Skip to main content
Log in

Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Reactive oxygen and nitrogen species are required for exercise-induced molecular adaptations; however, excessive exercise may cause cellular oxidative distress. We postulate that astaxanthin (ASX) can neutralize oxidative distress and stimulate mitochondrial biogenesis in high-intensity exercise-trained mice.

Methods

Six-week-old mice (n = 8/group) were treated with ASX (10 mg/kg BW) or placebo. Training groups participated in 30 min/day high-intensity interval training (HIIT) for 6 weeks. Gastrocnemius muscle was collected and assayed following the exercise training period.

Results

Compared to the HIIT control mice, the ASX-treated HIIT mice reduced malonaldehyde levels and upregulated the expression of Nrf2 and FOXO3a. Meanwhile, the genes NQO1 and GCLC, modulated by Nrf2, and SOD2, regulated by FOXO3a, and GPx4, were transcriptionally upregulated in the ASX-treated HIIT group. Meanwhile, the expression of energy sensors, AMPK, SIRT1, and SIRT3, increased in the ASX-treated HIIT group compared to the HIIT control group. Additionally, PGC-1α, regulated by AMPK and SIRT1, was upregulated in the ASX-treated HIIT group. Further, the increased PGC-1α stimulated the transcript of NRF1 and Tfam and mitochondrial proteins IDH2 and ATP50. Finally, the ASX-treated HIIT mice had upregulations in the transcript level of mitochondrial fusion factors, including Mfn1, Mfn2, and OPA1. However, the protein level of AMPK, SIRT1, and FOXO3a, and the transcript level of Nrf2, NQO1, PGC-1α, NRF1, Mfn1, Mfn2, and OPA1 decreased in the HIIT control group compared to the sedentary control group.

Conclusion

Supplementation with ASX can reduce oxidative stress and promote antioxidant capacity and mitochondrial biogenesis during strenuous HIIT exercise in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data supporting the results will be made available on request.

References

  1. Yan Z, Okutsu M, Akhtar YN (1985) Lira VA (2011) Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol 110:264–274. https://doi.org/10.1152/japplphysiol.00993.2010

    Article  CAS  Google Scholar 

  2. Dimauro I, Paronetto MP, Caporossi D (2020) Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 35:101477. https://doi.org/10.1016/j.redox.2020.101477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21:363–383. https://doi.org/10.1038/s41580-020-0230-3

    Article  CAS  PubMed  Google Scholar 

  4. Mason SA, Trewin AJ, Parker L, Wadley GD (2020) Antioxidant supplements and endurance exercise: current evidence and mechanistic insights. Redox Biol 35:101471. https://doi.org/10.1016/j.redox.2020.101471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Merry TL, Ristow M (2016) Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 594:5135–5147. https://doi.org/10.1113/JP270654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gomez-Cabrera MC, Salvador-Pascual A, Cabo H et al (2015) Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training? Free Radic Biol Med 86:37–46. https://doi.org/10.1016/j.freeradbiomed.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Baker JS, Chen X et al (2019) High-dose astaxanthin supplementation suppresses antioxidant enzyme activity during moderate-intensity swimming training in mice. Nutrients 11:1244. https://doi.org/10.3390/nu11061244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morrison D, Hughes J, Della Gatta PA et al (2015) Vitamin C and e supplementation prevents some of the cellular adaptations to endurance-training in humans. Free Radic Biol Med 89:852–862. https://doi.org/10.1016/j.freeradbiomed.2015.10.412

    Article  CAS  PubMed  Google Scholar 

  9. Paulsen G, Cumming KT, Holden G et al (2014) Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 592:1887–1901. https://doi.org/10.1113/jphysiol.2013.267419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meier P, Renga M, Hoppeler H, Baum O (2013) The impact of antioxidant supplements and endurance exercise on genes of the carbohydrate and lipid metabolism in skeletal muscle of mice. Cell Biochem Funct 31:51–59. https://doi.org/10.1002/cbf.2859

    Article  CAS  PubMed  Google Scholar 

  11. Gomez-Cabrera MC, Domenech E, Romagnoli M et al (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87:142–149. https://doi.org/10.1093/ajcn/87.1.142

    Article  CAS  PubMed  Google Scholar 

  12. Yfanti C, Åkerström T, Sø N et al (2010) Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc 42:1388–1395. https://doi.org/10.1249/MSS.0b013e3181cd76be

    Article  CAS  PubMed  Google Scholar 

  13. Shill DD, Southern WM, Willingham TB et al (2016) Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake. J Physiol 594:7005–7014. https://doi.org/10.1113/JP272491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuo Y-C, Lin J-C, Bernard JR, Liao Y-H (2015) Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Appl Physiol Nutr Metab 40:990–996. https://doi.org/10.1139/apnm-2014-0538

    Article  CAS  PubMed  Google Scholar 

  15. Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146. https://doi.org/10.1351/pac199163010141

