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Abstract
Purpose Gut microbiota dysbiosis, a core pathophysiology of irritable bowel syndrome (IBS), is closely related to immu-
nological and metabolic functions. Gut microbiota-based therapeutics have been recently explored in several studies. Bifico 
is a probiotic cocktail widely used in gastrointestinal disorders which relate to the imbalance of gut microbiota. However, 
the efficacy and potential mechanisms of Bifico treatment in IBS remains incompletely understood.
Methods Adopting a wrap restraint stress (WRS) -induced IBS mice model. Protective effect of Bifico in IBS mice was 
examined through abdominal withdrawal reflex (AWR) scores. 16S rDNA, 1H nuclear magnetic resonance (1H-NMR) and 
western blot assays were performed to analyze alterations of gut microbiota, microbiome metabolites and inflammatory 
cytokines, respectively.
Results Bifico could decrease intestinal visceral hypersensitivity. Although gut microbiota diversity did not increase, com-
position of gut microbiota was changed after treatment of Bifico, which were characterized by an increase of Proteobacteria 
phylum and Actinobacteria phylum, Muribaculum genus, Bifidobacterium genus and a decrease of Parabacteroides genus, 
Sutterella genus and Lactobacillus genus. Moreover, Bifico elevated the concentration of short-chain fatty acids (SCFAs) 
and reduced protein levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). From further Spearman’s correla-
tion analysis, Bifidobacterium genus were positively correlated with SCFAs including propionate, butyrate, valerate and 
negatively correlated with IL-6 and TNF-α.
Conclusion Bifico could alleviate symptoms of IBS mice through regulation of the gut microbiota, elevating production of 
SCFAs and reducing the colonic inflammatory response.
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NNEI  Neonatal nosocomial enteric infection
UC  Ulcerative colitis
WRS  Wrap restraint stress
PBS  Phosphate buffer saline
CRD  Colorectal distension
PCR  Polymerase chain reaction
D2O  Deuterated water
FIDs  Free induction decays
PVDF  Polyvinyl difluoride
PCA  Principal component
PLS-DA  Partial least-squares discriminant analysis
NMDS  Analysis non-metric multidimensional scaling
ANOVA  Analysis of variance
LEfSe  Linear discriminant analysis effect size
IL-10  Interleukin-10

Introduction

Irritable bowel syndrome (IBS) is a chronic functional gas-
trointestinal disorder characterized by recurrent abdominal 
discomfort and disturbed defecation such as a change in 
stool frequency or form [1, 2]. Between 5 and 10% of the 
general population suffers from this condition [3]. However, 
the underlying etiology and pathogenesis of IBS are incom-
pletely understood. Visceral hypersensitivity, alteration of 
gut microbiota, chronic inflammation, psychological factors 
and genetics have been proposed as possible mechanisms 
in the pathogenesis of IBS [4]. In recent years, increasing 
evidence suggested that gut microbiota dysbiosis might a 
core of the pathophysiology of IBS [5, 6].

The gut microbiome has been dominated mainly by bac-
teria, as over 1000 species and 7000 strains have now been 
characterized [7]. Further, the gut microbiome is closely 
related to immunological and metabolic functions by pro-
ducing a common bacterial metabolite short-chain fatty 
acids (SCFAs) as mediators [8]. Studies have proven that 
the gut microbiota dysbiosis could trigger host immune 
response, damage the intestinal motility and barrier function 
[9–11]. Furthermore, the composition of gut microbiota has 
been found significant differences between healthy individu-
als and IBS patients [12].

Considering the pivotal role of the microbiota in IBS, recent 
research in IBS treatments has been focused on gut microbi-
ome-based therapeutics. Generally well tolerated, probiotics in 
IBS have become a relatively successful treatment option [13]. 
Ford AC et al. made a meta-analysis of 35 randomized con-
trolled trials of probiotics including Lactobacillus, Bifidobac-
terium, Streptococcus and combination probiotics, involving 
3452 patients suffering from IBS. They found that probiotics 

were effective for the treatment IBS [14]. However, it should 
be noted that not all probiotic formulations are of benefit in 
IBS patients [15]. S. boulardii and Probiotic mixtures contain-
ing Lactobacillus paracasei ssp paracasei F19, Lactobacil-
lus acidophilus La5 and Bifidobacterium Bb12 both failed to 
alleviate symptoms of IBS in randomized clinical trials [16, 
17]. Therefore, treatment strategies of probiotics should be 
further defined.

