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Abstract
Purpose  There is limited and inconsistent evidence about the relationships of erythrocyte polyunsaturated fatty acids 
(PUFAs) with stroke and stroke types, particularly in China where the stroke rates are high. We aimed to investigate the 
associations of different erythrocyte PUFAs with incidence of total stroke, ischemic stroke (IS), and intracerebral hemor-
rhage (ICH) in Chinese adults.
Methods  In the prospective China Kadoorie Biobank, erythrocyte PUFAs were measured using gas chromatography in 
10,563 participants who attended 2013–14 resurvey. After a mean follow-up of 3.8 years, 412 incident stroke cases (342 IS, 
53 ICH) were recorded among 8,159 participants without prior vascular diseases or diabetes. Cox regression yielded adjusted 
hazard ratios (HRs) for stroke associated with 13 PUFAs.
Results  Overall, the mean body mass index was 24.0 (3.4) kg/m2 and the mean age was 58.1 (9.9) years. In multivariable 
analyses, 18:2n–6 was positively associated with ICH (HR = 2.33 [95% CIs 1.41, 3.82] for top versus bottom quintile, 
Ptrend = 0.007), but inversely associated with IS (0.69 [0.53,0.90], Ptrend = 0.027), while 20:3n-6 was positively associated 
with risk of IS (1.64 [1.32,2.04], Ptrend < 0.001), but not with ICH. Inverted-U shape curve associations were observed of 
20:5n–3 with IS (Pnonlinear = 0.002) and total stroke (Pnonlinear = 0.008), with a threshold at 0.70%. After further adjustment 
for conventional CVD risk factors and dietary factors, these associations remained similar.
Conclusion  Among relatively lean Chinese adults, erythrocyte PUFAs 18:2n–6, 20:3n–6 and 20:5n–3 showed different 
associations with risks of IS and ICH. These results would improve the understanding of stroke etiology.
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Introduction

Stroke is the second leading cause of death and permanent 
disability worldwide, with particularly high disease burden 
in many low- and middle-income countries [1, 2]. China has 

the world’s highest age-standardized incident rate of stroke, 
with ~ 34 million prevalent cases and ~ 2.4 million new cases 
annually [1, 3, 4]. Compared to Western populations, a 
higher proportion of incident stroke in China was attributed 
to intracerebral hemorrhage (ICH) for reasons that are still 
poorly understood [1]. Dietary factors (e.g., low consump-
tion of fruits, vegetables and coarse grains and high sodium 
intake) have been shown to play important roles in etiology 
of stroke, accounting for an estimated 65% of stroke-related 
disability-adjusted life years in China [3].

Previous prospective studies and clinical trials from 
mostly Western populations showed that substituting dietary 
polyunsaturated fatty acids (PUFAs) for saturated fatty acids 
(SFAs) was associated with reduced levels of total choles-
terol and low-density lipoprotein cholesterol (LDL-C), and 
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lower risk of stroke [5, 6]. However, the n-6 and n-3 classes 
of PUFAs appear to have opposing biological properties and 
can compete with each other for enzymes in endogenous 
conversion (Supplementary Fig. 1) and esterifying sites in 
membrane phospholipids [7–9]. Much higher consumption 
of n-6 PUFAs than n-3 PUFAs globally raised concerns 
about the potential long-term health consequences [10]. 
Compared with questionnaire-based assessment of PUFA 
intakes, objectively measured circulating PUFAs are not 
influenced by recall bias and, therefore, can reflect body 
PUFA levels more accurately, particularly for those essen-
tial PUFAs like 18:2n–6 (linoleic) and 18:3n–3 (α-linolenic), 
which are obtained exclusively from dietary intake rather 
from de novo synthesis. Unlike circulating PUFAs detected 
in other lipid fractions, erythrocyte PUFAs could reflect a 
relatively long-term average level and were highly corre-
lated with PUFA composition in various tissues [11, 12]. 
However, only a few prospective studies have examined 
the associations of erythrocyte PUFAs with stroke, show-
ing inverse associations of marine n-3 PUFAs with risk of 
ischemic stroke (IS) [13, 14], but null associations for n–6 
PUFAs [15, 16]. In addition, these studies were conducted in 
Western populations and focused primarily on IS, with little 
data from China and other East Asian populations, where the 
stroke rates, proportion of different stroke types, dietary pat-
terns [17] and genetic ability to metabolize certain PUFAs 
differed considerably from European-ancestry populations 
[18].

To fill the evidence gap, we present relevant data from 
the prospective China Kadoorie Biobank (CKB). The main 
objectives of the study were to (1) assess whether individual 
n-3 and n-6 PUFAs were independently associated with total 
stroke and stroke types (IS and ICH) and (2) to evaluate 
whether these associations were modified by conventional 
cardiovascular disease (CVD) risk factors (e.g. adiposity, 
blood pressure and blood lipids) and dietary factors.

Methods

Study population

The present study was based on participants who attended 
the CKB 2013–14 resurvey. Details of the CKB design and 
methods were described previously [19, 20]. In brief, the 
baseline survey of CKB took place between June 2004 and 
July 2008, all permanent residents aged 35–74 years from 
ten geographical diverse areas (five urban and five rural) 
were invited to participate during the period of time. These 
areas were deliberately selected in order to cover a wide 
range of risk exposures and disease patterns within China. 
About one in three of these invited adults participated in our 
baseline survey, which enrolled > 512,000 men and women. 

From August 2013 to September 2014, a representative 
subpopulation of ~ 5% survivors (~ 33,000) were invited 
to participate in the scheduled 2nd resurvey and ~ 76% 
(n = 25,239) attended.

