) irrespective of overnutrition. Some more 
recent studies reported that the intake of fructose enriched 
diets may even in the absence of marked weight gain be 
causative in the development of metabolic abnormalities [14, 
17]. Results of controlled intervention trials also suggest 
that glucose and fructose may not only differently affect glu-
cose and insulin release, but may also affect gut microbiota 
composition and intestinal barrier function as well as the 
release of gastrointestinal hormones [18–23]. Some of the 
so far accumulated data are rather contradictory; still, all in 
all, data so far fuel the assumption that different sugars may 
impact health differently. Starting from this background, 
the aim of the present narrative review is to provide some 
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insights in dietary intake and metabolism of fructose and 
to summarize recent as well as older findings assessing the 
effects of fructose on intestinal microbiota, homeostasis, and 
barrier function. Furthermore, these findings are related to 
the development of metabolic diseases with a specific focus 
on the liver.

Dietary intake of fructose

Fructose is naturally found in fruits, vegetables (e.g., in pep-
pers or carrots), or honey. In addition, added sugars, like 
sucrose or high-fructose corn syrup (HFCS), also contribute 
markedly to the dietary intake of fructose [24] (for over-
view see Table 1). Nowadays, HFCS is being used in many 
countries as a replacement of sucrose in foods and bever-
ages such as soft drinks, sweets, bakery goods, and dairy 
products. To produce HFCS, some of the glucose found 
in corn syrup is enzymatically converted to fructose [23, 
25]. With implementing the latter technique in the USA in 
the 1970s, sucrose intake markedly decreased in the USA, 
while concurrently HFCS consumption increased resulting 
at first in a rather stable overall sugar intake [25]. Results 
of epidemiological studies suggest that from 2001 to 2021 
the total daily intake of HFCS decreased by almost 40 % 
from 46 g/d to 28 g/d in the USA (data from US Depart-
ment of Agriculture) [26]. Despite changes in the sugar 
market in 2017 [27], in most European countries, HFCS is 

not widely used and the intake of HFCS is, compared to 
the USA, rather low [28]. Indeed, sucrose is still the main 
added sugar found in foods and beverages in Europe [29]. 
And while there were also some decreases in average sugar 
intake in several European countries as well as in South- 
and Central American countries and in Australia, added 
sugar intake in most of these regions is still above the rec-
ommendations of the World Health Organization (WHO; 
[30]; energy derived from added sugar intake <10 % of total 
energy intake accounting to ~50 g of sugar in a 2,000 kcal 
diet [31]). For instance, surveys conducted in European and 
Latin American countries report that total sugar intake (= 
sucrose intake) in adults accounts for ~15–21 % of the total 
energy intake [32]. Results of studies also suggest that socio-
economic status and the intake of added sugars negatively 
correlate with lower income households shown to have a 
markedly higher sugar intake [33].

Studies assessing fructose rather than sugar intake are 
rather limited. Results of our own studies and those of others 
suggest that the average fructose intake of healthy middle-
aged individuals in Germany and Austria ranges from ~40 
g to ~49 g fructose/d ([14, 34–36] and unpublished data). 
Data from the Dutch National Food Consumption Survey 
2007–2010 also revealed a similar dietary daily fructose 
intake in Dutch population (7–69 years, average fructose 
intake ~46 g/d with 67 % consumed as sucrose and 33 % as 
free fructose with the main food sources being soft drinks, 
juices, cakes and cookies) [37]. Studies from Brasilia suggest 

Table 1   Fructose, glucose, and 
sucrose content of various foods 
and beverages

Data from ‘Österreichische Nährwerttabelle’ based on Bundeslebensmittelschlüssel, Austria
a Total fructose/glucose derived from sucrose and free fructose/glucose

