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Abstract
Background and aims  Atherosclerosis is associated with a reduction in the bioavailability and/or bioactivity of endogenous 
nitric oxide (NO). Dietary nitrate has been proposed as an alternate source when endogenous NO production is reduced. Our 
previous study demonstrated a protective effect of dietary nitrate on the development of atherosclerosis in the apoE−/− mouse 
model. However most patients do not present clinically until well after the disease is established. The aims of this study were 
to determine whether chronic dietary nitrate supplementation can prevent or reverse the progression of atherosclerosis after 
disease is already established, as well as to explore the underlying mechanism of these cardiovascular protective effects.
Methods  60 apoE−/− mice were given a high fat diet (HFD) for 12 weeks to allow for the development of atherosclerosis. 
The mice were then randomized to (i) control group (HFD + 1 mmol/kg/day NaCl), (ii) moderate-dose group (HFD +1 mmol/
kg/day NaNO3), or (iii) high-dose group (HFD + 10 mmol/kg/day NaNO3) (20/group) for a further 12 weeks. A group of 
apoE−/− mice (n = 20) consumed a normal laboratory chow diet for 24 weeks and were included as a reference group.
Results  Long-term supplementation with high dose nitrate resulted in ~ 50% reduction in plaque lesion area. Collagen expres-
sion and smooth muscle accumulation were increased, and lipid deposition and macrophage accumulation were reduced 
within atherosclerotic plaques of mice supplemented with high dose nitrate. These changes were associated with an increase 
in nitrite reductase as well as activation of the endogenous eNOS-NO pathway.
Conclusion  Long-term high dose nitrate significantly attenuated the progression of established atherosclerosis in the apoE−/− 
mice fed a HFD. This appears to be mediated in part through a XOR-dependent reduction of nitrate to NO, as well as enhanced 
eNOS activation via increased Akt and eNOS phosphorylation.
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Introduction

Cardiovascular disease (CVD) is a major contributor to global 
morbidity and mortality [1]. Endothelial dysfunction, caused 
by impaired bioavailability and/or bioactivity of the vasopro-
tective molecule nitric oxide (NO) is the initial step in the 
development of atherosclerosis [2]. Endothelial dysfunction 
is characterized by reduced NO, chronic inflammation of the 
arterial wall, plaque formation and progressive occlusion [3]. 
NO is produced by three different isoforms of the enzyme NO 
synthase (NOS) via the classical L-arginine-NOS pathway, 
with endothelial NOS (eNOS) the major isoform responsible 
for maintaining vascular tone [4]. Animal and human stud-
ies of CVD have demonstrated reductions in eNOS-derived 
NO bioavailability [5], which is a key pathogenic mechanism 
involved in the formation and progression of atherosclerotic 
plaque [6]. In addition to endogenous NO generation through 
the conversion of L-arginine to citrulline, NO is also produced 
via the NOS-independent nitrate-nitrite-NO pathway [7]. 
Unlike the L-arginine-NOS pathway, the nitrate-nitrite-NO 
pathway is oxygen independent and regarded as an alternate 
source of NO during ischemia/hypoxia [8, 9].

Epidemiological studies have demonstrated that increased 
intake of green leafy vegetables, which are rich in nitrate, can 
improve endothelial function and may provide a way to modu-
late CVD development [10–12]. Dietary supplementation with 
nitrate has also been shown to have beneficial effects on vascu-
lar function in humans and in animal models of hypertension, 
diabetes and atherosclerosis [6, 13–17]. Our previous study 
showed that long term dietary nitrate supplementation had sig-
nificant beneficial effects on acetycholine-mediated vascular 
function in apoE−/− mice fed a HFD. This was accompanied 
by a reduction in plaque size and an increase in plaque stabil-
ity, demonstrating a protective effect of dietary nitrate in the 
development of atherosclerosis [18]. However, the majority 
of patients only become aware of their atherosclerosis when it 
presents as a cardiac event. Plaque rupture is the main cause 
of such an event and can result in a myocardial infarction or 
stroke. Consequently, treatments that can prevent or reverse the 
progression of atherosclerosis after disease is already estab-
lished, will have greater translational impact in human stud-
ies. The present study aimed to establish if long-term dietary 
nitrate supplementation could prevent or attenuate the progres-
sion of atherosclerosis after disease establishment, whether the 
effects were dose-dependent and the mechanisms behind any 
potential beneficial effects.