In 2002, Bifico was approved as an over-the-counter (OTC) 
drug by the Chinese regulatory authority, the State Food and 
Drug Administration (SFDA), which contains 1.0 ×  109 cfu/g 
Bifidobacterium, 1.0 ×  109 cfu/g Lactobacillus acidophilus and 
1.0 ×  109 cfu/g Enterococcus faecalis [18–20]. As a mixture 
of viable bacteria, its regulatory functions on the gut micro-
biota and anti-inflammatory effects on gastrointestinal disor-
ders have been repeatedly confirmed. We previously reported 
a prospective, randomized, controlled study of treatment of 
Bifico in antibiotic-induced gut dysbiosis (AIGD) and found 
that Bifico could not only stabilize microbiota disorders but 
also ameliorated colon inflammatory reactions [21]. Prophy-
lactic therapy with Bifico could also reduce the occurrence of 
neonatal nosocomial enteric infection (NNEI) and decrease the 
relapse of ulcerative colitis (UC) [19, 22]. Using experimental 
colitis mice, Bifico was found to ameliorate gut inflammation 
by decreasing the tumor necrosis factor-α (TNF-α) level [23]. 
In a study on chronic functional diarrhea, Bifico was able to 
reduce drug withdrawal in patients compared to the control 
group [24]. However, there was no relevant research to illus-
trate the efficacy of Bifico in IBS and its potential mechanisms.

To solve these issues, we adopted a wrap restraint stress 
(WRS)—induced IBS mice model. As the classical model 
which was introduced more than 30 years ago for human IBS 
[25], it represented a suitable model for reproducing the main 
symptoms present in IBS including visceral hypersensitivity 
[26–28]. Abdominal withdrawal reflex (AWR) scores to exam-
ine the treatment effect of Bifico, following by 16S rDNA gene 
sequencing to assess the alterations of the gut microbiome, 1H 
nuclear magnetic resonance (1H-NMR) to evaluate differential 
metabolites of fecal samples and western blot assays to detect 
changes of inflammatory cytokines. Finally, we performed 
Spearman’s correlation analysis to find relationships among 
the gut microbiome of fecal samples, metabolites and inflam-
matory cytokines.

Materials and methods

Animals

Seven-week-old male C57BL/6 mice were purchased from 
the Laboratory Animal Center of Zhejiang Chinese Medical 
University, Hangzhou, China. All mice were housed in metal 
barred cages (5 mice/cage) and under controlled conditions 
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(22 ± 1 °C, 55 ± 10% humidity, low noise) with a 12 h light/
dark cycle. Water and food were provided ad libitum.

After adaptive feeding for 7 days, the mice were ran-
domly divided into 3 groups (n = 10/group): control group, 
IBS group and IBS + Bifico group. The control group were 
given an intragastric administration of phosphate buffer 
saline (PBS) (10 ml/kg) once a day. The IBS group and the 
IBS + Bifico group were induced by WRS procedures. Sub-
sequently, the IBS group was given an intragastric admin-
istration of PBS (10 ml/kg) once a day and the IBS + Bifico 
group was given an intragastric administration of Bifico 
(Shanghai Sinepharm, Shanghai, China) (0.78 g/kg) once 
a day. Six mice in each group were randomly selected for 
biological experiments and sacrificed by  CO2 inhalation 
[29]. Body weights of mice were recorded daily. Fresh fecal 
samples were collected from mice on the last two days and 
stored at − 80 °C for further analyses. The experimental 
workflow was shown in (Fig. 1). Experimental protocols 
conformed to the requirements of the Experimental Animal 
Ethical Committee of the Zhejiang Chinese Medical Univer-
sity (No. ZSLL-2018–014).

Wrap‑restraint stress model

Stress was induced using a WRS procedure, an acute non-
ulcerogenic model of restrain. All the stress sessions were 
performed between 8 and 10 am for 14 days. During forcing 
immobilization, they were placed in 50 mL tubes with a 
small hole for air and cotton ball were used to fill the extra 
space as described previously [26].

AWR test: visceral hypersensitivity evaluation

Visceral sensitivity was evaluated at the end of each experi-
ment as follows [30, 31]. A disposable silicon balloon-ure-
thral catheter for pediatric use (6 Fr, Terumo, Tokyo, Japan) 

was inserted into the rectum to apply colorectal distension 
(CRD). The balloon was placed 2 cm distal from the anus. 
After insertion, CRD stimulation was maintained at three 
different levels of distention (0.25, 0.35, 0.50 mL, respec-
tively) via water injection. Each distention was repeated 3 
times, with an interval of 4 min. Average values of AWR 
scores were calculated as the final score for each mouse. The 
scoring of the AWR was quantified as previously described 
[32]. 0 = no behavioral response to distension; 1 = brief 
head movements followed by immobility; 2 = contraction of 
abdominal muscles without lifting of the abdomen; 3 = lift-
ing of the abdomen; 4 = body arching and lifting of the pel-
vic structure.