    Article  CAS  Google Scholar 

  16. Dose J, Matsugo S, Yokokawa H et al (2016) Free radical scavenging and cellular antioxidant properties of astaxanthin. Int J Mol Sci 17:103. https://doi.org/10.3390/ijms17010103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aoi W, Naito Y, Sakuma K et al (2003) Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal 5:139–144. https://doi.org/10.1089/152308603321223630

    Article  CAS  PubMed  Google Scholar 

  18. Brown DR, Gough LA, Deb SK et al (2018) Astaxanthin in exercise metabolism, performance and recovery: a review. Front Nutr 4:76. https://doi.org/10.3389/fnut.2017.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. MacInnis MJ, Gibala MJ (2017) Physiological adaptations to interval training and the role of exercise intensity. J Physiol 595:2915–2930. https://doi.org/10.1113/JP273196

    Article  CAS  PubMed  Google Scholar 

  20. Henríquez-Olguín C, Renani LB, Arab-Ceschia L et al (2019) Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Redox Biol 24:101188. https://doi.org/10.1016/j.redox.2019.101188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Henriquez-Olguin C, Boronat S, Cabello-Verrugio C et al (2019) The emerging roles of nicotinamide adenine dinucleotide phosphate oxidase 2 in skeletal muscle redox signaling and metabolism. Antioxid Redox Signal 31:1371–1410. https://doi.org/10.1089/ars.2018.7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zmijewski JW, Banerjee S, Bae H et al (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 285:33154–33164. https://doi.org/10.1074/jbc.M110.143685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tonelli C, Chio IIC, Tuveson DA (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal 29:1727–1745. https://doi.org/10.1089/ars.2017.7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fasano C, Disciglio V, Bertora S et al (2019) FOXO3a from the nucleus to the mitochondria: a round trip in cellular stress response. Cells 8:1110. https://doi.org/10.3390/cells8091110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aoi W, Naito Y, Takanami Y et al (2008) Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochem Biophys Res Commun 366:892–897. https://doi.org/10.1016/j.bbrc.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  26. Shibaguchi T, Yamaguchi Y, Miyaji N et al (2016) Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats. Physiol Rep 4:e12885

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ikeuchi M, Koyama T, Takahashi J, Yazawa K (2006) Effects of astaxanthin supplementation on exercise-induced fatigue in mice. Biol Pharm Bull 29:2106–2110. https://doi.org/10.1248/bpb.29.2106

    Article  CAS  PubMed  Google Scholar 

  28. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619. https://doi.org/10.1016/j.redox.2016.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Little JP, Safdar A, Bishop D et al (2011) An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1 and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 300:R1303–R1310. https://doi.org/10.1152/ajpregu.00538.2010.-Low-volume

    Article  CAS  PubMed  Google Scholar 

  30. Parker L, Mcguckin TA, Leicht AS (2014) Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clin Physiol Funct Imaging 34:377–383. https://doi.org/10.1111/cpf.12108

    Article  CAS  PubMed  Google Scholar 

  31. Kim S, Kim H (2018) Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients 10:1137. https://doi.org/10.3390/nu10091137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Center for Drug Evaluation and Research (2005) Guidance for Industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. US Department of Health and Human Services

  33. Mercke Odeberg J, Lignell A, Pettersson A, Höglund P (2003) Oral bioavailability of the antioxidant astaxanthin in humans is enhanced by incorporation of lipid based formulations. Eur J Pharm Sci 19:299–304. https://doi.org/10.1016/s0928-0987(03)00135-0

    Article  CAS  PubMed  Google Scholar 

  34. Østerlie M (2000) Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin. J Nutr Biochem 11:482–490. https://doi.org/10.1016/S0955-2863(00)00104-2

    Article  PubMed  Google Scholar 

  35. Coral-Hinostroza GN, Ytrestøyl T, Ruyter B, Bjerkeng B (2004) Plasma appearance of unesterified astaxanthin geometrical E/Z and optical R/S isomers in men given single doses of a mixture of optical 3 and 3’R/S isomers of astaxanthin fatty acyl diesters. Comp Biochem Physiol C Toxicol Pharmacol 139:99–110. https://doi.org/10.1016/j.cca.2004.09.011

    Article  CAS  PubMed  Google Scholar 

  36. Eckl PM, Bresgen N (2017) Genotoxicity of lipid oxidation compounds. Free Radic Biol Med 111:244–252. https://doi.org/10.1016/j.freeradbiomed.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  37. Raghunath A, Sundarraj K, Nagarajan R et al (2018) Antioxidant response elements: Discovery, classes, regulation and potential applications. Redox Biol 17:297–314. https://doi.org/10.1016/j.redox.2018.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mallard AR, Spathis JG, Coombes JS (2020) Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and exercise. Free Radic Biol Med 160:471–479. https://doi.org/10.1016/j.freeradbiomed.2020.08.024

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi M, Li L, Iwamoto N et al (2009) The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29:493–502. https://doi.org/10.1128/MCB.01080-08