Materials and methods

Animal study

Eighty male apoE−/− mice (6–8 weeks of age) were acclima-
tized for 1 week before 60 mice were switched to a HFD (50% 
carbohydrate, 21% fat supplemented with 0.15% cholesterol 
via addition of clarified butter (ghee), and 23% protein, Glenn 
Forrest Stockfeeds, WA). The remaining 20 mice were contin-
ued on a normal laboratory diet (NLD, 7% simple sugars, 4.5% 
fat with 0.02% cholesterol, 50% polysaccharide, 15% protein, 
Specialty Feeds, meat free rat and mouse diet) for the dura-
tion of the study as a reference group. Following 12 weeks 
on a HFD to allow for the development of atherosclerosis 
[18], mice were randomly divided into three groups (n = 20/
group): (i) control group (HFD diet +1 mmol/kg/day NaCl, 
[HFD+NaCl]), (ii) moderate-dose group (HFD diet +1 mmol/
kg/day NaNO3, [HFD+MDN]), and (iii) high-dose group 
(HFD diet +10 mmol/kg/day NaNO3, [HFD+HDN]). Treat-
ments were given in the drinking water and mice were main-
tained on the supplemented diets for an additional 12 weeks. 
Body weight and food intake were measured weekly. The pro-
ject was approved by the Royal Perth Hospital Animal Ethics 
Committee (R539/18-21) and Perkins Animal Ethics Commit-
tee (AE154). All experiments were conducted in accordance 
with the NHMRC guidelines for the care and use of laboratory 
animals in Australia. The study is reported in accordance with 
ARRIVE guidelines.

Serum lipid profile and biochemistry

At the end of the treatment period, fasted (5 h) mice were 
anesthetized by inhalation of isoflurane (2% in 100% oxygen). 
Blood samples were collected by cardiac puncture and stored 
at 4 °C overnight to allow the blood to clot. Serum was sepa-
rated via centrifugation (4000 rpm for 10 min at 4 °C) and 
stored at − 80 °C for later analysis. The serum levels of triglyc-
erides (TG), total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-C), and low-density lipoprotein cholesterol 
(LDL-C) were analysed using standard colorimetric methods 
by PathWest Laboratories (Perth, WA). Serum endothelin 
(Enzo Lifesciences, NY, USA, #ADI-900-020A) and lep-
tin (R&D systems, MN, USA, SM0B00B) were measured 
using ELISA kits, with all analysis conducted according to 
manufacturer instructions. Serum cGMP concentrations were 
measured using an ELIZA kit (Enzo Lifesciences, NY, USA, 
#ADI-900-164).
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Serum NOx measurements

Serum nitrate and nitrite concentration was assessed using 
a gas chromatography mass spectrometry (GCMS) method 
as previously described [19].

Plaque characterization

The entire aorta was excised, and the surrounding fat 
removed. Atherosclerotic lesion area in the cross-sections 
of brachiocephalic arteries (BCA) were paraffin wax-embed-
ded, sectioned and stained with H&E (CellCentral, UWA). 
The aortic root and aortic ring close to the thoracic-abdom-
inal region were isolated and placed in a cryomould filled 
with optimum cutting temperature (OCT) compound, frozen 
on dry ice and stored at − 80 °C for subsequent analysis. 
Further sectioning and staining with P-IκBα (1:200 dilution, 
Cell Signalling, #28595) as a marker of nuclear factor kappa 
B (NFκB) activation, the pan-macrophage marker CD68 
(1:200 dilution, Thermofisher; BS-0649R) and alpha smooth 
muscle actin (1:500 dilution, αSMA; Abcam, ab5694) as 
a marker of vascular smooth muscle cells. Picrosirius red 
(PSR) staining was performed to determine the amount 
of collagen and Oil Red O (ORO) staining was utilized to 
determine the presence of lipid-laden plaques in the aortic 
sections. These techniques were performed as previously 
described [20, 21].