Fecal samples preparation for 16S rDNA sequencing

Fresh fecal samples were collected from mice on the last 
two days. DNA from different samples (at least 200 mg 
for each sample) was extracted using the E.Z.N.A. ®Stool 
DNA Kit (D4015, Omega, Inc., USA) according to the 
manufacturer’s instructions. The V3-V4 region of the bac-
terial 16S rRNA gene was amplified with primers 341F (5ʹ-
CCT ACG GGNGGC WGC AG-3ʹ) and 805R (5ʹ-GAC TAC 
HVGGG TAT CTA ATC C-3ʹ) [33]. The polymerase chain 
reaction (PCR) products were purified by AMPure XT 
beads (Beckman Coulter Genomics, Danvers, MA, USA) 
and quantified by Qubit (Invitrogen, USA). The 5ʹ ends of 
the primers were tagged with specific sequencing universal 
primers. PCR amplification was performed in a total vol-
ume of 25 μL reaction mixture containing 25 ng of template 
DNA, 12.5 μL PCR Premix, 2.5 μL of each primer, and 
PCR-grade water to adjust the volume. The PCR conditions 
to amplify the prokaryotic 16S fragments consisted of an 
initial denaturation at 98 ℃ for 30 s; 32 cycles of denatura-
tion at 98 ℃ for 10 s, annealing at 54 ℃ for 30 s, and exten-
sion at 72 ℃ for 45 s; and then final extension at 72 ℃ for 
10 min. The PCR products were confirmed with 2% agarose 

Fig. 1  Schematic illustrations 
of experimental protocols. 
Intervention timeline for the 
control group, IBS group, and 
IBS + Bifico group. IBS irritable 
bowel syndrome, WRS wrap 
restraint stress, PBS phosphate 
buffer saline
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gel electrophoresis. Throughout the DNA extraction process, 
ultrapure water was used as a negative control to exclude 
the possibility of false-positive PCR results. The PCR prod-
ucts were purified by AMPure XT beads (Beckman Coulter 
Genomics, Danvers, MA, USA) and quantified by Qubit 
(Invitrogen, USA) [34].

16S rDNA sequencing and data analysis

The amplicon pools were prepared for sequencing and the 
size and quantity of the amplicon library were assessed 
on an Agilent 2100 Bioanalyzer (Agilent, USA) and with 
the Library Quantification Kit for Illumina (Kapa Bio-
sciences, Woburn, MA, USA), respectively. The libraries 
were sequenced on NovaSeq PE250 platform. Samples were 
sequenced on an Illumina NovaSeq platform according to 
the manufacturer’s recommendations, provided by LC-Bio. 
Paired-end reads were assigned to samples based on their 
unique barcode and truncated by cutting off the barcode 
and primer sequence. Paired-end reads were merged using 
FLASH. Quality filtering on the raw reads was performed 
under specific filtering conditions to obtain the high-qual-
ity clean tags according to the fqtrim (v0.94). Chimeric 
sequences were filtered using Vsearch software (v2.3.4). 
After dereplication using DADA2, we obtained a feature 
table and a feature sequence.

Alpha diversity and beta diversity were calculated by 
QIIME2, in which the same number of sequences were 
extracted randomly through reducing the number of 
sequences to the minimum of some samples, and the relative 
abundance (X bacteria count/total count) was used in bacte-
ria taxonomy. Pictures of Alpha diversity and Beta diversity 
were drawn by R (v3.5.2). The sequence alignment of spe-
cies annotation was performed by Blast, and the alignment 
database used was the SILVA and NT-16S [35].

Fecal samples preparation for 1H‑NMR analysis

The method of fecal sample preparation was described in a 
previous study [36]. Briefly, 100 mg thawed stool material 
were mixed with 0.8 mL PBS containing 10% deuterated 
water (D2O 99.8%; SIGMA, United States) and 0.05 mM 
sodium 3-trimethylsilyl-propionate-d4 (TMSP-2,2,3,3-d4; 
SIGMA, Untied States) as a chemical shift reference. The 
mixture was immersed into ice for 30 min and then dis-
solved for 10 cycles (one cycle includes 20 s ultrasound, 
10 s crash, and 30 s rest). Then the fecal slurry was centri-
fuged at 13,000g for 10 min at 4 ℃ for twice to obtained 
supernatants.

1H‑NMR analysis and data processing

The method of 1H-NMR analysis and data processing were 
described in a previous study [37]. Briefly, all 1H-NMR 
spectra were recorded by Bruker 600 MHz AVANCE III 
spectrometer equipped with a 5 mm-BBFO probe at 25 °C. 
Shimming and proton pulse calibration was performed auto-
matically for each sample before data acquisition. 1H-NMR 
spectra were received using NOESYPR 1D pulse sequence 
with water suppression. Bruker Topspin 3.2 was used to pro-
cess the data.

Free induction decays (FIDs) from 1H-NMR of the 
fecal samples were multiplied by a 0.3 Hz exponential 
line broadening prior to Fourier Transformation. All NMR 
spectra were manually phased, baseline corrected and ref-
erenced to TSP (δ = 0.0) within MestReNova 12 (Mestrelab 
Research SL, Spain). The integral region of the spectrum 
was set between 0.0 and 9.0 ppm, with a spectral region of 
4.5–5.0 ppm to eliminate the effects of imperfect water sup-
pression. Due to the deviation of metabolite concentration in 
the fecal samples of each mouse, each bucket was internally 
normalized to the total sum of the spectral integrals prior to 
pattern recognition analysis. The characteristic peaks of all 
fecal metabolites were determined based on related litera-
ture [38, 39] and the Biological Magnetic Resonance Bank 
(http:// www. bmrb. wisc. edu/ metab olomi cs) and Human 
Metabolome Database (http:// www. hmdb. ca/).