Food Free fructose 
[g]/100 g

Total fructose 
[g]/100 ga

Free glucose 
[g]/100 g

Total glucose 
[g]/100 ga

Sucrose 
[g]/100 g

Caffeinated beverages 0.0 5.3 0.0 5.3 10.6
Energy drinks 0.0 5.5 0.0 5.5 11.0
Lemonades 0.5 5.6 0.5 5.6 10.1
Cake 0.9 5.3 1.1 5.5 8.7
Cake with fruits 4.6 11.9 1.7 9.0 14.5
Cookies 0.1 25.2 0.1 25.2 50.2
Fruit ice cream 1.7 13.5 0.6 12.4 23.6
Honey 38.8 40.0 33.9 35.1 2.4
Apple 5.7 7.0 2.0 3.3 2.5
Banana 3.4 8.6 3.5 8.7 10.3
Grape 7.1 7.3 7.1 7.3 0.4
Asparagus 0.9 1.0 0.8 0.9 0.2
Carrot 0.8 3.3 0.8 3.3 4.9
Pepper 1.1 1.2 1.3 1.4 0.1
Apple juice 6.4 7.3 2.4 3.3 1.7
Orange juice 2.5 4.2 2.6 4.3 3.4
Yoghurt (plain) 0.0 0.0 0.0 0.0 0.0
Yoghurt (with fruits) 0.3 5.4 0.2 5.3 10.1
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an average intake of 32 g (for women) to 35 g (for men) of 
total fructose per day mainly consumed as soft drinks or fruit 
juice. In Lebanon, daily intake of fructose seems to be on 
average 51 g/d. In this study, it was also estimated that the 
intake of added fructose stemming from HFCS was three 
times higher than the intake of naturally occurring fructose 
in fruits and vegetables [38, 39]. Taken together, these data 
suggest that free sugar intake in general and free fructose 
intake in particular are still markedly higher in wide parts of 
the general population than recommended in many countries 
world-wide.

Uptake of fructose in small intestine 
and fructose metabolism

As fructose and glucose uptake and metabolism are quite 
different and as these differences are discussed to be at least 
in part contributing to the different (patho-) physiological 

effects of these two monosaccharides, in the following, some 
of the key differences regarding the uptake and the metabo-
lism of fructose are summarized.

Uptake of fructose in small intestine

It is well described that the uptake of fructose and glucose 
in small intestine differs (see [40] and also Fig. 1). As first 
described by Crane in 1962 [41], glucose is mainly taken up 
actively into the enterocytes through an energy- and sodium-
dependent transporter, the so-called sodium-dependent 
glucose transporter (SGLT1) (see [35, 36]). When luminal 
glucose concentrations are high, it has been shown that the 
glucose transporter 2 (GLUT2) is rapidly and transiently 
recruited to the apical enterocyte membrane [42], suggesting 
that GLUT2 also facilitates some of the uptake of glucose. 
In contrast, fructose is taken up into the enterocytes via the 
energy-independent glucose transporter GLUT5 (see [35, 
36]). Supporting the assumption that GLUT5 is the main 

Fig. 1   Fructose (Fru) and glucose (Glu) uptake and metabolism in 
enterocytes. At the apical side of the enterocytes, glucose is taken 
up via sodium-dependent glucose transporter 1 (SGLT1), whereas 
fructose is taken up via glucose transporter 5 (GLUT5). At high con-
centrations of luminal saccharides, GLUT2 may also contribute to 
the apical uptake of glucose and fructose into enterocytes. Fructose 
is metabolized to fructose-1-phosphate via ketohexokinase (KHK) 
(1) and is further converted to dihydroxyacetone phosphate and glyc-
eraldehyde-3-phosphat via aldolase B (2), which can be processed 

to pyruvate being a key molecule for the production of lactate, cit-
rate, adenosine triphosphate (ATP) or very low-density lipoprotein 
(VLDL). In contrast, glucose is metabolized to fructose-6-phosphat 
via the enzyme glucose-6-phosphate isomerase (3) and further con-
verted to fructose-1,6-bisphosphate through the enzyme phosphofruc-
tokinase 1 (4). At the basolateral side of the enterocyte, both sugars 
are released into the portal blood via GLUT2 for both, glucose and 
fructose. Figure was created with BioRender.com and modified from 
[40].
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apical fructose transporter in small intestinal enterocytes, 
results of ex vivo studies employing intestinal tissue obtained 
from GLUT5 knockout mice showed no uptake of fructose, 
despite normal GLUT2 levels [43]. However, results of 
in vivo and ex vivo studies also suggest that under certain 
conditions—like after the intake of high fat and/or sugar 
(fructose) diets—luminal fructose uptake into enterocytes 
may also be facilitated through GLUT2 [43–45]. Studies 
further suggest that concentrations of GLUT5 in enterocytes 
can be induced when fructose is present in the intestinal 
lumen in wildtype mice [46]. Interestingly, concentrations 
of other GLUT transporters like GLUT7, 8, and 12 were not 
altered by the presence of fructose [46]. On the other hand, 
as reviewed in detail by Iametti et al., studies suggest that 
intestinal fructose uptake may be reduced when polyphenols 
are concomitantly present [47]. For instance, it has been 
shown in in vitro studies employing Caco-2 cells that poly-
phenols like apigenin and derivatives of apigenin, found for 
instance in chamomile tea, but also catechins found in green 
tea, can reduce fructose uptake dose-dependently up to ~70 
% [48]. In these studies, it has also been shown that some of 
these compounds may interfere with GLUT5 mRNA expres-
sion while others seem to block GLUT5 through other yet 
not fully understood measures. It has been shown that fruc-
tose-dependent regulation of GLUT5 expression and recruit-
ment to the apical membrane of enterocytes is at least in 
part regulated through PI3 kinase/Akt-dependent signaling 
pathways [49]. Furthermore, it has also been shown that a 
low glycemic diet may inhibit fructose uptake via GLUT2 
through alterations of the translocation of GLUT2 into the 
apical membrane [44].