Tissue protein expression

Protein expression of p-eNOSser1177 (#9571, 1:500), AMPK 
(#2603, 1:500), p-AMPKthr172 (#2535, 1:500), Akt (#4691, 
1:500), p-Aktser473 (#4060, 1:500) (Cell Signaling Tech-
nology, MA, USA), eNOS (BD Biosciences, CA, USA, 
#610298, 1:500) and HO-1(Enzo Lifesciences, #ADI-SPA-
895-F,1:500) were determined via western blot in isolated 
aortic samples as previously described [22]. Expression 
of xanthine oxidoreductase (XOR) (Abcam, VIC, AU, 
Ab231316, 1:500) was determined in both aorta and liver 
via western blot. To minimize interference between antibod-
ies, all membranes were cut according to molecular weight 
size prior to incubation with primary antibody.

Statistical analysis

Data processing was performed with Graphpad Prism (ver-
sion 9). All results are shown as mean ± SEM. All analy-
sis was conducted using one-way ANOVA with Duncan’s 
post-hoc comparisons. Repeated measures analysis was per-
formed on data collected over the 24 week study period for 
weight gain and food intake. Mice in the NLD group were 

not included in statistical analysis of plaque composition. 
Statistical significance was considered if p < 0.05.

Results

Animal characteristics, body weight and food intake

Nine mice; one in the HFD+HDN group, four in the 
HFD+MDN group, and four in the HFD+NaCl group had 
to be sacrificed prior to the end of the study due to the devel-
opment of severe dermatitis. Analysis of the water deter-
mined that the moderate-dose nitrate contained 130 μg/mL 
of nitrate and 3 μg/mL of nitrite, and the high-dose nitrate 
contained 1301 μg/mL of nitrate and 26.6 μg/mL of nitrite 
[18]. This corresponds to a 1 mmol/kg/day and 10 mmol/
kg/day intake respectively, assuming mice drink 5–6 mL 
water/day [23]. As expected, apoE−/− mice fed the HFD 
had a significant increase in body weight gain compared to 
mice consuming the NLD over 24 weeks and in mean body 
weight at the end of the study period (Fig. 1A). There was 
no significant difference in body weight gain or mean body 
weight at 24 weeks between apoE−/− mice fed the HFD alone 
or those supplemented with moderate or high dose nitrate. 
Average food consumption (g/mouse/week) was not signifi-
cantly different in mice consuming any of the diets (Fig. 1B).

Circulating nitrate and nitrite

Supplementation with moderate or high dose nitrate sig-
nificantly increased serum concentration of nitrate (n = 10/
group, control group: 33.12 ± 3.87  μM; HFD + MDN 
group: 136.52 ± 30.24  μM; HFD + HDN group: 
1020.24 ± 473.58  μM, p < 0.0001) and nitrite (control 
group: 2.95 ± 0.27 μM; HFD + MDN group: 7.33 ± 1.63 μM; 
HFD + HDN group: 36.71 ± 13.58 μM, p < 0.0001). The 
mice supplemented with high dose nitrate had significantly 
higher circulating concentrations of both nitrate and nitrite 
than the moderate dose group (nitrate: p < 0.0001; nitrite: 
p < 0.0001) (Supplementary Fig. 2).

Visceral fat accumulation and serum lipid profile

ApoE−/− mice fed a HFD had increased accumulation of 
visceral fat around the central torso region compared to 
mice fed a NLD. Fat accumulation and adipocyte size 
were not affected by nitrate supplementation (Fig. 1C and 
Supplemental Fig. 1 ). The HFD significantly increased 
serum levels of TG, TC and LDL-C compared to the 
NLD (Table 1). High dose nitrate supplementation sig-
nificantly attenuated the HFD-induced increase in serum 
TG (2.00 ± 0.56 vs 2.53 ± 0.76 mmol/L), but there was no 
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effect of nitrate at either dose on serum TC or LDL-C. 
There were no significant changes in HDL-C among the 
treatment groups. As previously reported, hepatic lipid 
accumulation was significantly increased in mice fed the 
HFD, which was reduced with both high and moderate 
dose nitrate [24].