Western blot analysis

Protein extracts were prepared with RIPA Lysis and Extrac-
tion Buffer (89,901, Thermo Scientific, USA) supplemented 
with Protease and Phosphatase Inhibitor Cocktail (78,443, 
Thermo Scientific, USA) according to the manual. Then 
proteins were separated on SDS-PAGE gels (10%) followed 
by transfer to polyvinyl difluoride (PVDF) membranes 
(pore size 0.2 µm, 88,520, Thermo Scientific, USA). The 
membrane was subsequently blotted in 1% bovine serum 
albumin (BSA, Sigma-Aldrich St. Louis, MO, USA) in PBS 
for 2 h and incubated overnight with commercially avail-
able primary antibodies against β-actin (1:1000 dilution, 
4970S, Cell Signaling Technology, Danvers, MA, USA), 
Interleukin-6 (IL-6) (1:1000 dilution, 4970S, Cell Signal-
ing Technology, Danvers, MA, USA) and TNF-a (1:2000 
dilution, 41,504, Signalway Antibody, Pearland, TX, USA) 
at 4 °C. After washing three times with PBS containing 
0.05% Tween-20, membranes were incubated with second-
ary antibodies coupled with HRP (1:4000 dilution, LF102, 
EpiZyme, Shanghai, China) followed by washing three 
times. The images were captured with Bio-Rad gel imaging 
system and analyzed by Quantity One software.

http://www.bmrb.wisc.edu/metabolomics
http://www.hmdb.ca/


143European Journal of Nutrition (2023) 62:139–155 

1 3

Statistical analysis

The experimental data were processed and analyzed using 
Graphpad Prism 6 software (version 6.01). The principal 
component analysis (PCA) and partial least-squares dis-
criminant analysis (PLS-DA) were performed by SIMCA 
software, version 14. The non-metric multidimensional scal-
ing (NMDS) analysis and classification tree heat map were 
made using R language (R version 3.5.2). Venn analysis 
was pictured by the Bioinformatics website system (http:// 
bioin forma tics. psb. ugent. be/ webto ols/ Venn/). Spearman’s 
correlation analysis was generated by IBM SPSS Statis-
tics 25.0 software. Data was analyzed to perform normal-
ity. The Unpaired Student’s two-tailed t-test was used for 
two sets of data conformed to the normal distribution. The 
Kruskal–Wallis test was used for two sets of data and did 
not conform to the normal distribution. Analysis of variance 
(ANOVA) was used to compare multiple groups of data. All 
values were expressed as mean ± SEM and P < 0.05 was con-
sidered as statistically significant. Differential metabolomics 
data must conform to P < 0.05 and VIP > 1 at the same time.

Results

Bifico alleviated visceral hypersensitivity in IBS mice

We adopted a WRS model to simulate symptoms of IBS. 
During the administration of Bifico, changes in body 
weights were recorded daily. The control group, IBS group 
and IBS + Bifico group weighted 24.03 ± 0.23, 21.65 ± 0.11 
and 22.45 ± 0.17 (mean ± SEM), respectively, which meant 
that body weights of IBS mice were lower than control 
mice (P < 0.001). Despite after treatment with Bifico, body 
weights of IBS + Bifico mice were still lower than control 
mice (P < 0.01) they were heavier compared to IBS mice 
(P < 0.01) at the end of the experiment (Fig. 2A, B). To eval-
uate the development of colonic visceral hypersensitivity, we 
compared the AWR score at a pressure stimulation of 0.25, 
0.35, or 0.5 mL among three groups. The AWR score of the 
IBS group was significantly higher than the control group 
(P < 0.01 at 0.25 ml, P < 0.001 at 0.35 ml and P < 0.001 at 
0.5 ml, respectively). After Bifico treatment, the AWR score 
under stimulation with 0.25, 0.35, or 0.5 ml of the Bifico 
group had significant decreases compared to the IBS group 
(P < 0.05 at 0.25 ml, P < 0.01 at 0.35 ml and P < 0.01 at 
0.5 ml, respectively). Although the AWR score in the Bifico 
group under stimulation with 0.35 ml and 0.5 ml compared 
to the control group still higher than in the control group 
(both P < 0.01), it had no statistical difference compared to 
the control group under stimulation with 0.25 ml (P > 0.05) 
(Fig. 2C–E). This information suggested that treatment with 
Bifico could alleviate visceral hypersensitivity in IBS mice.

Bifico altered the gut microbiota community in IBS 
mice

Fecal samples were obtained from mice at the end of treat-
ment. Alpha diversity (Fig. 3A–D) was used to assess the 
richness and diversity of gut microbiota. Although Chao1 
and Observed_otus both showed no difference between 
the control group and the IBS group ((both Kruskal–Wal-
lis, P > 0.05), Simpson Evenness and Shannon diversity of 
the control group were both higher compared to the IBS 
group (Simpson Evenness: Kruskal–Wallis, P < 0.01 and 
Shannon diversity: Kruskal–Wallis, P < 0.05, respectively). 
After Bifico treatment, Chao1 and Observed_otus of the 
Bifico group both showed no difference, Simpson Evenness 
and Shannon diversity both still lower in the Bifico group 
compared to the control group (Chao1: Kruskal–Wallis, 
P > 0.05, Observed_otus: Kruskal–Wallis, P > 0.05, Simpson 
Evenness: Kruskal–Wallis, P < 0.01 and Shannon diversity: 
Kruskal–Wallis, P < 0.05, respectively), which meant the 
IBS group was characterized by a diversity reduction and 
Bifico treatments might not increase gut microbial diversity.