At the basolateral side of the enterocytes, export of both 
fructose and glucose into the blood has been shown to be 
mediated through GLUT2 (see [35] and also Fig. 1). Still, 
even after an elevated intake, fructose concentrations in 
peripheral blood remain rather low. Indeed, in fasting serum 
of healthy subjects, levels are ~8.1 µM [50, 51], suggesting 
that fructose, at least in part, is metabolized by enterocytes. 
Supporting the latter idea, Bode et al. reported already in 
the 80s that fructose intake compared to glucose or starch 
consumption contributes to adaptive changes of enzymes 
involved in fructose metabolism in jejunal mucosa of rats 
[52]. In recent years, Jang et al. [53] showed in mice that 
a gavage of low doses of fructose (0.5 g fructose/kg body 
weight) was almost completely cleared by enterocytes (~90 
%) via fructokinase. In the same study, it was also shown 
that when ingested in doses >1 g fructose/kg body weight, 
fructose reaches the liver (~30 %) and colonic microbiota, 
respectively [53]. Studies in rodents further reported that 
in the absence of fructose intake, fructose levels are <0.1 
mM in portal and systemic blood [50]. In contrast, in mice, 
an increase in fructose levels in systemic blood of 0.2 to 1 
mM has been shown after ingesting a fructose enriched diet 

(20-40 % fructose) [50]. In line with the hypothesis that 
marked amounts of fructose are metabolized in the entero-
cytes of the small intestine, studies in hamsters showed an 
induction of intestinal de novo lipogenesis and apoprotein 
B48 synthesis after dietary fructose intake [54]. Studies 
with healthy volunteers employing isotope labeled fructose 
showed that only ~4 g of a 30 g fructose load reached sys-
tematic circulation [55]. However, whether this is related 
to a very effective clearance of fructose by the liver or to a 
metabolism of the monosaccharide in enterocytes has not 
yet been clarified.

Metabolism of fructose

Within cells, metabolism of fructose and glucose also dif-
fers substantially, which has been reviewed in great detail by 
others (see [34, 56] and Fig. 1). In brief, fructose is phospho-
rylated to fructose-1-phosphate through the enzyme fruc-
tokinase C using adenosine triphosphate (ATP) as a co-sub-
strate (see [57]). The monosaccharide is then metabolized 
via aldolase B to dihydroxyacetone phosphate (DHAP) and 
glyceraldehyde. Glyceraldehyde is converted to glyceralde-
hyde-3 phosphate. Enzymes necessary for these metabolic 
steps have only been shown to be expressed in enterocytes, 
hepatocytes, and proximal tubular cells [56]. From there on, 
the metabolisms of fructose and glucose are alike [56, 58].