Serum levels of ET‑1, leptin and cGMP

Serum ET-1 was significantly elevated in apoE−/− mice fed 
a HFD compared with the NLD (Fig. 2A). Supplementa-
tion with both moderate and high dose nitrate significantly 
reduced serum ET-1 concentrations to levels comparable to 
the NLD (Fig. 2A). Serum leptin concentrations were signif-
icantly elevated with the HFD relative to the NLD (Fig. 2B). 

Fig. 1   Effects of nitrate on A body weight, B food intake, and C vis-
ceral fat in apoE−/− mice fed a normal chow diet or a high fat diet 
with or without dietary nitrate. Mean ± SEM (n = 15/group for body 
weight and food intake, n = 10/group for visceral fat). Repeated meas-
ures analysis, A p < 0.0001 for all groups vs NLD. ANOVA with 

post-hoc analysis for mean weight at 24 weeks, HFD+NaCl vs. NLD, 
p = 0.0029; HFD + MDN vs. NLD, p = 0.0008; HFD + HDN vs. NLD, 
p = 0.0001. B Not significantly different for repeated measures analy-
sis. HFD high fat diet, HDN high dose nitrate, MDN moderate dose 
nitrate, NLD normal laboratory diet

Table 1   Serum lipid profile 
in apoE−/− mice fed a high fat 
or normal laboratory diet at 
24 weeks of intervention

Data are presented as mean ± SEM. N = 8 in all HFD groups and n = 10 in NLD group
TC total cholesterol, TG triglycerides, HDL-C high-density lipoprotein cholesterol, HFD high fat diet, 
HDN high dose nitrate, LDL-C low-density lipoprotein cholesterol, MDN moderate dose nitrate, NLD nor-
mal laboratory diet
*p < 0.05 compared with NLD
# p < 0.05 compared with HFD+NaCl

HFD + NaCl HFD + MDN HFD + HDN NLD

TG (mmol/L) 2.53 ± 0.76* 2.07 ± 0.68* 2.00 ± 0.56*# 1.33 ± 0.71
TC (mmol/L) 31.82 ± 7.83* 35.87 ± 4.88* 41.01 ± 8.70* 13.94 ± 2.55
LDL-C (mmol/L) 10.18 ± 1.66* 10.55 ± 3.24* 10.68 ± 2.93* 2.18 ± 0.67
HDL-C (mmol/L) 0.68 ± 0.19 0.62 ± 0.17 0.56 ± 0.17 0.56 ± 0.17
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High dose nitrate supplementation significantly attenuated 
the increase in serum leptin concentration relative to the 
HFD control diet. There were no significant differences in 
serum cGMP concentration between the treatment groups 
(data not shown).

Atherosclerotic lesion size and composition

Atherosclerotic lesions were significantly developed fol-
lowing 24 weeks of HFD. Supplementation with high 
dose nitrate significantly reduced lesion area, by approxi-
mately 50%, compared to the HFD+NaCl control group, 
with non-significant reductions observed in the moderate 
dose nitrate group (Fig. 3A). To evaluate the infiltration of 
vascular smooth muscle cells (VSMCs) in the atheroscle-
rotic lesions, immunostaining for αSMA was performed. 
αSMA-positive regions in the mice supplemented with 
high dose nitrate were significantly greater compared to 
those in the control group (Fig. 3B). The degree of infil-
trated macrophages was assessed by CD68 staining. The 
lesion areas positive for CD68 was significantly reduced 
in both moderate and high dose nitrate groups compared 
with HFD+NaCl controls (Fig. 3C). Moreover, high dose 
nitrate increased plaque collagen expression (Fig. 3D), 
and both moderate and high dose nitrate supplementation 

reduced plaque lipid deposition (Fig. 3E). Accordingly, 
the histological plaque stability score, calculated as the 
collagen:lipid ratio, was significantly greater in the mod-
erate and high dose nitrate treated mice (Fig. 3F). P-IκBα 
staining, indicative of NFκB activation and inflammation, 
was significantly lower in the lesions of the mice supple-
mented with moderate and high dose nitrate compared to 
the HFD+NaCl control mice (Fig. 3G).