PCA and NMDS of beta diversity (Fig. 3E, F) further 
revealed significant differences of the gut microbiota com-
munity composition between the control group and the IBS 
group. After Bifico treatment, the community composition 
of the IBS + Bifico group was closer to the control group. 
These results indicated that Bifico treatments may affected 
the microbial community of IBS mice.

We further investigated the gut microbiota species and 
their relative abundance through LEfSe (LDA score (log 
10) > 3, P < 0.05). When the control group, IBS group and 
IBS + Bifico group were compared (Fig. 4A, B), 25 phylo-
types were identified as key markers of distinct gut micro-
biota. Their relative values were summarized in Table S1. 
We focused on phylum and genus levels with opposite trends 
among the three groups. In our results, Proteobacteria was 
predominant in the control group, while Actinobacteria were 
enriched in the IBS + Bifico group (Fig. 4A, B). Both of 
them had reduced relative abundance in IBS mice compared 
to control mice and administration of Bifico could elevate 
their relative abundance (Fig. 4C). In the general level, 
the control group was characterized by Prevotellaceae_
UCG_001, Insolitispirillum and Brevundimonas. However, 
Lactobacillus, Flavobacterium, Sutterella and Parabacte-
roides were specific for the IBS group. After administra-
tion of Bifico, the IBS + Bifico group was characterized by 
Muribaculum, Eisenbergiella and Bifidobacterium (Fig. 4A, 
B). Among representative microbiota, Prevotellaceae_
UCG_001, Insolitispirillum, Brevundimonas had decreas-
ing trends in the IBS group compared to the control group 
and Eisenbergiella showed an increasing trend in the IBS 
group compared to the control group. Treatment of Bifico 
could aggravate these trends (data shown in supplementary 

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Fig. S1), as (Fig. 4C, D) showed, and the relative abundance 
of Muribaculum and Bifidobacterium genera were lower in 
the IBS group than in the control group, while Lactoba-
cillus, Parabacteroides and Sutterella genera were higher 
in the IBS group than in the control group. According to 
the treatment of Bifico, Muribaculum and Bifidobacterium 

genera had an increased relative abundance compared to the 
IBS group, Lactobacillus, Parabacteroides and Sutterella 
genera had a decreased relative abundance compared to the 
IBS group.

Fig. 2  Evaluation of treatment efficacy in IBS mice (n = 10/group). 
A Body weight of mice during experiments; B Body weight of mice 
at day 14; AWR scores at a pressure stimulation of 0.25  mL (C), 

0.35 mL (D) and 0.5 mL (E). Values were means ± SEM. n.s. repre-
sents no significance, *P < 0.05, **P < 0.01, ***P < 0.001
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Bifico changed the gut metabolites in IBS mice

We next explored the potential changes in metabolites 

related to the gut microbiota. Different enrichment of 
metabolites from fecal samples among three groups were 
observed by 1H-NMR spectroscopy. PCA showed that the 

Fig. 3  The alpha diversity and beta diversity of gut microbiota 
in three groups (n = 6/group). Alpha diversity of Chao1 (A) and 
Observed_otus (B), Simpson Evenness (C) and Shannon diver-

sity (D); Beta diversity of PCA (E) and NMDS (F). PCA principal 
component analysis, NMDS non-metric multidimensional scaling. 
*P < 0.05, **P < 0.01
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Fig. 4  Microbiome structure in three groups (n = 6/group). A A Cladogram generated by LEfSe analysis; B LDA of the gut microbiota; Relative 
abundances of bacterial phyla level (C) and genera level (D–E). LDA score (log 10) > 3 and P < 0.05 were considered as significant differences
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samples from each group were separated from the other 
two groups, remarkably, the metabolites of the Bifico 
group were closer to the metabolites of the control group 
(Fig. 5A). Moreover, there was a clear distinction among 
the three groups in the partial PLS-DA, indicating that 
there were significant differences in the fecal metabolites 
among the three groups (Fig. 5B). We next verified the 
credibility and stability of the model. The model parame-
ters were as shown follows: the IBS group vs. the Control 
group: R2Y = 0.721, Q2 = − 0.202; the IBS + Bifico group 
vs. the IBS group: R2Y = 0.759, Q2 = − 0.222 (Fig. 5C, 
D), which suggested that the models were stable and 
accurately predictive.