The conversion of fructose to fructose-1-phosphate is 
facilitated in the absence of any feedback control thereby 
contrasting the metabolism of glucose being tightly regu-
lated (see [34] and Fig. 1). Subsequently, intermediates of 
the metabolism of fructose such as glyceraldehyde-3-phos-
phat and DHAP are built without regulation bypassing phos-
phofructokinase. The latter enzyme is the major regulatory 
step of glycolysis (see [56, 59]). Also, converting fructose 
to fructose-1-phosphate requires ATP as a co-substrate [60]. 
Studies have shown that in settings of high fructose intake, 
ATP can be depleted resulting in an activation of adenosine 
monophosphate (AMP) deaminase, and subsequently, an 
induction of the purine nucleotide turnover and the produc-
tion of uric acid [61]. Interestingly, the decrease in ATP 
levels following a fructose challenge has been shown to last 
for up to 50 min thereby outlasting the increase in blood 
fructose levels [62]. These findings suggest that other reac-
tions besides the phosphorylation of fructose may contrib-
ute to the decrease in ATP levels in liver tissue [63]. Fur-
ther studies are needed to determine associated molecular 
mechanisms. Also, it remains to determine if this temporary 
fructose-induced depletion of ATP is critical in the develop-
ment of liver diseases like NAFLD (also see below).
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Fructose, insulin resistance and NAFLD: role 
of bacterial endotoxin and Toll‑like receptors

Despite intense research efforts throughout the last decade, 
mechanisms underlying the metabolic alterations associ-
ated with the intake of elevated amounts of fructose, and 
especially, the development of insulin resistance and asso-
ciated diseases like NAFLD are not yet fully understood. 
As detailed above, due to its unregulated metabolism, 
fructose may be converted to various metabolites like 
diacylglycerol rather fast. Results of some animal studies 
suggest that hepatic insulin resistance and steatosis may 
result from an increase in hepatic diacylglycerol accumu-
lation, and an associated protein kinase C activation lead-
ing to alterations of insulin-mediated Akt activation [64]. 
However, as discussed above, several studies assessing the 
uptake and distribution of fructose suggest that marked 
amounts of fructose may already be metabolized in the 
small intestine ([53] and Fig. 1). Accordingly, other (addi-
tional) mechanisms may be involved in the development 
of insulin resistance associated with an elevated fructose 
intake and NAFLD. In support of this assumption, results 
of animal studies of our own group have shown that a 
chronic intake of a fructose enriched drinking solution 
(30 % of fructose content) and the resulting development 
of fatty liver are associated with increased bacterial endo-
toxin levels in portal vein and an induction of its recep-
tor, Toll-like receptor 4 (TLR4), in the liver as well as its 
subsequent signaling cascade [15]. In the same study, it 
was also shown that alterations alike are not present when 
animals are fed a 30 % glucose solution. Furthermore, 
the concomitant treatment of mice with non-resorbable 
antibiotics like polymyxin B and neomycin abolished the 
increase in bacterial endotoxin levels in portal vein being 
also associated with a diminishment of the development of 
liver steatosis and inflammatory alterations in mice [15]. 
Bacterial endotoxin and an activation of TLR4 signaling 
have also been shown to contribute to the development 
of insulin resistance [65, 66]. Supporting the hypothesis 
that an elevated fructose intake may impair intestinal bar-
rier function, resulting in an increased translocation of 
bacterial endotoxin, mice lacking a functional TLR4 were 
found to be significantly protected from fructose-induced 
liver damage [67]. Also, targeting alterations of intes-
tinal barrier function with drugs like metformin or bile 
acids and probiotics (also see below), respectively, have 
been reported by us and others not only to be associated 
with ‘normalized’ tight junction protein levels in small 
intestine but also with a lessening of the development of 
NAFLD and a normalization of markers of insulin resist-
ance in liver tissue [68–72]. Interestingly, in our studies 
only limited or no effects on tight junction proteins were 

found in colon [73]. These findings suggest that altera-
tions associated with the intake of elevated amounts of 
fructose may not only result from changes of intestinal 
microbiota composition but also may result from direct 
effects of fructose, e.g., its metabolism, in enterocytes. In 
line with these findings, Guo et al. showed that the chronic 
intake of fructose in piglets decreased the expression of 
tight junction proteins and myosin light chain kinase 
(MLCK) in ileal tissue [74]. Wagnerberger et al. further 
reported that not only TLR4 is induced in livers of mice 
fed a fructose-rich diet. Rather, in this study it was shown 
that the expressions of other TLRs including TLR1, 2, 3, 
and 6-8 mRNA were all significantly higher in mice fed a 
fructose-rich diet than in controls. Furthermore, expres-
sion of TLRs in the liver was almost completely abolished 
when fructose-fed mice were concomitantly treated with 
the non-resorbable antibiotics polymyxin B and neomycin. 
Interestingly, while the disruption of TLR4 signaling or 
the treatment with non-resorbable antibiotics was asso-
ciated with a reduction in markers of insulin resistance 
and inflammation, e.g., number of F4/80 positive cells, 
inducible nitric oxide synthase (iNOS), and tumor necrosis 
factor alpha (TNFα) expression, fat accumulation in liver 
tissue was only reduced by ~50–60 % [73]. These results 
further suggest that some of the fructose may reach the 
liver and may through its insulin-independent metabolism 
be quickly converted to triglycerides.