    Article  CAS  PubMed  Google Scholar 

  40. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2—an update. Free Radic Biol Med 66:36–44. https://doi.org/10.1016/j.freeradbiomed.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  41. Brigelius-Flohé R, Flohé L (2020) Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal 33:498–516. https://doi.org/10.1089/ars.2019.7905

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Wang X, Feng J et al (2019) Neuroprotective effect of astaxanthin on newborn rats exposed to prenatal maternal seizures. Brain Res Bull 148:63–69. https://doi.org/10.1016/j.brainresbull.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  43. Wang Y-L, Zhu X-L, Sun M-H, Dang Y-K (2019) Effects of astaxanthin onaxonal regeneration via cAMP/PKA signaling pathway in mice with focal cerebral infarction. Eur Rev Med Pharmacol Sci 23:135–143

    CAS  PubMed  Google Scholar 

  44. Gite S, Ross RP, Kirke D et al (2019) Nutraceuticals to promote neuronal plasticity in response to corticosterone-induced stress in human neuroblastoma cells. Nutr Neurosci 22:551–568. https://doi.org/10.1080/1028415X.2017.1418728

    Article  CAS  PubMed  Google Scholar 

  45. Schmeisser S, Priebe S, Groth M et al (2013) Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension. Mol Metab 2:92–102. https://doi.org/10.1016/j.molmet.2013.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cantó C, Gerhart-Hines Z, Feige JN et al (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060. https://doi.org/10.1038/nature07813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brunet A, Sweeney LB, Sturgill JF et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015. https://doi.org/10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  48. Kang H, Lee Y, Bae M et al (2020) Astaxanthin inhibits alcohol-induced inflammation and oxidative stress in macrophages in a sirtuin 1-dependent manner. J Nutr Biochem 85:108477. https://doi.org/10.1016/j.jnutbio.2020.108477

    Article  CAS  PubMed  Google Scholar 

  49. Zhang XS, Lu Y, Li W et al (2021) Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 178:1114–1132. https://doi.org/10.1111/bph.15346

    Article  CAS  PubMed  Google Scholar 

  50. Kanazashi M, Tanaka M, Nakanishi R et al (2019) Effects of astaxanthin supplementation and electrical stimulation on muscle atrophy and decreased oxidative capacity in soleus muscle during hindlimb unloading in rats. J Physiol Sci 69:757–767. https://doi.org/10.1007/s12576-019-00692-7

    Article  CAS  PubMed  Google Scholar 

  51. Dikalova AE, Itani HA, Nazarewicz RR et al (2017) Sirt3 impairment and SOD2 hyperacetylation in vascular oxidative stress and hypertension. Circ Res 121:564–574. https://doi.org/10.1161/CIRCRESAHA.117.310933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/bse0470069

    Article  CAS  PubMed  Google Scholar 

  53. Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124. https://doi.org/10.1016/s0092-8674(00)80611-x

    Article  CAS  PubMed  Google Scholar 

  54. Geng T, Li P, Okutsu M et al (2010) PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol 298:C572–C579. https://doi.org/10.1152/ajpcell.00481.2009

    Article  CAS  PubMed  Google Scholar 

  55. Kjobsted R, Hingst JR, Fentz J et al (2018) AMPK in skeletal muscle function and metabolism. FASEB J 32:1741–1777. https://doi.org/10.1096/fj.201700442R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Handschin C, Rhee J, Lin J et al (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci U S A 100:7111–7116. https://doi.org/10.1073/pnas.1232352100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta 1813:1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019

    Article  CAS  PubMed  Google Scholar 

  58. Picca A, Lezza AMS (2015) Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: useful insights from aging and calorie restriction studies. Mitochondrion 25:67–75. https://doi.org/10.1016/j.mito.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  59. Granata C, Jamnick NA, Bishop DJ (2018) Principles of exercise prescription, and how they influence exercise-induced changes of transcription factors and other regulators of mitochondrial biogenesis. Sports Med 48:1541–1559. https://doi.org/10.1007/s40279-018-0894-4

    Article  PubMed  Google Scholar 

  60. Kang I, Chu CT, Kaufman BA (2018) The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 592:793–811. https://doi.org/10.1002/1873-3468.12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng K, Yang L, Wang J et al (2017) The interaction of mitochondrial biogenesis and fission/fusion mediated by PGC-1α regulates rotenone-induced dopaminergic neurotoxicity. Mol Neurobiol 54:3783–3797. https://doi.org/10.1007/s12035-016-9944-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the Ningbo Natural Science Foundation (No. 2019A610347 & No. 2022J250).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingsong Zhou or Xiaoming Bao.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, X., Baker, J.S. et al. Astaxanthin promotes mitochondrial biogenesis and antioxidant capacity in chronic high-intensity interval training. Eur J Nutr 62, 1453–1466 (2023). https://doi.org/10.1007/s00394-023-03083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-023-03083-2

Keywords

Navigation