Then we adopted the criteria of VIP > 1 at multivari-
ate statistical analysis and P < 0.05 at univariate statistics 
at the same time for screening differential metabolites 
among groups. Under the criteria, 18 out of 39 differen-
tial metabolites were selected out when the control group 
was compared to the IBS group. Meanwhile, 13 out of 39 
differential metabolites were found to be similar between 
the IBS group and the IBS + Bifico group. Furthermore, 
a Venn diagram was used to address the overlapping 
metabolites among the two collections of differential 
metabolites (18 and 13, respectively), which marked out 
11 metabolites (Fig. 5E). We expected the relative abun-
dance of choline to be lower in the IBS group compared 
to the control group. It was worth noting that it still had a 
decreased relative abundance after Bifico treatment com-
pared to the IBS group (data shown in supplementary 
Fig. S2). There were 10 metabolites including propionate, 
butyrate, acetate, valerate, aspartate, glutamate, glycine, 
trimethylamine, β-glucose and tryptophan, which showed 
a decreased tendency in the IBS group compared to the 
control group, an elevated tendency in the IBS + Bifico 
group compared to the IBS group (Fig. 5F), which eluci-
dated that IBS affected the production of gut metabolites, 
and some of them were reversed by Bifico administration.

Bifico reduced the expression of TNF‑ɑ and IL‑6 
in IBS mice

Because gut microbial dysbiosis is often accompanied 
by abnormal expression of inflammatory cytokines[40], 
we evaluated the protein levels of TNF-ɑ and IL-6 in 
colon tissues and confirmed that expression of TNF-ɑ 
and IL-6 increased in the IBS group compared with the 
control group (TNF-ɑ: P < 0.01 and IL-6: P < 0.01, respec-
tively). However, treatment of Bifico could restore protein 
expression to normal levels (TNF-ɑ: the IBS group vs. 
the IBS + Bifico group: P < 0.05, the control group vs. the 
IBS + Bifico group: P > 0.05, respectively and IL-6: the 
IBS group vs. the IBS + Bifico group: P < 0.05, the control 
group vs. the IBS + Bifico group: P > 0.05, respectively) 

(Fig. 6), which indicated that Bifico treatment relieved the 
colonic inflammation in IBS mice.

Bifidobacterium genera might be main contributor 
in the treatment of Bifico

For a better understanding of the relationship of gut micro-
biota, fecal metabolites and inflammatory cytokines which 
were significantly different among the three groups were 
analyzed. A heatmap was calculated by the Spearman’s 
correlation index (Fig.  7). Involving in inflammatory 
cytokines, we observed that Actinobacteria phylum and 
Bifidobacterium genus (belongs to Actinobacteria phy-
lum) were negatively correlated with IL-6 and TNF-ɑ, 
whereas Sutterella (belongs to Proteobacteria phylum) 
genus was positively correlated with IL-6 and TNF-ɑ. As 
for metabolites, Bifidobacterium genus were positively 
correlated with propionate, butyrate, valerate, aspartate, 
glutamate, trimethylamine, β-glucose and tryptophan. Dra-
matically, although Proteobacteria phylum were positively 
correlated with valerate, trimethylamine and β-glucose, 
Sutterella genus were negatively correlated with propi-
onate, butyrate, valerate, aspartate, trimethylamine and 
β-glucose. In addition, Muribaculum genus were posi-
tively correlated with glycine, trimethylamine and valer-
ate. Lactobacillus genus were negatively correlated with 
β-glucose and trimethylamine. Parabacteroides genus 
were positively correlated with choline. These results 
revealed that pro-inflammatory factors had a significant 
positive correlation with Sutterella genus and a significant 
negative correlation with Bifidobacterium genus, SCFAs 
had a significant positive correlation with Bifidobacterium 
and Muribaculum genera, and a significant negative corre-
lation with Sutterella genus. Further, the Bifidobacterium 
genus might be main contributor in the treatment of Bifico.

Discussion

IBS is a functional gastrointestinal disorder characterized 
by visceral hypersensitivity, intestinal immune activation 
and gut microbiota dysfunction [41]. Recently, a growing 
body of evidence has suggested that gut microbiome plays 
a pivotal role in colonic inflammation [42]. As a probiotic 
mixture, Bifico is supplied for the treatment of microbiota 
disorders or alleviating the inflammatory reaction [43, 44]. 
However, how Bifico treatment functions in IBS is still 
unclear. Here we analyzed the relationship between the gut 
microbiota and the inflammatory cytokines in IBS after 
treatment with Bifico, which might provide a theoretical 
basis for the clinical use of Bifico. Our studies showed that 
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Bifico may relieve the symptoms of IBS by reducing the 
protein expression level of IL-6 and TNF-α, altering fecal 
metabolites and gut microbiota. Further studies revealed 
that Bifidobacterium genera may play important roles in 
treatment.