In line with the above summarized findings in animal 
studies, it has been shown in human studies that a three day 
long elevated intake of fructose (25 % of total energy as 
fructose) is associated with increased bacterial endotoxin 
levels and an induction of TLR2 and 4 mRNA expres-
sion in peripheral blood mononuclear cells in healthy vol-
unteers [14]. In the same study, similar alterations were 
not found when the same subjects consumed comparable 
amounts of glucose for three days. In summary, these find-
ings suggest that both intermediates of the hepatic fructose 
metabolism and pathogen-associated molecular patterns 
(PAMPs) and -dependent signaling cascades may con-
tribute to the development of fructose-associated insulin 
resistance and the development of NAFLD (see Fig. 2). 
However, further studies are needed to determine doses 
and to further delineate molecular mechanisms. Some of 
the so far defined possible mechanisms underlying the 
increased translocation of PAMPs are highlighted in the 
following.



3118	 European Journal of Nutrition (2023) 62:3113–3124

1 3

Fructose, intestinal microbiota and intestinal 
barrier

Fructose and intestinal microbiota composition

Alterations of intestinal microbiota composition have 
repeatedly been discussed to be associated with impair-
ments of intestinal barrier function and an increased trans-
location of PAMPs like bacterial endotoxin [75]. Further-
more, results of studies in rats and mice suggest that a 
chronic intake of fructose-rich diets either feeding fructose 
alone or in combination with a high-fat diet is associated 
with marked changes in the relative abundance of sev-
eral bacterial families and species in feces [76, 77]. Spe-
cifically, results of several studies suggest that a chronic 

intake of a fructose-rich chow or drinking solution results 
in a decrease in Bifidobacterium and Lactobacillus in feces 
of rats [78, 79]. Furthermore, Wang et al. reported that in 
mice, the intake of a fructose- and fat-rich diet resulted in 
an increase in the ratio of Firmicutes to Bacteroidetes and 
Lactobacillus, uncultured bacterium Erysipelotrichaceae, 
Olsenella, and uncultured bacterium Bacteroidales S24-7 
group as well as the relative abundance of Desulfovibrio, 
Blautia, Catenibacterium, Bacteroides, Candidatus Sac-
charimonas, and Faecalibaculum in feces [80]. In a study 
employing Kunming mice, the chronic intake of a 30 % 
fructose solution was associated with a decrease in the 
relative abundance of Bacteroidetes, while that of Firmi-
cutes was increased [81]. These changes also resulted in 
an increase in the ratio of Firmicutes to Bacteroidetes in 

Fig. 2   Schematic drawing of possible mechanisms underlying high 
fructose-induced intestinal barrier dysfunction. High fructose (Fru) 
consumption may lead to changes in microbiota composition (dysbio-
sis). Furthermore, elevated fructose intake can induce intestinal bar-
rier dysfunction, e.g., a loss of tight junction proteins, subsequently 
leading to an increased permeation of pathogen-associated molecular 
patterns (PAMPs). Higher translocation of PAMPs like lipopolysac-
charides (LPS) into the portal vein can further lead to an induction 
of Toll-like receptor (TLR4) receptor-dependent signaling cascades in 
the liver which may contribute to the development of hepatic insu-