Data collection

At the 2013–14 resurvey, detailed information on soci-
odemographic status, lifestyle factors (smoking, alcohol 
drinking, and physical activity), dietary intake of major 
food groups (refined grain, coarse grain, red meat, poultry, 
fish, eggs, fresh vegetables, soya, fresh fruits and milk), and 
medical history were collected by interviewer-administered 
laptop-based questionnaires [21]. A range of physical meas-
urements were undertaken, including standing and sitting 
height, weight, blood pressure, and heart rate. Non-fasting 
blood samples (and self-reported time since last meal) were 
collected for on-site tests of random blood glucose (Johnson 
& Johnson, New Brunswick, NJ, USA) and lipids (Mission 
Cholesterol Monitoring System, Acon Laboratories Inc, 
San Diego, CA), and long-term storages. The daily amount 
of physical activity (metabolic equivalent tasks [MET]-hr/
day) was obtained by summing the MET-hours for activi-
ties related to occupation, commuting, housework, and non-
sedentary leisure-time activities [22].

Ethical approvals for baseline survey were obtained from 
the Oxford Tropical Research Ethics Committee (OXTREC) 
at the University of Oxford and the Chinese Center for Dis-
ease Control and Prevention (CDC) Ethical Review Com-
mittee. Ethical approvals for the 2013–14 resurvey were 
obtained from OXTREC and the Chinese Academy of Medi-
cal Sciences/Peking Union Medical College Ethical Review 
Committee. Approval for baseline survey and the 2013–14 
resurvey was also granted by the institutional boards at the 
CDCs in ten study areas. All study participants provided 
written informed consent.

Measurement of erythrocyte fatty acids

The blood samples were collected into a 10-mL EDTA tube 
and stored at refrigerator for a few hours before transferring 
in cool boxes to local study laboratories for centrifuge and 
sub-aliquoting (into plasma, buffy coat and red cell). The 
red cell samples were stored at  – 80 °C until analysis dur-
ing 2016–2018. Of the samples collected, a total of 10,933 
(~ 1100 per area) were randomly selected to have erythrocyte 
fatty acids measured.

Erythrocyte fatty acids were measured by gas chromatog-
raphy with flame ionization detector as previously described 
[23]. Briefly, erythrocytes (400 μl) were mixed with iso-
propanol, hexane and internal standard (20 μg 1,2-dihenei-
cosanoyl-sn-glycero-3-phosphocholine dissolved into 40 μl 
chloroform), and were transmethylated with methanol and 
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sulfuric acid. After incubating for 2.5 h at 80 ℃ and extract-
ing two times by hexane, fatty acid methyl esters (FAMEs) 
were evaporated under nitrogen and then were redissolved 
in isoctane. FAMEs were analyzed by gas chromatography 
(Agilent 6890 N GC with flame ionization detector; SP-2560 
capillary column: 100 m × 0.25 mm I.D. × 0.2 μm film; 
Supelco, Bellefonte, PA) with helium as carrier gas. The 
initial temperature was 90 °C and increased to 170, 175, 210, 
and 240 °C at different stage of chromatographic analysis. 
Quantification was conducted based on the peak area ratio 
of each fatty acid to the internal standard (1,2-diheneicos-
anoyl-sn-glycero-3-phosphocholine) and the concentration 
of internal standard. Relative amount of each fatty acid (% 
of total fatty acids) was quantified by expressing the area 
under each peak as a percentage of summed areas of all 
measured fatty acids (13 PUFAs, seven monounsaturated 
fatty acids [MUFAs], eight SFAs, and two TFAs), except for 
the internal standard [23]. Erythrocyte samples were ana-
lyzed in a random sequence. Quality control samples were 
made by a mixture of 500 ml erythrocyte samples from ~ 800 
healthy volunteers aged 49.6 (9.9) from the Guizhou-Bijie 
Type 2 Diabetes Study [24] and aliquoted before analysis. 
They were inserted every 11 samples and processed by the 
same method as the tested samples to ensure repeatability. 
A total of ~ 990 quality control samples were analyzed and 
used to calculate the coefficients of variations (CVs). Over-
all, 10,563 (96.6%) of the 10,933 samples had valid fatty 
acids data after quality control.

Among all identified 30 fatty acids, there were eight n–6 
PUFAs [18:2n–6 (linoleic acid), 18:3n–6 (γ-linolenic acid), 
20:2n–6 (eicosadienoic acid), 20:3n–6 (dihomo-γ-linolenic 
acid), 20:4n–6 (arachidonic acid), 22:2n–6 (docosadienoic 
acid), 22:4n–6 (docosatetraenoic acid) and 22:5n–6 (docosa-
pentaenoic acid)] and five n–3 PUFAs [18:3n–3 (α-linolenic 
acid), 20:3n–3 (eicosatrienoic acid), 20:5n–3 (eicosap-
entaenoic acid), 22:5n–3 (docosapentaenoic acid), and 
22:6n–3 (docosahexaenoic acid)]. The CVs for most PUFAs 
were ≤ 10%, except for 22:2n–6 (11.0%), 20:5n–3 (10.6%), 
and 22:6n–3 (14.7%) (Supplementary Table 1). Two fatty 
acid ratios were calculated to estimate activity of desaturase 
enzymes, namely 20:4n–6/20:3n–6 ratio for delta-5 desatu-
rase (D5D), and 18:3n–6/18:2n–6 ratio for delta-6 desaturase 
(D6D). The 20:3n–6/18:2n–6 ratio was also constructed to 
indicate the conversion of 18:2n–6 to 20:3n–6.

Follow‑up for stroke events

Information on stroke incidence was obtained periodically 
through linkage via a unique national identification number 
with the local death and disease (for cancer, stroke, ischemic 
heart disease and diabetes) registries, and with the universal 
national health insurance system, which covers any episodes 
of hospitalizations. In order to confirm survival status of 

the participants and to minimize losses to follow-up (cur-
rently < 1% since study entry at baseline), active follow-up 
was performed annually to check against local residential 
and administrative records. All stroke events reported from 
different sources between the date of 2013–14 resurvey 
(as baseline of the current analysis) and 1 Jan 2018 were 
checked and coded according to the International Classifi-
cation of Diseases, 10th Revision (ICD-10), including total 
stroke (I60, I61, I63, and I64), IS (I63), and ICH (I61). Any 
hospital-reported cases of first stroke also underwent sepa-
rate clinical adjudication, involving retrieval and review of 
original medical records and brain imaging reports (CT or 
MRI) by clinical specialists and > 90% of the reported first 
stroke cases were confirmed by brain imaging.