Previous studies have demonstrated that Bifidobacterium 
and Lactobacillus could specifically relieve the symptoms 
of IBS [45]. Moreover, multispecies probiotics containing 
strains of more than one genus show enhanced effects in 
treating antibiotic-associated diarrhea in children, which 
suggests that probiotic mixtures may more be effective 
than a single-strain [46]. A meta-analysis evaluated effect 
of probiotic supplementation on symptoms of patients with 
IBS. In 11 randomized controlled trials, three studies used 
a mono-strain probiotic, whereas the remaining eight tri-
als used multi-strain probiotic. Overall, the beneficial effect 
was more distinct in trials which intervention 8 weeks or 
longer with multi-strain supplementations [47]. As a type 
of multispecies probiotic, during treatment of Bifico, both 
Lactobacillus acidophilus and Enterococcus faecalis might 
promote proliferation of Bifidobacterium. Previous research 
evidenced that Lactobacillus acidophilus could produce bifi-
dogenic growth factors to stimulate the growth of Bifidobac-
terium longum in pure culture [48]. Enterococcus faecalis 
could create anaerobic conditions, which might be of benefit 
for survival of Bifidobacterium [49]. In addition, Enterococ-
cus spp. has been used as a probiotic to defend against gut 
infection and prevent the colonization of more pathogenic 
bacteria [50].

WRS is an accepted method of creating an acute stress-
induced IBS model [26]. In this study, we observed that 
treatment of Bifico significantly alleviated intestinal vis-
ceral hypersensitivity and reduced weight loss. These 
results were consistent with most of the previous studies 
that effective treatment could reduce the AWR score of IBS 
[51–53]. Since IBS often involves gut microbiome dysbiosis, 
we collected fecal samples to analyze the gut microbiota. 
Overall differences of gut microbiota were often assessed 
through alpha diversity and beta diversity. As for alpha 
diversity, community richness was measured by Chao1 and 
Observed_otus, while community diversity was measured 
by Simpson Evenness and Shannon diversity. It should be 

noted that Trends of alpha diversity had been controversial. 
Despite in some previous studies, comparing to healthy con-
trols, alpha diversity of gut microbiota in IBS patients or 
IBS mouse models were significantly lower, some studies 
showed alpha diversity were increased or not significantly 
changed [54–58]. Beta diversity included PCA and PCoA 
analyses, both of them were used to assess differences in 
gut microbiota composition. Most findings supported that 
the beta diversity of gut microbiota in IBS patients or mouse 
models were significantly different from healthy controls 
[59–61]. In this research, results showed that Chao1 and 
Observed_otus of the IBS group had no significant differ-
ence compared to the control group, but Simpson Evenness 
and Shannon diversity was lower in the IBS group than in 
the control group, these results were similar to previous find-
ings by Fukui H. et al. [62]. However, treatment of Bifico 
did not alter alpha diversity of IBS. In beta diversity, the 
bacterial composition of the IBS + Bifico group was closer 
to the control group through treatment of Bifico, which con-
sisted with previous research findings. To further analyze 
the gut microbiota and their relative abundance according 
to LEfSe. Because of differences in subtype, region, design 
scheme, sample size, etc., the change trend of gut micro-
biota in IBS was heterogeneous. Meta-analysis pointed out 
that comparing participants with IBS to healthy controls, 
higher relative abundance of pro-inflammatory bacteria, 
lower Bifidobacterium and Lactobacillus was observed [59, 
63]. But it should be noticed that some researchers hold dif-
ferent views of Lactobacillus. Clinical research from Japan 
observed that IBS patients had significantly higher counts 
of Lactobacillus [64]. Another clinical study considered that 
Lactobacillus may have no effect on IBS patients [65]. In 
this research, the relative abundance of Proteobacteria and 
Actinobacteria phyla were markedly lower in the IBS group 
than in the control group and the IBS + Bifico group. In the 
genera level, Parabacteroides and Sutterella were increased 
in the IBS group compared to the control group and the 
IBS + Bifico group. Parabacteroides and Parabacteroides 
merdae (belongs to Parabacteroides genus) were considered 
as potentially pathogenic bacterium that were reported to 
be frequently enriched in the hypertensive gut microbiome 
[66, 67]. Moreover, in infectious diseases, Parabacteroides 
merdae is generally considered an opportunistic pathogen, 
which is able to develop antimicrobial drug resistance [68]. 
Sutterella is a controversial bacterium. From a previous 
review, Sutterella was related to better outcomes in patients 
with IBD [69]. Berer K et al. held the opinion that Sutte-
rella had anti-inflammatory functions in vitro [70]. But some 
studies have suspected Sutterella plays a role in the disease 
progression of IBD [71]. Furthermore, in clinical studies, 
no difference was observed in the prevalence of Sutterella 
spp. between the IBD patients and the healthy subjects [72, 
73]. Surprisingly, Lactobacillus expressed higher levels in 

Fig. 5  Analyses of fecal metabolites in three groups (n = 8/group). 
PCA A and PLS-DA B results of fecal metabolites among three 
groups; Validation plot based on the 1H-NMR spectra of fecal sam-
ples observed from the IBS group vs. the Control group C and the 
IBS + Bifico group vs. the IBS group D, respectively; E Venn dia-
grams showed the number of altered metabolites between the IBS 
group and the Control group (orange), the IBS + Bifico group vs. the 
IBS group (light blue) and their shared metabolites (navy blue); F 
Differential metabolites filtered by variable influence on VIP selec-
tion according to the PLS-DA. The filtering conditions VIP > 1 and 
P < 0.05. PLS-DA partial least-squares discriminant analysis