lin resistance. Moreover, fructose metabolism may, through yet to be 
determined mechanisms, directly affect mucosal nitric oxide (NO) 
homeostasis (e.g., shift in NOS and arginase activity: increased for-
mation of NO and low arginase activity) leading to a loss of tight 
junction proteins. The amino acids L-arginine and L-citrulline may 
attenuate the decrease in arginase activity and therefore, may dampen 
fructose-induced intestinal barrier dysfunction. Some probiotics may 
also attenuate the development of fructose-induced intestinal barrier 
dysfunction through mostly unknown mechanisms. Figure was cre-
ated with BioRender.com.
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feces of fructose-fed animals [81]. In another study, in 
which mice were fed a 60 % fructose solution, microbial 
composition generally changed being associated with a 
pronounced decrease in the Bacteroidetes/Firmicutes ratio 
as well as an increase in the relative abundance of Bac-
teroides, Akkermansia, Lactobacillus, and Ruminococcus 
in feces [82]. In line with these findings, it was recently 
reported that in fructose-fed piglets the ratio of Firmicutes 
to Bacteroidetes in colon was also increased [74], further 
suggesting that the alterations found regarding intestinal 
microbiota might be species independent. Also, in this 
study, the relative abundance of Blautia and Clostridium 
sensu stricto 1 were higher than in piglets fed the con-
trol diet [74]. Supporting the hypothesis that chronic high 
intake of fructose may affect the host through alterations 
of the intestinal microbiota composition, studies indicate 
that in rats fed a high-fructose diet levels of short-chain 
fatty acids in plasma are reduced [83].

Earlier studies reported only limited effects on microbiota 
composition in the upper part of small intestinal tissue in 
mice fed a 30 % fructose solution probably due to a lack of 
specification of the method [68]. In contrast, recent stud-
ies employing 16S rRNA Illumina sequencing technologies 
revealed that an intake of a fructose-rich diet (e.g., fructose 
alone or in combination with fat) over an extended period of 
time is associated with marked changes in overall diversity 
of intestinal microbiota and relative abundance of specific 
bacterial families and species in ileum. For instance, Guo 
et al. reported that a chronic intake of fructose in piglets was 
associated with higher Chao and Shannon indexes in ileum 
when compared to controls. Furthermore, in the same study, 
the proportion of Firmicutes and Proteobacteria decreased, 
but the proportions of Bacteroidetes, Actinobacteria and 
Tenericutes increased [74].

Taken together, results of animal studies suggest that a 
chronic intake of large amounts of fructose is associated 
with a shift in the ratio of Firmicutes to Bacteroidetes and 
the relative abundance of some bacterial species in lower 
parts of the gut, e.g., the ileum and colon as well as feces; 
however, while it has been suggested by some studies, that 
this may also impact the metabolite pattern, it has not yet 
been clarified if the ‘dysbiosis’ imposed by the consumption 
of high amounts of fructose over an extend period of time 
also impacts the host by other means. Also, specific effects 
seem to vary between species and among mouse strains as 
well as fructose doses and feeding duration. Furthermore, in 
most studies no direct links and/ or mechanisms underlying 
the increased translocation of PAMPs in the gut or induc-
tion of TLRs and -dependent signaling cascades in liver and 
other tissues in settings of high fructose intake have been 
established. In summary, while several studies suggest that a 
high fructose intake may trigger gut microbiota dysbiosis in 
both feces and small intestine, the impact of this ‘dysbiosis’ 

on the host required further studies to fully understand the 
impact of these alterations.