Tissue protein expression

No significant difference in the aortic expression of total 
eNOS, AMPK, Akt, and HO-1 in mice fed the HFD supple-
mented with either dose of nitrate was observed (Fig. 4A). 
We observed a significant increase in the p-eNOS ser1177/
eNOS ratio in high dose nitrate-treated groups compared 
to the HFD control group (Fig. 4A, B). There was no effect 
on the aortic p-AMPKthr172/AMPK ratio (Fig. 4A). A sig-
nificant dose-dependent increase in p-Aktser473/Akt ratio 
was observed in mice receiving the nitrate compared to the 
HFD control group (Fig. 4A, C). XOR expression in both the 
aorta and liver of mice supplemented with high dose nitrate 
was significantly increased compared with the HFD control 
group (Fig. 5).

Fig. 2   Effects of nitrate on serum A endothelin-1 and B leptin in 
apoE−/− mice fed a normal laboratory diet or a high fat diet with 
or without dietary nitrate. Mean ± SEM (Endothelin-1: n = 7 in 
HFD+NaCl, n = 7 in HFD + MDN, n = 5 in HFD + HDN, n = 6 
in NLD. Leptin: n = 5 in HFD+NaCl, n = 7 in HFD+MDN, n = 6 
in HFD + HDN, n = 5 in NLD). Serum endothelin-1: p = 0.049 

HFD+NaCl vs. NLD; p = 0.0028 HFD+NaCl vs. HFD+HDN; 
p = 0.0036 HFD+NaCl vs. HFD+MDN. Serum leptin: p < 0.0001 
HFD+NaCl vs. NLD; p < 0.0001 HFD+MDN vs. NLD; p = 0.0007 
HFD+HDN vs. NLD; p = 0.023 HFD+NaCl vs. HFD+HDN. HFD 
high fat diet, HDN high dose nitrate, MDN moderate dose nitrate, 
NLD normal laboratory diet
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Fig. 3   Representative images and quantification of A total plaque 
area, B αSMA staining, C CD63 staining, D picrosirius red stain-
ing, E Oil Red O staining, F plaque stability scor, and G pIκBα 
staining from apoE−/− mice fed a normal laboratory diet or high fat 
diet with or without dietary nitrate. Mean ± SEM (Plaque area: n = 5 
in HFD+NaCl, n = 3 in HFD+MDN, n = 4 in HFD+HDN. αSMA: 
n = 7 in HFD+NaCl, n = 10 in HFD+MDN, n = 9 in HFD+HDN. 
Mac2 staining: n = 8 for all groups. Collagen assessment: n = 9 
in HFD+NaCl, n = 10 in HFD+MDN, n = 10 for HFD+HDN. 
Lipid deposition: n = 9 for all groups. Plaque stability: n = 9 for 
all groups. pIKBα: n = 8 for all groups). Plaque area: p = 0.03 

HFD+NaCl vs. HFD+HDN; Plaque αSMA: p = 0.0007 HFD+NaCl 
vs. HFD+HDN; Mac2: p = 0.0104 HFD+NaCl vs. HFD+MDN, 
p = 0.0011 HFD+NaCl vs. HFD+HDN; Plaque collagen: p = 0.0106 
HFD+NaCl vs. HFD+HDN; Plaque lipid: p = 0.0008 HFD+NaCl 
vs. HFD+MDN, p < 0.0001 HFD+NaCl vs. HFD+HDN; Plaque 
stability score: p = 0.0028 HFD+NaCl vs. HFD+MDN, p < 0.0001 
HFD+NaCl vs. HFD+HDN; pIκBα: p = 0.0152 HFD+NaCl vs. 
HFD+MDN, p = 0.0022 HFD + NaCl vs. HFD+HDN. HFD high fat 
diet, HDN high dose nitrate, MDN moderate dose nitrate. Mice fed a 
NLD were not included in this analysis as no plaque was detected
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Discussion

In the present study we have demonstrated a significant 
attenuation in the progression of established atherosclerosis 

in apoE−/− mice fed a HFD supplemented with nitrate. These 
beneficial effects appeared more pronounced in the high 
dose nitrate group. This improvement was associated with 
increased collagen expression and decreased macrophage 

Fig. 3   (continued)
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and lipid deposition, suggesting an increase in overall plaque 
stability. In addition, there were significant reductions in 
plaque size and circulating endothelin-1 and triglycerides 
following high dose nitrate supplementation. Although 
the high dose nitrate would be difficult to achieve through 
dietary changes alone, it may be possible through the use 
of supplements and thus represents a potential new treat-
ment option. To our knowledge, this is the first study dem-
onstrating a beneficial effect of chronic high dose nitrate 
supplementation on established atherosclerosis in the 
apoE−/− mouse model.