Statistical analysis

Among the 10,563 participants who had fatty acids data, 
we excluded those who had been diagnosed with vascular 
diseases or diabetes prior to the 2013–14 resurvey (n = 2395) 
or had missing values for blood lipids (n = 9). After these 
exclusions, 8,159 participants remained in the main analyses 
(Supplementary Fig. 2).

Correlations between different PUFAs and of PUFAs with 
SBP, BMI, blood lipids, and dietary factors were evaluated 
by Spearman correlation coefficients (r). Cox regression was 
used to estimate hazard ratios (HRs) and 95% confidence 
intervals (CIs) for stroke events associated with quintiles 
of PUFAs, after adjustment for potential confounding fac-
tors including age (continuous variable), sex, study areas 
(10 regions), education attainment (no formal education, 
primary school, middle school, or high school and above), 
smoking status (never or occasional, ex-regular, current reg-
ular), alcohol drinking (never or occasional, ex-regular, cur-
rent regular), family history of CVDs (yes/no), and physical 
activity (MET-hr/day). The linear trend of HRs over quin-
tiles was assessed by χ2 test using these quintile numbers 
as continuous variables. The proportional hazards assump-
tion in Cox regression was tested by the Schoenfeld residu-
als method and was not violated. In sensitivity analyses, 
HRs were further adjusted for the following circumstances, 
including the following: (1) potential mediators for CVD 
risks such as SBP, BMI, and LDL-C (model 1) in order to 
understand the underlying mechanisms linking PUFAs and 
stroke [25]; (2) fasting hours, dietary factors, and total n-3 
PUFA (for n-6 PUFAs) or total n-6 PUFA (for n-3 PUFAs) 
(model 2) to understand the potential impacts of fasted/fed 
state, habitual dietary intake, and mutual influences of n-3 
and n-6 PUFAs; and (3) total SFA and total MUFAs (model 
3) to make sure the observed associations are independent 
of the other fatty acids.

For analyses involving more than two exposure catego-
ries, the floating absolute-risk method was applied. This 
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method estimates standard errors and CIs for each category 
(including the reference category) using “floated” vari-
ances to provide appropriate variances to the log relative 
risk (i.e., HR in our analyses), without altering the value 
of the HRs [26]. Therefore, it enables comparisons among 
any two exposure categories for polychotomous risk factors. 
Potential nonlinear associations were also accessed by using 
restricted quadratic splines with three knots (5%, 50%, and 
95%). Moreover, subgroup analysis by study areas was con-
ducted for IS, while HRs were calculated per area-specific 
SD higher levels of erythrocyte PUFAs, and χ2 tests for 
heterogeneity were applied to the log HRs and their standard 
errors. Analyses were performed by R version 3.0 (http://R-​
proje​ct.​org/). Two-sided P < 0.05 was considered as statisti-
cal significance.

Results

Among the 8,159 participants, the mean (standard devia-
tion, SD) age at the 2013–14 resurvey was 58.1 (9.9) years, 
62% were females and mean (SD) BMI was 24.0 (3.4) 
kg/m2 (Table 1). Overall, male participants were more 
likely to attend formal school, and to be smokers and 
drinkers than females. Urban residents (47.2%) had lower 
levels of physical activity and consumption of coarse 

grain and refined grain, but higher levels of BMI, SBP, 
blood lipids, and red meat and fish intakes than their rural 
counterparts. The characteristics of the current subpopu-
lation were comparable to those in overall CKB cohort 
(n = 512,715) and in the total population of the 2013–14 
resurvey (n = 25,239) at the 2004–08 survey, except for a 
slightly higher percentage of urban residents by chance 
(Supplementary Table 2).

Compared with participants who did not develop stroke 
during follow-up, participants who developed any stroke 
and/or IS had higher levels of 18:3n–6, 20:3n–6, 22:5n–3, 
and ratios of 18:3n–6/18:2n–6 and 20:3n–6/18:2n–6, 
but lower 20:4n–6/20:3n–6 ratio (P < 0.05). Participants 
who developed ICH during follow-up had higher levels 
of 20:2n–6, 18:3n–3, 20:3n–3, 22:5n–3, but lower levels 
of 22:4n–6 and 22:6n–3 (P < 0.05) (Table 2). Erythrocyte 
PUFA levels also varied between females and males, as 
well as between urban and rural residents (Supplementary 
Table 3). Among the major PUFAs, the highest median level 
of 18:2n–6 was detected in participants from the northern 
city Harbin and the highest 20:5n-3 and 22:6n–3 levels in 
those living in the coastal city of Haikou (Supplementary 
Fig. 3). As expected, the 22:6n–3 level was higher in coastal 
residents than in inland residents. Residents from Gansu, 
an inland Province, had the highest levels of 18:3n–3 and 
22:5n–3, but the lowest levels of 20:4n–6 and 22:6n–3.