Fructose and intestinal barrier dysfunction: 
Alterations of NO homeostasis

As discussed above, results of studies suggest that marked 
amounts of dietary fructose may already be metabolized in 
small intestinal enterocytes also suggesting that fructose 
could either directly or through intermediates affect these 
cells. Indeed, employing an ex vivo model of small intesti-
nal everted tissue sacs, we recently showed that even in the 
absence of bacteria physiological concentrations of fructose 
(5 mM) may alter intestinal barrier function in as short as 
30–60 min upon exposure [84]. Results of these studies also 
suggest that alterations of the nitric oxide (NO) homeosta-
sis may be critical herein [84, 85]. Specifically, it has been 
shown by us and others that chronic intake of fructose is 
associated with an induction of iNOS and NO synthesis in 
the gut [86, 87]. And while results of our own group also 
showed that iNOS knockout mice are not protected from the 
increased translocation of bacterial endotoxin into the portal 
blood stream [86], targeting NO production in small intesti-
nal tissue, e. g., through L-arginine or L-citrulline (also see 
below) has been shown to dampen fructose-induced intesti-
nal barrier dysfunction [84, 88]. Supporting the hypothesis 
that alterations of the NO homeostasis are critical in fruc-
tose-induced intestinal barrier dysfunction, an oral supple-
mentation of L-arginine and L-citrulline, respectively, has 
been shown to attenuate the loss of intestinal barrier function 
(e.g., the loss of tight junction proteins and increased per-
meation of xylose) [84, 88]. This was also associated with 
a lower translocation of endotoxin into the portal vein in 
various rodent models employing fructose-rich diets (30 % 
fructose in drinking water [89]; 50 % wt/wt fructose in liquid 
diet [90, 91]). The protective effects of the amino acids were 
associated with ‘normalization’ of arginase activity found to 
be markedly lower in small intestinal tissue of mice-fed fruc-
tose enriched diets and in ex vivo models of small intestinal 
everted tissue sacs challenged with fructose [84, 88]. These 
findings are in line with those of others reporting a criti-
cal role of arginase in inflammation in intestinal tissue [92, 
93]. L-arginine and L-citrulline have both been shown to be 
allosteric regulators of arginase activity. Interestingly, the 
supplementation of L-citrulline had no effect on the altera-
tion of intestinal microbiota composition in small intestine 
inflicted by the feeding of a fructose-, fat- and cholesterol-
rich diet. Furthermore, a treatment of animals with the argi-
nase inhibitor nor-NOHA attenuated the protective effects of 
L-arginine and L-citrulline, respectively, being also associ-
ated with an attenuation of the protective effects of the two 
amino acids on the development of NAFLD [84, 88]. Results 
of our own studies also suggest that the ‘normalization’ of 
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arginase activity was associated with a decrease in MLCK 
protein [84]. It has been shown that MLCK activity may be 
induced in cells treated with spermine [94], the latter being 
a downstream substrate of arginase-mediated formation of 
ornithine. However, if the lower arginase activity found in 
small intestinal tissue exposed to fructose alters spermine 
bioavailability, and hereby, MLCK activity remains to be 
determined. Also, despite the results of studies of our own 
group suggesting that arginase activity is also lower in 
patients with steatosis, further studies are needed to deter-
mine if this reduction in arginase activity is related to an 
increased fructose intake and if this is causal in the increased 
bacterial endotoxin levels found in these patients [84]. Also, 
the question how fructose alters NO homeostasis remains to 
be answered.

Fructose and effects of probiotics 
on intestinal barrier and liver health

As detailed above, results of several studies suggest that 
an intake of large amounts of fructose can alter intestinal 
microbiota composition and barrier function. These results 
tempt the assumption that a manipulation of intestinal 
microbiota composition through the supplementation of pro-
biotics may alter the fructose-induced alterations. Indeed, 
as detailed in the following, results of several studies sug-
gest that a concomitant intake of probiotics may attenuate 
at least some of the effects of fructose. For instance, the 
concomitant treatment of fructose-fed mice with the pro-
biotic Lactobacillus casei Shirota significantly diminished 
liver damage compared to mice only fed fructose [68]; 
interestingly, this was not associated with a protection from 
the loss of tight junction proteins or changes of intestinal 
microbiota composition in small intestine. Ritze et al. and 
Zhao et al. both reported that a concomitant intake of the 
probiotic Lactobacillus rhamnosus GG markedly attenu-
ated the development of fructose-induced liver damage in 
mice [95, 96]. The protective effect of these probiotics was 
associated with a protection against the loss of tight junction 
proteins and impairments of intestinal barrier function. Also, 
Lactobacillus rhamnosus GG has been reported to ‘revert’ 
intestinal dysbiosis and decreased the relative abundance of 
inflammation-related bacteria such as Desulfovibrionaceae, 
Clostridia, and Proteobacteria in feces of fructose-fed ani-
mals [81]. The probiotic strains Lactobacillus plantarum 
ATG-K2 and ATG-K6 but also Lactobacillus plantarum 
strains such as NA136 have also been shown to ameliorate 
the induction of pro-inflammatory markers like TNFα and 
interleukin-6 as well as markers of lipogenesis, e.g., fatty 
acid synthase and sterol regulatory element-binding protein 
1c in small intestinal tissue of rodents fed a fat- and fructose-
rich diet [97, 98]. Furthermore, in the study of Wang et al. 

the concomitant treatment of mice fed a fat- and fructose-
rich diet with the probiotics L. rhamnosus LS-8 and L. crus-
torum MN047 attenuated the development of NAFLD, insu-
lin resistance, and decreased circulating lipopolysaccharides 
(LPS) levels [80]. It has also been shown that treating high 
fructose diet-fed mice with the bacterial strain called Lac-
tobacillus brevis DM9218 resulted in an improved intestinal 
barrier function combined with a reduction in LPS in the 
liver [99]. It has further been reported that the administra-
tion of the probiotic Lactobacillus kefiri and Lactobacillus 
fermentum CECT5716 may diminish the effects of high 
fructose-induced dysbiosis [100, 101].