Our previous study demonstrated a beneficial effect of 
low (0.1 mmol/kg/day) and moderate (1 mmol/kg/day) dose 
nitrate in preventing the development of atherosclerosis in 
the apoE−/− mouse, with no additional benefit observed with 
the high dose nitrate [18]. In the present study, a moderate 
and high dose of nitrate were investigated to determine any 
beneficial effect after atherosclerosis is already established. 
Despite the lack of a beneficial effect of the high dose nitrate 

in our previous study [18], the high dose was included in 
the present study in order to determine if higher doses were 
required when investigating a model of established disease. 
Indeed, our data show that the greatest effects on plaque size 
and composition were observed after supplementation with 
high dose nitrate, suggesting that preventing or reversing 
the progression of established atherosclerosis may require 
significantly greater doses of nitrate.

As expected, the HFD progressively increased body 
weight compared to the normal chow diet, due to the accu-
mulation of fat mass. Nitrate treatment, at either dose, had 
no effect on body weight or fat accumulation. Previous stud-
ies have shown that dietary supplementation with inorganic 
nitrate is associated with decreased body weight [25, 26], 
although in these studies, mice were supplemented with 
nitrate from the beginning of the HFD treatment. In this cur-
rent study, nitrate was supplemented in the diet at week 12 
when the mice already had significant weight gain. Previous 
studies have demonstrated no effect of nitrate on weight in 

Fig. 4   A Aortic expression and B, C quantification of eNOS, 
p-eNOSser1177, Akt, p-Aktser47, HO-1, AMPK, p-AMPKthr172, and pan-
actin expression in apoE−/− mice fed a normal laboratory diet or high 
fat diet with or without dietary nitrate. Mean ± SEM (p-eNOS/eNOS: 
n = 3 in HFD+NaCl, n = 4 in HFD+MDN, n = 4 in HFD+HDN, n = 3 
in NLD. P-Akt/Akt: n = 4 in HFD+NaCl, n = 4 in HFD+MDN, n = 4 

in HFD+HDN, n = 3 in NLD). p-eNOSser1177/ eNOS: p = 0.0108 
HFD+NaCl vs. HFD+HDN; p-Aktser47/ Akt: p < 0.0001 HFD + NaCl 
vs. HFD+HDN; p = 0.0004 HFD+NaCl vs. HFD+MDN. HFD high 
fat diet, HDN high dose nitrate, MDN moderate dose nitrate, NLD 
normal laboratory diet
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mouse models of atherosclerosis or the metabolic syndrome 
[18, 27]. Significant increases were also observed in TC, 
LDL and TG in mice fed the HFD, confirming this animal as 
a model of atherosclerosis. Despite this, only TG levels were 
significantly decreased in mice supplemented with high dose 
nitrate. Consistent with our finding, decreased serum TG 
in eNOS-deficient mice after dietary nitrate administration 
have previously been reported by Carlstrom’s group [26]. 
Elevated TG levels are observed in atherosclerosis and are 
recognized as a treatment target to lower cardiovascular risk 
[28]. Therefore, the reduction of TG levels with nitrate treat-
ment may indicate a novel pathway by which nitrate/nitrite 
may affect fat metabolism or utilization of energy. Further 
work to investigate the beneficial effects of chronic nitrate 
supplementation on TC and LDL may be required.

Endothelial dysfunction is recognised as an initial first 
step in the development of atherosclerosis and is character-
ised by reduced vascular flow responses as well as lowered 
circulating NO levels [29]. In this study, increased levels 
of serum nitrate and nitrite were observed in mice supple-
mented with nitrate, suggesting uptake and conversion of 
the nitrate from the drinking water. ET-1 is a peptide pre-
dominately produced in endothelial cells where it acts as a 
vasoconstrictor, pro-inflammatory factor, and platelet acti-
vator [30, 31]. As such, ET-1 and NO are natural counter-
parts in regard to vascular function, and an imbalance in the 
production of these two agents may contribute to the onset 
of vascular dysfunction and subsequent atherosclerosis. 