Table 1   Characteristics of the study participants in 2013–14

Values were either percentage or mean ± SD
Abbreviations: BMI body mass index, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, MET metabolic 
equivalent, SBP systolic blood pressure
a Annual household income ≥ 50,000 yuan

Characteristics Males Females Total (n = 8159)

Rural (n = 1672) Urban (n = 1431) Rural (n = 2633) Urban (n = 2423)

Age, years 58.9 ± 10.0 59.1 ± 10.2 57.1 ± 9.7 58.2 ± 9.8 58.1 ± 9.9
No formal schooling, % 12.5 5.6 30.2 18.9 18.9
High household income, % 35.5 60.6 33.5 49.0 43.3
Ever regular smoker, % 70.7 63.6 2.6 1.2 26.8
Ever regular drinker, % 37.5 41.1 3.5 3.2 17.0
Physical activity, MET-hr/day 21.0 ± 16.3 18.3 ± 13.5 19.1 ± 13.1 17.6 ± 12.6 18.9 ± 13.8
Daily dietary intake, g
Refined grain 365.0 ± 156.4 334.8 ± 143.9 295.0 ± 119.6 260.3 ± 114. 5 306.0 ± 136.6
Coarse grain 43.0 ± 80.0 28.0 ± 46.9 34.0 ± 72.2 30.9 ± 47.9 33.9 ± 63.9
Red meat 61.7 ± 59.2 73.6 ± 63.0 43.7 ± 46.6 53.6 ± 42.5 55.6 ± 52.5
Fish 10.3 ± 21.3 56.3 ± 74.6 7.2 ± 16.6 44.7 ± 56.8 27.6 ± 50.4
BMI, kg/m2 23.3 ± 3.3 24.5 ± 3.2 23.8 ± 3.4 24.4 ± 3.4 24.0 ± 3.4
SBP, mmHg 133.4 ± 19.5 138.4 ± 19.3 133.3 ± 21.2 135.4 ± 20.6 134.8 ± 20.4
LDL-C, mmol/l 1.61 ± 0.96 2.16 ± 1.40 1.66 ± 0.96 2.29 ± 1.47 1.93 ± 1.25
HDL-C, mmol/l 1.32 ± 0.51 1.33 ± 0.64 1.43 ± 0.47 1.55 ± 0.70 1.43 ± 0.59
Triglycerides, mmol/l 1.43 ± 1.16 1.83 ± 1.78 1.62 ± 1.02 1.81 ± 1.85 1.67 ± 1.48
Total cholesterol, mmol/l 3.53 ± 1.19 4.16 ± 1.67 3.78 ± 1.23 4.52 ± 1.86 4.01 ± 1.56

http://R-project.org/
http://R-project.org/
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Total n–6 PUFA and total n–3 PUFA were inversely 
correlated with each other (r =  – 0.20, P < 0.001), while 
the correlations between individual PUFAs varied 
greatly, with the absolute value of correlation coeffi-
cients ranging from 0 to 0.73 (Supplementary Table 4). 
18:3n-6 and 20:3n-6 were positively correlated with 
BMI (r = 0.12–0.13), whereas 20:3n-3 was inversely so 
(r =  – 0.12, all P < 0.001; Supplementary Table 5). Among 
all PUFAs, 20:4n–6, 22:4n–6 and 22:5n–6 were positively 
correlated with LDL-C (r = 0.19–0.22); while 20:5n–3 
was inversely correlated with LDL-C (r =  – 0.12, all 
P < 0.001). Moreover, 20:4n–6 was positively correlated 
with red meat intake (r = 0.12); while 20:5n–3 and 22:6n–3 
were positively correlated with fish intake (r = 0.18–0.21, 
all P < 0.001).

During a mean follow-up of 3.8 years (~ 30.6 thousand 
person-years), 412 incident stroke events were recorded, 
including 342 IS and 53 ICH cases. Among all n-6 PUFAs, 
higher 18:2n-6 level was associated with lower IS risk 
(adjusted HR = 0.69 [95% CI 0.53, 0.90] for top versus bot-
tom quintile, Ptrend = 0.027; Table 3), but higher ICH risk 
(2.33 [1.41, 3.82], Ptrend = 0.007). In addition, 20:3n–6 
showed positive associations with total stroke, with HRs 
comparing extreme quintiles being 1.51 (1.23, 1.84, 
Ptrend = 0.001). This association was mainly driven by a posi-
tive association with IS (HR 1.64 [1.32, 2.04], Ptrend < 0.001), 
with no significant association with ICH (1.02 [0.55, 1.89], 
Ptrend = 0.96) observed. Further adjustment for SBP, BMI, 
LDL-C, dietary factors, total n-3 PUFA, SFA, and MUFA 
did not materially altered these associations (Supplementary 

Table 2   Median concentrations [Q1;Q3] of erythrocyte PUFAs of study participants by status of incident stroke types

Abbreviations: ICH intracerebral hemorrhage, IS ischemic stroke, PUFA polyunsaturated fatty acid
* P < 0.05 when comparing stroke cases with non-stroke participants by Mann–Whitney U test

PUFAs Total stroke (n = 412) IS (n = 342) ICH (n = 53) None-stroke 
(n = 7747)

Total population 
(n = 8159)

Total n-6 PUFAs, % 30.5 [28.3;32.8] 30.4 [28.3;32.7] 30.3 [27.6;32.4] 30.4 [28.4;32.4] 30.4 [28.4;32.4]
18:2n–6 (linoleic acid) 11.7 [10.3;13.1] 11.7 [10.3;13.0] 12.2 [10.3;13.8] 11.7 [10.5;13.0] 11.7 [10.5;13.0]
18:3n–6 (γ-linolenic 

acid)
0.057 [0.037;0.089]* 0.057 [0.037;0.089]* 0.058 [0.037;0.095] 0.054 [0.034;0.085] 0.054 [0.034 0.085]

20:2n–6 (eicosadi-
enoic acid)

0.40 [0.36;0.45] 0.40 [0.36;0.45] 0.43 [0.37;0.48]* 0.40 [0.35;0.45] 0.40 [0.35;0.45]

20:3n–6 (dihomo-γ-
linolenic acid)

1.36 [1.17;1.59]* 1.38 [1.18;1.60]* 1.31 [1.11;1.52] 1.29 [1.10;1.51] 1.29 [1.11;1.51]

20:4n–6 (arachidonic 
acid)

13.2 [12.1;14.4] 13.3 [12.2;14.5] 12.9 [11.5;14.1] 13.3 [12.1;14.3] 13.3 [12.1;14.3]

22:2n–6 (docosadi-
enoic acid)