◂



150 European Journal of Nutrition (2023) 62:139–155

1 3

the IBS group than in the control group and the IBS + Bifico 
group. Compared to the control group and the IBS + Bifico 
group, the IBS group showed a significant decrease in the 
abundance of Muribaculum and Bifidobacterium. Yuan Y 
et al. noted that reduction of Muribaculum could result in 
inflammation, dyslipidemia and glucose intolerance [74]. 
As for Bifidobacterium, which belongs to Actinobacteria 
phylum, numerous studies have shown that it had benefits 
in improving epithelial barrier function in mice, acting as 
an anti-inflammatory agent and a source of SCFAs [75, 76]. 
In addition, in dextran sulfate sodium-induced colitis mice, 
Bifidobacterium not only downregulated levels of IL-6 and 
TNF-α, but also upregulated level of IL-10 [77].

SCFAs describe acetic acid, propionic acid, butyric 
acid, valeric acid and caproic acid, which are the main 
byproducts of gut metabolites [78]. In the colon, the pro-
portion of acetate, propionate, and butyrate can reach 
90–95% of SCFAs [79]. It has been widely reported that 
SCFAs play pivotal roles in anti-inflammatory and main-
tenance of intestinal health such as locomotion recovery 
[80–82]. SCFAs included higher amounts of acetate, pro-
pionate, butyrate and lower amounts of formate, valer-
ate, and caproate [83]. Butyrate as one of main SCFAs, 
could attenuate visceral hypersensitivity of IBS mice and 
increased Interleukin-10 (IL-10) production [84, 85]. In 

addition, butyrate and propionate could promote periph-
eral regulatory T cell generation of mice [86]. Through 
enhancing IL-10 production and suppressing Th17 cells, 
valerate also might be of therapeutic relevance for inflam-
matory diseases [87]. What’s more, SCFAs are involved 
in lipid metabolism and glucose metabolism [88]. Accord-
ing to the altered gut bacteria, we speculate that colonic 
metabolites may have changed. Through 1H NMR spec-
troscopy, we found that the abundance of acetate, propion-
ate, butyrate and valerate were decreased in the IBS group, 
which supported the view of suggesting that patients with 
IBS had lower levels of SCFAs [89]. Treatment of Bifico 
could increase their abundance. From Spearman’s corre-
lation analysis, we found that Actinobacteria phylum and 
Bifidobacterium genus were positively correlated with pro-
pionate, butyrate and valerate, which were consistent with 
previous report [90]. Proteobacteria phylum and Murib-
aculum genus were positively correlated with valerate. The 
Sutterella genus were negatively correlated with propion-
ate, butyrate and valerate.

Changes in the gut microbiota can induce or aggravate 
inflammation [91]. Recent research regards TNF-α as a vital 
inflammatory cytokine in IBS [92]. In addition, IL-6 has 
reproducibly been detected to be elevated in IBS patients 
and rats [93–95]. In our studies, the protein level in colonic 

Fig. 6  The levels of IL-6 and 
TNF-ɑ protein levels in mice 
colon (n = 6/group). Quantifica-
tion of IL-6 (A, B) and TNF-ɑ 
(A, C) expression as determined 
by western blot analysis, nor-
malized to β-actin expression. 
Values were means ± SEM. 
n.s. represents no signifi-
cance, *P < 0.05, **P < 0.01, 
***P < 0.001
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IL-6 and TNF-α were higher in the IBS group than in the 
control group, further confirmed by the previous results. 
Zhao HM et al. found that in the colon of mice with colitis, 
the level of TNF-α could be significantly reduced by Bifico 
[96]. Our results supported the that Bifico could reduce both 
the protein level of IL-6 and TNF-α in the colon, alleviating 
the inflammation to a certain extent. In further correlation 
analysis, Actinobacteria phylum and Bifidobacterium genera 
were negatively correlated with IL-6 and TNF-α, verifying 
the anti-inflammatory function reported by Chichlowski M 
et al. [97]. Interestingly, Sutterella genera were positively 
correlated with IL-6 and TNF-α. This result supported that 
the Sutterella genera had a pro-inflammatory capacity in the 
human gastrointestinal tract by Hiippala K et al. [98].

Taken together, using a widely developed IBS mice 
model, we found that treatment of Bifico could decrease 
intestinal visceral hypersensitivity of IBS mice. This effect 
might through improved gut microbiota disorders such as 
increase relative abundance of Bifidobacterium and Murib-
aculum genera and decrease relative abundance of Sutterella 

genus to elevate levels of SCFAs or reduce levels of pro-
inflammatory cytokines. In the clinical treatment of IBS, 
probiotics are widely used in managements of gut micro-
biota disorders [99]. However, because of varieties of strains 
and combinations, which particular combination, species or 
strains of probiotics are effective for IBS remains unclear. 
From recent meta-analysis, the beneficial effects were more 
distinct in the trials using multi-strain supplements [47]. 
Future research may be addressed to confirm the improve-
ment effect of Bifico on the gut microbiota of IBS patients 
and compare with mono-strain supplement.
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