In the present study, the HFD contributed to a significant 
increase in serum ET-1 levels in apoE−/− mice, indicative 
of endothelial dysfunction. Supplementation with nitrate, at 
both moderate and high doses, significantly reduced serum 
ET-1 levels, suggesting a protective effect on vascular func-
tion, possibly via conversion of the nitrate to nitrite and NO.

At the early stage of atherogenesis, the adherence of 
inflammatory cells enriched in lipids to the damaged 
endothelium results in the formation of a lipid-rich core. 
If inflammatory conditions persist, the lipid core continues 
to grow. Subsequently, activated leukocytes secrete pro-
teases to degrade the extracellular matrix, meanwhile pro-
inflammatory cytokines limit the synthesis of new collagen. 
These changes induce a thin fibrous cap and increase the 
risk of plaque rupture [32]. As expected, the HFD increased 
plaque burden compared to mice fed the normal chow diet. 
Supplementation with high dose nitrate reduced the total 
plaque burden in the HFD fed apoE−/− mice. Further inves-
tigation of plaque composition revealed that nitrate supple-
mentation was associated with a reduction in macrophage 
accumulation and lipid deposition within the plaque. This 
change was associated with increased SMC accumulation 
and collagen expression within the plaque, suggestive of 
an increase in plaque stability [33]. The effect of nitrate on 
smooth muscle cell accumulation may seem counterintui-
tive, as it has long been proposed that NO exerts inhibitory 
effects on VSMC proliferation, and that nitrite also inhibits 
smooth muscle proliferation in models of vascular injuries 

Fig. 5   XOR expression in (A, C) aorta and B, D liver of apoE−/− 
mice fed a normal laboratory diet or high fat diet with or with-
out dietary nitrate. Mean ± SEM (Aorta: n = 3 for all groups. Liver: 
n = 4 in HFD + NaCl, n = 3 in HFD + MDN, n = 4 in HFD + HDN, 

n = 3 in NLD). XOR/pan-Actin (aorta): p = 0.0349 HFD+NaCl 
vs. HFD+HDN; XOR/pan-Actin (liver): p = 0.045 HFD+NaCl vs. 
HFD+HDN. HFD high fat diet, HDN high dose nitrate, MDN moder-
ate dose nitrate, NLD normal laboratory diet
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[34–36]. However, we speculate that the accumulation of 
smooth muscle within the plaque is likely to be caused by 
the reduced macrophage content via an indirect pathway. 
Indeed, it has been previously demonstrated that SMC pro-
liferation is inhibited when co-cultured with macrophages 
[37], suggesting that reducing the macrophage accumulation 
in the plaque results in a consequent removal of the inhibi-
tory influence on SMC proliferation. The clinical implica-
tions of this finding however, remain to be elucidated.

Leptin has previously been implicated in the develop-
ment of atherosclerosis due to the presence of the leptin 
receptor in atherosclerotic lesions [38]. High levels of leptin 
have been shown to increase oxidative stress in endothelial 
cells [39], favour VSMC migration and proliferation [40], 
decrease arterial distensibility [41], and contribute to obe-
sity-associated hypertension [42]. All these effects have been 
found to be inversely associated with vascular health and 
strongly related to the pathophysiology of atherosclerosis. A 
previous animal model observed lower plasma leptin levels 
in the nitrate-fed group compared to controls [43]. Support-
ing this finding, we observed significantly increased serum 
leptin in apoE−/− mice fed a HFD, which was attenuated 
following high dose nitrate supplementation.