Taken together, these data further suggest that some pro-
biotics may attenuate or at least diminish fructose-induced 
alterations of intestinal barrier function, and subsequently, 
the development of metabolic diseases like NAFLD. How-
ever, the above summarized data also suggest that not all 
beneficial effects on the development of fructose inflicted 
NAFLD found for probiotics may be related to an improved 
intestinal barrier function. Rather, results so far suggest that 
depending on the bacterial strain some of the probiotics 
might—probably through metabolites—alter liver metabo-
lism directly while others seem, either through direct inter-
action or yet to be defined metabolites/mechanisms, to alter 
metabolism or signaling cascades within the enterocytes. 
Further studies are at need to determine mechanisms and 
metabolites involved.

Conclusion

High fructose consumption, be it through food and beverages 
sweetened with sucrose or HFCS, may not only lead to the 
development of overweight but may also contribute to the 
development of other metabolic diseases like diabetes type 
2 and NAFLD. Despite intense research effort, mechanisms 
underlying these alterations associated with fructose and 
their contribution to the development of the latter disease 
are not yet fully understood. Studies suggest that fructose 
may affect intracellular signaling through direct measures 
due to insulin-independent metabolism [40]. However, in 
recent years, it has also been shown in various species that 
a high and chronic intake of fructose can be associated with 
changes in fecal microbiota but also a loss of tight junc-
tion proteins in small intestine. A causal link between the 
changes in fecal microbiota composition and the loss of tight 
junctions in small intestine could be established based on 
the findings employing certain probiotics like Lactobacillus 
rhamnosus GG and Lactobacillus brevis DM9218 that have 
been shown to attenuate the development of intestinal barrier 
dysfunction [96, 99]. However, results of recent other stud-
ies also suggest that fructose may add to intestinal barrier 
dysfunction and the subsequent translocation of PAMPs like 
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bacterial endotoxin through more direct interaction with the 
enterocytes and their metabolism. Indeed, it has been shown 
that fructose metabolism directly disturbs intracellular NO 
homeostasis, e.g., leading to a loss of tight junction proteins 
([84, 88] and see Fig. 2).

Further studies are needed to determine mechanisms and 
doses necessary to inflict these alterations. Also, studies 
are needed to elucidate the impact of intestinal microbiota 
and the interaction with other compounds found in foods 
and beverages like polyphenols herein. It remains yet to be 
determined if and how specific (probiotic) bacterial strains 
can alter or even attenuate these alterations. As most of the 
results showing an effect of fructose on intestinal micro-
biota composition and barrier function were obtained in in 
vitro and animal studies, studies in humans are needed in 
the future to determine if alterations alike are also found 
in humans and if so, whether these alterations contribute 
to the development of intestinal barrier dysfunction, and 
subsequently, the development of metabolic diseases like 
NAFLD and diabetes type 2. Moreover, whether sex- or age-
specific differences have an impact on alterations associated 
with high fructose intake has not yet been determined to 
our knowledge. Despite these open questions, and especially 
when taken the high intake of sugar and fructose found in 
some populations into consideration, a restrictions of sugar 
intake, and herein, especially fructose intake may already 
now be a way to lessen intestinal barrier dysfunction and the 
development and progression of metabolic diseases associ-
ated with altered intestinal barrier function like NAFLD. 
Indeed, in recent years, guidelines have been issued and dif-
ferent political measures including restrictions of the promo-
tion for sugar-rich products like sweets and sugar-sweetened 
beverages, the introduction of progressive taxes on sugary 
drinks and foods, and restrictions of the availability of spe-
cific foods have been established in many countries all aim-
ing to reduce sugar intake [102]. Also, changing food choice 
settings, e.g., removing sugary snacks and beverages from 
near tills to reduce impulse buying and improving nutritional 
literacy especially in children, adolescents, and young adults 
through new didactic tools in school settings may also add to 
reduce overall sugar intake, and thereby, positively impact-
ing on health outcomes in the general population.
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