0.080 [0.062;0.103] 0.080 [0.062;0.102] 0.088 [0.061;0.110] 0.081 [0.065;0.102] 0.081 [0.065;0.102]

22:4n–6 (docosa-
tetraenoic acid)

2.67 [2.12;3.27] 2.68 [2.15;3.26] 2.48 [1.79;2.97]* 2.69 [2.14;3.22] 2.69 [2.14;3.22]

22:5n–6 (docosapen-
taenoic acid)

0.56 [0.41;0.79] 0.57 [0.42;0.78] 0.49 [0.35;0.78] 0.56 [0.42;0.73] 0.56 [0.42;0.73]

Total n-3 PUFAs, % 6.80 [5.50;8.09] 6.85 [5.56;8.11] 6.33 [5.43;8.00] 6.64 [5.56;8.04] 6.65 [5.55;8.04]
18:3n–3 (α;linolenic 

acid)
0.19 [0.12;0.31] 0.18 [0.12;0.30] 0.24 [0.14;0.42]* 0.19 [0.12;0.28] 0.19 [0.12;0.28]

20:3n–3 (eicosatrie-
noic acid)

0.048 [0.034;0.070] 0.048 [0.034;0.068] 0.065 [0.044;0.100]* 0.048 [0.034;0.068] 0.048 [0.034;0.068]

20:5n–3 (eicosapen-
taenoic acid)

0.44 [0.26;0.67] 0.45 [0.27;0.67] 0.41 [0.28;0.70] 0.41 [0.27;0.64] 0.42 [0.27;0.64]

22:5n–3 (docosapen-
taenoic acid)

1.82 [1.53;2.14]* 1.83 [1.52;2.13] 1.85 [1.62;2.26]* 1.77 [1.49;2.05] 1.77 [1.49;2.05]

22:6n–3 (docosahex-
aenoic acid)

3.98 [3.05;5.30] 4.08 [3.11;5.37] 3.49 [2.71;4.52]* 4.03 [3.10;5.27] 4.03 [3.09;5.27]

Fatty acids ratio
18:3n–6/18:2n–6 0.0047 

[0.0031;0.0084]*
0.0048 

[0.0032;0.0085]*
0.0047 

[0.0029;0.0089]
0.0046 

[0.0028;0.0073]
0.0046 [0.0028;0.0074]

20:3n–6/18:2n–6 0.12 [0.10;0.14]* 0.12 [0.10;0.14]* 0.11 [0.09;0.13] 0.11 [0.09;0.13] 0.110 [0.091;0.133]
20:4n–6/20:3n–6 9.5 [8.1;11.6]* 9.6 [8.1;11.5]* 9.3 [8.3;11.6] 10.0 [8.2;11.9] 10.0 [8.2;11.9]
Total n–6/total n–3 4.51 [3.74;5.69] 4.46 [3.73;5.67] 4.70 [3.79;5.59] 4.60 [3.70;5.66] 4.60 [3.70;5.66]
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Table 6). Moreover, 22:2n–6 level was inversely associated 
with risk of IS (0.73 [0.56, 0.93], Ptrend = 0.038, Table 3), 
while higher 22:5n–6 level was associated with lower ICH 
risk (0.46 [0.20, 1.07], Ptrend = 0.032).

Among n–3 PUFAs, higher level of 20:5n–3 was associ-
ated with higher risk of total stroke and IS (Table 4), with 
the highest HR observed in the fourth quintile (1.35 [1.09, 
1.67], Ptrend = 0.029) and 1.51 [1.21, 1.89, Ptrend = 0.036], 
respectively), compared with the bottom quintile. After 
further adjustment for SBP, BMI, and LDL-C, these asso-
ciations became non-significant (Supplementary Table 7), 
which may be partially mediated through BMI and 
SBP (Supplementary Table 8). Restricted cubic splines 

analysis also detected inverted-U shape curve associations 
of 20:5n–3 with IS (Pnonlinear = 0.002, Fig. 1) and total stroke 
(Pnonlinear = 0.008, Supplementary Fig. 4) with a threshold at 
20:5n–3 level of 0.70%, which remained similar after further 
adjustment (data not show). Moreover, we observed a sig-
nificant positive association between 20:3n–3 and ICH, with 
HR in the top quintile being 6.17 [3.43, 11.1] in comparison 
with bottom quintile, Ptrend = 0.005; Table 4).

For fatty acids ratios, the 20:3n–6/18:2n–6 ratio was 
positively associated with risk of IS (but not ICH), with 
HRs being 1.84 (1.47, 2.32) when comparing the fifth 
with the first quintile (Supplementary Table 9, model 1, 
Ptrend < 0.001). In contrast, the 20:4n-6/20:3n-6 ratio was 

Table 3   Adjusted hazard ratios (95% CI) for incident stroke events associated with n-6 PUFA quintiles

Model was adjusted for age, sex, study areas, education, smoking, alcohol drinking, family history of cardiovascular diseases, and physical activ-
ity
Cox regression was used to estimate hazard ratios and 95% confidence intervals. For analyses involving more than two exposure categories, the 
floating absolute-risk method was applied to provide 95% CI for each category
Abbreviations: CI confidence interval, SD standard deviation, PUFA polyunsaturated fatty acid