XOR has been proposed to be a major source of reactive 
oxygen species (ROS) and emerging evidence has suggested 
that XOR mediates NO formation by reducing inorganic 
nitrate and nitrite [44]. Several reports demonstrate a signifi-
cant elevation in XOR activity and expression in models of 
atherosclerosis [45] as well as within plaques isolated from 
human patients [46]. While XOR is highly activated in liver 
and intestine, human endothelial cells from the microvascu-
lature of several tissues also have high levels of XOR activity 
[47]. The hypoxic environment within the plaque represents 
an ideal environment for nitrite reduction and in particular, 
provides a condition to potentiate XOR-dependent nitrite 
reduction. The present study showed elevated XOR expres-
sion in both the liver and aorta of mice supplemented with 
high dose nitrate, thereby suggesting that in atherosclerosis, 
nitrite/nitrate bioactivity is enhanced due to the up-regulated 
XOR-dependent nitrite reductase activity. Previous studies 
in ischaemia–reperfusion injury, have shown nitrate sup-
plementation increased nitrite reductase activity by XOR 
produces NO, which may protect against further injury [48]. 
This protection has been attributed to the inhibition of the 
mitochondrial respiration that limited ROS production and 
improved myocardial vascularization [5]. The increased 
expression of XOR in the present study suggests it may play 
a role in the protective effects of nitrate, however further 
work inhibiting the XOR pathway is required.

Within the body, eNOS activity is induced by various 
chemical factors or mechanical stimuli, which then stimu-
late kinases to phosphorylate eNOS, leading to an increase 
or decrease in eNOS activity [49]. Previous studies have 

demonstrated that a variety of atherogenic stimuli suppress 
eNOS protein levels in cultured endothelial cells [50, 51]. 
A significant decrease was identified in eNOS gene expres-
sion in human aortic and coronary endothelial cells from 
advanced atherosclerotic lesions, but not in those of early 
atherosclerotic samples [52]. Consistent with our findings, 
invesitigations in atherosclerotic animal models demon-
strated unchanged or even augmented expression of eNOS 
in atherosclerotic arteries, despite the presence of endothe-
lial dysfunction [53, 54]. One recent study in human coro-
nary atherectomy specimens revealed a higher eNOS gene 
expression in patients with acute coronary syndromes 
compared to those with stable angina [55]. These results 
indicate that at least in the early stage of atherosclerosis, 
endothelial dysfunction is not attributable to a decreased 
expression of eNOS. Supporting this observation, we did 
not find significant differences in eNOS protein expression 
between the treatment groups. Protein phosphorylation, a 
key regulator of eNOS activity, is modulated by kinases, 
phosphatases and protein–protein interactions. The serine/
threonine kinase Akt (protein kinase B), a multifunctional 
serine/threonine kinase, can directly phosphorylate eNOS 
at the serine 1177 residue, activate the enzyme and faciliate 
NO production [56]. In the present study, aortic eNOS and 
Akt activity, as demonstrated by increased phopshorlyation 
of these proteins, was increased with high dose nitrate sup-
plementation. These results suggest that long term nitrate 
supplementation may stimulate vascular endothelial cells to 
produce NO via the upregulation of eNOS activity. However, 
it should be noted that further studies need to be conducted 
to ascertain the translation of our findings to humans, as 
it’s highly likely that species differ in both their response 
to and metabolism of nitrate. While the dose used in the 
present study is high and unlikely to be achieved through 
dietary changes alone, the benefits when translating these 
findings to humans will also need to consider the currently 
recommended daily intakes of nitrate of International Food 
Commissions. Furthermore, while this present study was 
designed as a proof-of-principle study, using an animal 
model of atherosclerosis, future studies will need to dem-
onstrate not only if these benefits translate but also deter-
mine a dose that is efficacious and safe. It is important to be 
mindful that any cardiovascular benefits need to be weighed 
up against the potential adverse carcinogenic effects of high-
dose nitrate.

The present study has demonstrated that chronic high 
dose nitrate supplementation can attenuate the progression 
of established atherosclerosis in apoE−/− mice. Mechanisti-
cally, this appears to be mediated through a XOR-depend-
ent reduction of nitrite to NO, as well as enhanced eNOS 
activation via increased Akt and eNOS phosphorylation. 
Importantly, these beneficial effects of nitrate have been 
observed after disease has already been established, which 
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has important implications when translating our findings to 
humans. Dietary and supplemental approaches to increase 
nitrate intake, which may have effects on both the nitrate-
nitrite-NO pathway and eNOS-NO pathway may have thera-
peutic potential to attenuate atherosclerosis. While the pre-
sent study suggests a potential cardioprotective effect from 
long-term nitrate supplementation, further work to inves-
tigate the translational aspects of these findings, including 
the appropriate dose as well as any potential detrimental 
effects of a nitrate dose outside current recommendations, 
in humans is required.
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