Q1 Q2 Q3 Q4 Q5 Ptrend

Total stroke
18:2n–6 1.00 (0.80,1.26) 0.94 (0.75,1.17) 0.82 (0.65,1.04) 0.89 (0.72,1.11) 0.87 (0.70,1.09) 0.38
18:3n–6 1.00 (0.77,1.30) 1.29 (1.03,1.61) 1.42 (1.15,1.76) 1.42 (1.15,1.76) 1.38 (1.11,1.71) 0.084
20:2n–6 1.00 (0.78,1.28) 0.90 (0.71,1.14) 0.86 (0.68,1.07) 1.01 (0.81,1.24) 0.99 (0.79,1.22) 0.76
20:3n–6 1.00 (0.77,1.29) 0.94 (0.73,1.19) 1.05 (0.84,1.32) 1.25 (1.02,1.54) 1.51 (1.23,1.84) 0.001
20:4n–6 1.00 (0.79,1.27) 0.89 (0.71,1.11) 0.99 (0.80,1.23) 0.75 (0.59,0.97) 0.94 (0.74,1.18) 0.47
22:2n–6 1.00 (0.80,1.26) 0.82 (0.65,1.03) 0.80 (0.63,1.01) 0.77 (0.61,0.97) 0.78 (0.62,0.98) 0.13
22:4n–6 1.00 (0.78,1.29) 1.22 (0.99,1.51) 1.04 (0.83,1.31) 0.91 (0.71,1.17) 0.93 (0.70,1.23) 0.23
22:5n–6 1.00 (0.78,1.28) 0.90 (0.72,1.14) 0.82 (0.64,1.04) 0.82 (0.64,1.04) 0.85 (0.64,1.13) 0.27
Total n–6 1.00 (0.78,1.29) 0.87 (0.69,1.10) 0.89 (0.71,1.13) 0.73 (0.57,0.93) 0.91 (0.70,1.18) 0.35
Ischemic stroke
18:2n–6 1.00 (0.78,1.29) 1.01 (0.80,1.27) 0.82 (0.64,1.05) 0.84 (0.66,1.07) 0.69 (0.53,0.90) 0.027
18:3n–6 1.00 (0.75,1.33) 1.16 (0.90,1.49) 1.39 (1.11,1.75) 1.41 (1.12,1.77) 1.37 (1.08,1.73) 0.061
20:2n–6 1.00 (0.76,1.31) 0.93 (0.72,1.20) 0.88 (0.68,1.12) 1.09 (0.87,1.37) 0.93 (0.72,1.19) 0.91
20:3n–6 1.00 (0.76,1.32) 0.86 (0.65,1.13) 1.09 (0.85,1.39) 1.33 (1.06,1.66) 1.64 (1.32,2.04)  < 0.001
20:4n–6 1.00 (0.77,1.30) 0.94 (0.73,1.21) 1.11 (0.88,1.39) 0.84 (0.64,1.10) 1.06 (0.82,1.37) 0.95
22:2n–6 1.00 (0.78,1.28) 0.87 (0.68,1.10) 0.79 (0.62,1.02) 0.71 (0.55,0.92) 0.73 (0.56,0.93) 0.038
22:4n–6 1.00 (0.75,1.33) 1.40 (1.11,1.76) 1.17 (0.91,1.50) 1.01 (0.77,1.32) 1.05 (0.77,1.43) 0.48
22:5n–6 1.00 (0.76,1.32) 0.95 (0.74,1.22) 0.86 (0.66,1.13) 0.94 (0.73,1.22) 0.95 (0.69,1.31) 0.80
Total n–6 1.00 (0.76,1.32) 0.87 (0.67,1.12) 0.98 (0.76,1.25) 0.69 (0.53,0.90) 0.85 (0.64,1.13) 0.21
Intracerebral hemorrhage
18:2n–6 1.00 (0.52,1.93) 0.57 (0.24,1.37) 0.97 (0.48,1.94) 1.46 (0.81,2.64) 2.33 (1.41,3.82) 0.007
18:3n–6 1.00 (0.46,2.19) 1.57 (0.88,2.80) 1.14 (0.59,2.19) 1.48 (0.82,2.68) 1.39 (0.77,2.53) 0.69
20:2n–6 1.00 (0.49,2.04) 0.73 (0.34,1.53) 0.69 (0.33,1.45) 0.84 (0.43,1.61) 1.54 (0.94,2.54) 0.17
20:3n–6 1.00 (0.52,1.92) 1.10 (0.61,2.00) 0.70 (0.33,1.46) 1.11 (0.62,1.96) 1.02 (0.55,1.89) 0.96
20:4n–6 1.00 (0.55,1.81) 0.80 (0.44,1.44) 0.78 (0.43,1.42) 0.40 (0.16,0.97) 0.60 (0.29,1.26) 0.15
22:2n–6 1.00 (0.52,1.92) 0.36 (0.13,0.95) 0.85 (0.44,1.64) 1.11 (0.63,1.96) 1.32 (0.77,2.25) 0.20
22:4n–6 1.00 (0.54,1.85) 0.66 (0.36,1.21) 0.47 (0.23,0.96) 0.46 (0.21,0.99) 0.43 (0.18,1.03) 0.060
22:5n–6 1.00 (0.54,1.84) 0.66 (0.36,1.24) 0.40 (0.18,0.89) 0.29 (0.12,0.72) 0.46 (0.20,1.07) 0.032
Total n–6 1.00 (0.52,1.92) 0.82 (0.43,1.55) 0.49 (0.20,1.19) 1.21 (0.65,2.24) 1.32 (0.63,2.74) 0.40
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inversely associated with IS (0.70 [0.53, 0.92], Ptrend = 0.010) 
(not ICH), but the associations attenuated significantly after 
further adjustments for SBP, BMI, and LDL-C. The asso-
ciations with total stroke were very similar to those with 
IS. In subgroup analysis, no significant heterogeneity across 
study areas was observed in the abovementioned associa-
tions between PUFAs and IS risk (Supplementary Table 10, 
Pheterogeneity > 0.05).

Discussion

In this large prospective study of relatively lean Chinese 
adults, the levels of erythrocyte PUFAs varied by geographic 
areas and were associated with certain dietary factors. 
Among the 13 PUFAs analyzed, 18:2n–6 showed significant 
association with both IS and ICH (inversely with IS and pos-
itively with ICH), while 20:3n–6 showing significant posi-
tive associations with IS but not ICH. Moreover, inverted-U 
shape curve associations were observed of 20:5n–3 with IS 
and total stroke.

According to nationwide dietary surveys, total dietary 
intake of PUFAs was high (8.6% daily energy) but marine 
n-3 PUFA intake was low (3.6 mg/d) among Chinse adults 
[27], compared with Western and Japanese populations [28]. 
Though the data of dietary PUFA intake were not available 
in the present study, levels of erythrocyte 18:2n–6, 20:4n–6, 
and 18:3n–3 were comparable with those in Western studies; 
however, the levels of 20:5n–3 (median 0.42 [0.27; 0.64]) 
and 22:6n-3 (median 4.03 [3.09; 5.27]) were relatively lower 
[16, 29, 30]. Notably, within China, there were great geo-
graphical variations in dietary patterns [17], which might 
be a reason for the large regional difference of erythrocyte 
n–6 and n–3 PUFAs observed in our study. However, no 
significant heterogeneity across study areas was observed 
in the associations between PUFAs and IS.

While more prospective studies have reported on the rela-
tionship of plasma/serum PUFAs with CVDs, to date only 
four prospective studies (all among Western populations) 
have examined the relations of erythrocyte PUFAs with 
stroke [13–16, 31–37]. Moreover, previous studies tended 
to focused mainly on IS, and typically involved modest num-
ber of cases (mostly < 300). Individually, the associations 

Table 4   Adjusted hazard ratios (95% CI) for incident stroke events associated with n-3 PUFA quintiles

Model was adjusted for age, sex, study areas, education, smoking, alcohol drinking, family history of cardiovascular diseases, and physical activ-
ity
Cox regression was used to estimate hazard ratios and 95% confidence interval
For analyses involving more than two exposure categories, the floating absolute-risk method was applied to provide 95% CI for each category
Abbreviations: CI confidence interval, SD standard deviation, PUFA polyunsaturated fatty acid

Q1 Q2 Q3 Q4 Q5 Ptrend

Total stroke
18:3n–3 1.00 (0.77,1.29) 0.96 (0.76,1.20) 0.89 (0.71,1.11) 0.69 (0.53,0.90) 1.15 (0.89,1.50) 0.89
20:3n–3 1.00 (0.78,1.28) 0.95 (0.76,1.19) 1.03 (0.83,1.28) 0.90 (0.72,1.13) 1.13 (0.87,1.46) 0.68
20:5n–3 1.00 (0.77,1.30) 0.75 (0.58,0.97) 1.05 (0.84,1.32) 1.35 (1.09,1.67) 1.12 (0.89,1.42) 0.029
22:5n–3 1.00 (0.78,1.28) 0.94 (0.74,1.19) 1.35 (1.09,1.66) 0.93 (0.73,1.19) 1.37 (1.10,1.69) 0.073
22:6n–3 1.00 (0.77,1.29) 0.95 (0.75,1.19) 0.90 (0.71,1.13) 1.13 (0.89,1.43) 0.95 (0.72,1.27) 0.76
Total n–3 1.00 (0.79,1.26) 0.96 (0.75,1.22) 0.90 (0.71,1.14) 1.35 (1.09,1.68) 1.08 (0.83,1.42) 0.14
Ischemic stroke
18:3n–3 1.00 (0.75,1.32) 0.97 (0.76,1.24) 0.94 (0.74,1.20) 0.70 (0.53,0.94) 1.11 (0.83,1.49) 0.75
20:3n–3 1.00 (0.77,1.30) 0.89 (0.69,1.13) 1.02 (0.81,1.29) 0.80 (0.62,1.04) 1.02 (0.76,1.36) 0.84
20:5n–3 1.00 (0.75,1.34) 0.81 (0.61,1.07) 1.03 (0.80,1.33) 1.51 (1.21,1.89) 1.10 (0.85,1.43) 0.036
22:5n–3 1.00 (0.77,1.31) 0.85 (0.65,1.11) 1.31 (1.05,1.65) 0.91 (0.70,1.19) 1.31 (1.04,1.65) 0.11
22:6n–3 1.00 (0.74,1.34) 1.05 (0.81,1.36) 0.98 (0.76,1.26) 1.22 (0.95,1.58) 1.04 (0.76,1.41) 0.56
Total n–3 1.00 (0.77,1.29) 0.86 (0.65,1.14) 0.99 (0.77,1.27) 1.34 (1.06,1.70) 1.02 (0.76,1.37) 0.20
Intracerebral hemorrhage
18:3n–3 1.00 (0.43,2.31) 1.08 (0.52,2.23) 1.01 (0.50,2.01) 0.88 (0.41,1.89) 1.70 (0.86,3.37) 0.41
20:3n–3 1.00 (0.30,3.32) 2.61 (1.18,5.75) 3.28 (1.61,6.68) 4.14 (2.38,7.21) 6.17 (3.43,11.1) 0.005
20:5n–3 1.00 (0.45,2.22) 1.18 (0.58,2.39) 2.24 (1.31,3.82) 1.24 (0.62,2.52) 1.75 (0.93,3.29) 0.36
22:5n–3 1.00 (0.41,2.46) 2.41 (1.31,4.46) 2.47 (1.37,4.47) 1.58 (0.75,3.33) 2.54 (1.42,4.54) 0.37
22:6n–3 1.00 (0.54,1.84) 0.77 (0.40,1.48) 1.09 (0.58,2.06) 1.13 (0.51,2.52) 0.74 (0.27,2.01) 0.99
Total n–3 1.00 (0.51,1.97) 2.02 (1.16,3.52) 0.54 (0.20,1.43) 2.05 (1.12,3.75) 2.00 (0.95,4.24) 0.25
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of PUFAs with stroke were inconsistent, with some stud-
ies showing inverse association of 18:2n–6 or marine n–3 
PUFAs with IS and/or total stroke [13–15, 31, 36], while 
others reporting null associations [32, 34, 35]. A pooled 
analysis of 21 cohort studies (19 among Western popula-
tions) assessing levels of 18:2n-6 and 20:4n–6 in different 
lipid fractions in relation to IS risk has found a significant 
inverse association of 18:2n–6 with incident IS [16]. In East 
Asian populations who had higher stroke rates and sub-
stantially differed dietary patterns than in Western popula-
tions, evidence linking blood levels of PUFAs with stroke 
risk is very limited [36, 37]. In Japan, a nested case–con-
trol study involving < 200 stroke cases showed that per SD 
higher serum 18:2n–6 level was associated with 28–34% 
lower risks of total stroke and IS, but no clear association 
with ICH [36]. Notably, our study also extended the previ-
ously reported positive associations of 20:3n–6 with risks 
of diabetes and heart diseases [38, 39] to total stroke and 

IS, but the underlying mechanisms merits further investiga-
tion. Moreover, our study did not detect association between 
20:4n–6 and stroke risk, which might be due to the fact that 
20:4n-6 is precursors for both pro-inflammation and anti-
inflammation metabolites [7].

Taken together, previous studies of PUFAs have only 
included a total of ~ 230 cases of ICH [33–36]. In contrast 
to the significant positive associtions observed in the present 
study, previous studies generally did not observe any appar-
ent association of 18:2n–6 with incident ICH. The mecha-
nisms underlying the contrasting associations of 18:2n–6 
with IS and ICH were not clear and may reflect the potential 
effects of 18:2n–6 on lowering blood LDL-C and platelet 
aggregation [40, 41], which would be beneficial for IS but 
harmful for ICH [42, 43]. Notably, vegetarians were reported 
to have higher rates of hemorrhagic stroke than meat eaters 
in British population [44], which supported our finding since 
18:2n–6 is largely derived from plant oils.

0.0

0.5

1.0

1.5

2.0

2.5

5
18:2n-6 (%) 

0.0

0.5

1.0

1.5

2.0

2.5

5
20:4n-6 (%)

0.0

2.0

4.0

6.0

0.0 0.5 1.0 1.5 2.0 2.5
18:3n-3(%)

0.0

0.5

1.0

0 1 2 3
20:5n-3 (%) 

0.0

1.0

2.0

3.0

4.0

5.0

0 1 2 3 4
22:5n-3 (%)

0.0

0.5

1.0

1.5

2.0

2.5

0 3 6 9
22:6n-3 (%)

10 15 20 10 15

Ad
ju

st
ed

 H
R

Ad
ju

st
ed

 H
R

Ad
ju

st
ed

 H
R

Ad
ju

st
ed

 H
R

Ad
ju

st
ed

 H
R

Ad
ju

st
ed

 H
R

Pnonlinear = 0.97 Pnonlinear = 0.96 Pnonlinear = 0.61 

Pnonlinear = 0.002 Pnonlinear = 0.71 Pnonlinear = 0.69 

Fig. 1   Associations of erythrocyte PUFAs with risk of ischemic 
stroke by restricted cubic splines from Cox proportional hazards 
models. Model was adjusted for age, sex, study areas, education, 
smoking, alcohol drinking, family history of cardiovascular diseases, 

and physical activity. The solid lines represent the HRs, and the 
shaded areas represent 95% CIs, relative to the reference level (50th 
percentile)
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Among n–3 PUFAs, 20:5n–3 was positively associated 
with IS, which was partially mediated through BMI and 
SBP. Our result was in accordance to the null association 
between 20:5n–3 and IS reported in several US cohort stud-
ies with adjustment of BMI and/or SBP (1917 cases in total) 
[13, 31]. On the other hand, a Finnish study reported a posi-
tive association between serum marine n–3 PUFAs and IS 
risk (153 cases), although only in subjects having higher hair 
mercury [33]. Thus, it needs to be clarified whether environ-
ment pollutants in marine products could mask the poten-
tial associations of marine n–3 PUFAs with stroke risks. 
Interestingly, a threshold of 20:5n–3 level at 0.7% (higher 
than ~ 80% of our participants) was detected by the restricted 
cubic splines analysis, with inverse associations observed 
above this level. Given the low consumption of marine n–3 
PUFAs among Chinese [27] and large regional variation in 
n–3 PUFA levels, it would be of importance to identify an 
ideal 20:5n–3 level for cardio-metabolic health.

The present study has several major strengths, besides its 
prospective design. First, we measured erythrocyte PUFAs 
which reflect relatively long-term average levels of PUFAs 
and are less susceptible to biological variations and meas-
urement errors (e.g. reporting errors). Second, the statistical 
analyses had controlled for a variety of potential confound-
ing factors, limiting the impacts of residual confounding. 
Third, we examined the associations with different subtypes 
of stroke separately, which is important given the differ-
ent etiology of IS and ICH. Fourth, the large variation in 
PUFA levels allowed us to detect the nonlinear association 
of 20:5n–3 with stroke risks. However, the study also has 
limitations. First, owing to relatively short follow-up time, 
we were unable to fully explore potential reverse causal-
ity by excluding the first few years of follow-up. However, 
such bias would have been controlled to a large extent by 
excluding those with prior CVD and diabetes from the main 
analyses. Second, small number of ICH cases limited the sta-
tistical power. Third, the dietary questionnaire only covered 
some of major food groups, so we were unable to compare 
findings based on nutrient biomarkers with self-reported 
nutrient intakes. Fourth, we did not correct for multiple 
testing because our study is hypothesis testing instead of 
hypothesis generating. Those significant results observed in 
our study could be a chance finding. Last, given the obser-
vational nature of the study and the possibility of residual 
confounding, causality cannot be fully confirmed.

In summary, the present study provided new evidence for 
several PUFAs with different types of stroke among Chinese 
adults, including the contrasting associations of 18:2n–6 
with risks of IS (inverse) and ICH (positive), and the posi-
tive associations of 20:3n–6 with total stroke and IS. The 
associations of 20:5n–3 with IS and total stroke appeared to 
be nonlinear with a threshold at 0.7%. Further larger studies 
are needed to elucidate these associations.
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