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Abstract
Purpose To investigate the effects of diets containing intact or hydrolysed proteins from blue whiting (Micromesistius 
poutassou) on the development of high blood pressure and markers of kidney function in obese Zucker fa/fa rats which are 
prone to develop hypertension and renal failure.
Methods Male rats were fed isocaloric diets containing either intact blue whiting whole meal (BW-WM), blue whiting pro-
tein hydrolysate prepared with  Alcalase® (BW-HA) or blue whiting protein hydrolysate prepared with  Protamex® (BW-HP) 
as 1/3 of total protein with the remaining 2/3 as casein, or casein as sole protein source (control group). Blood pressure was 
measured at Day 0 and Day 32. Rats were housed in metabolic cages for 24 h for collection of urine in week 4. After 5 weeks, 
rats were euthanized and blood was drawn from the heart. The renin and angiotensin-converting enzyme (ACE) inhibition 
capacities for casein and blue whiting proteins were measured in vitro.
Results The blood pressure increase was lower in rats fed diets containing blue whiting proteins when compared to the control 
group, whereas markers of kidney function were similar between all groups. The three blue whiting proteins inhibited renin 
activity in vitro, whereas casein had no effect. The in vitro ACE inhibition was similar for casein, BW-WM and BW-HP 
proteins, whereas BW-HA protein was less potent.
Conclusion Blue whiting protein feeding attenuated the blood pressure increase in obese Zucker fa/fa rats, possibly mediated 
through the renin–angiotensin system and without affecting markers of kidney function.
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Introduction

High blood pressure is associated with increased risk of 
chronic renal and cardiovascular diseases [1–3]. Lifestyle 
modifications are recommended to prevent hypertension [4], 
and several studies show that a high fish intake is associated 
with lower blood pressure [5–12]. A blood pressure-low-
ering effect of fish may be mediated through the angioten-
sin–renin system, since peptides with angiotensin-convert-
ing enzyme (ACE) inhibiting capacities in vitro have been 
identified in fish fillet, skin and backbone [13], but evidence 
concerning in vivo effects of fish proteins on blood pressure 
is limited. Angiotensinogen is cleaved by renin to the bio-
logically inactive angiotensin I, which is then converted to 
the active vasoconstrictor angiotensin II by ACE, with the 
cleavage of angiotensinogen by renin as the rate determin-
ing step [14].
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The obese Zucker fa/fa rat is a much used model of 
genetic obesity and has been shown to be well suited for 
studies on metabolic complications and treatments of 
obesity and hypertension [15]. These rats develop visible 
obesity from the age of 3–4 weeks and develop an age-
related increase in blood pressure already before the age 
of 10 weeks [15–17], and with increasing age they also 
spontaneously develop proteinuria and focal segmental 
glomerulosclerosis leading to renal failure [18].

Fish meals (non-hydrolysed) produced from Atlan-
tic cod (Gadus morhua) residual materials or fillet have 
shown potential to prevent blood pressure increase and 
beneficially affect markers of kidney function in obese 
Zucker fa/fa rats [19, 20]. Blue whiting (Micromesistius 
poutassou) is a small pelagic fish primarily used to pro-
duce fish meal for aquaculture feed and belongs to the 
family Gadidae included in the order Gadiformes (cod-
fishes) together with, among others, the Atlantic cod. 
The market for blue whiting as whole fish or fillet for 
human intake is limited by factors such as small size 
and discoloration [21], and blue whiting products based 
on fish meal or protein hydrolysates may be one option 
to improve the utilization of this fish species. We have 
recently shown that a water-soluble protein meal from 
blue whiting has a hypocholesterolemic effect in obese 
Zucker fa/fa rats [22], but more knowledge on the poten-
tial health effects of proteins from blue whiting is war-
ranted to expand its usability in new products for human 
consumption. Enzymatic hydrolysis enables efficient 
recovery of proteins from fish and fish by-products and 
produces protein fractions with higher content of small 
peptides that may exert effects as bioactive compounds. 
Blue whiting protein hydrolysates have been shown to 
have ACE-inhibiting properties in vitro [23, 24], but the 
effects of blue whiting hydrolysates on blood pressure 
and markers of kidney function in vivo have not yet been 
investigated.

The primary objective of the present study was to 
compare the effects of diets containing proteins from 
headed and gutted blue whiting as whole meal or protein 
hydrolysates on the development of high blood pressure 
in obese Zucker fa/fa rats. The secondary objectives were 
to investigate any changes in markers of kidney function, 
organ damage, inflammation and oxidative stress, to 
examine the in vitro renin and ACE-inhibiting properties 
of the blue whiting proteins, and to explore the possible 
impact of dietary components in the blue whiting protein 
meals that could affect blood pressure development. Our 
hypothesis was that blue whiting protein intake would 
attenuate the development of high blood pressure in 
obese Zucker fa/fa rats possibly through inhibition of the 
renin–angiotensin system, and beneficially affect markers 
of kidney function.

Methods

Ethical statement

The study protocol was approved by the National Animal 
Research Authority (Norway) in accordance with the Ani-
mal Welfare Act and the Regulation of animal experiments 
(Approval No. 2014/6979). All applicable international, 
national and institutional guidelines for the care and use 
of animals were followed.

Animals and diets

Twen ty- fou r  ma le  obese  Zucke r  fa / fa  r a t s 
(HsdHlr:ZUCKER-Leprfa) were obtained from Harlan 
Laboratories (Indianapolis, IN, USA). The rats were 
housed in pairs in Macrolon IV cages (EHRET GmbH & 
Co.) in a room with a 12 h light/dark cycle, at 20–23 °C 
and a relative humidity of 55–65%. Rats were acclima-
tized for a minimum of 7 days under these conditions, 
before being randomly allocated to intervention groups or 
control group, with six rats in each group. The interven-
tion period started when the rats were 8–9 weeks old and 
weighed 319 ± 11 g. The number of rats per group was 
chosen based on previous experience from studies on the 
development of high blood pressure in obese Zucker fa/
fa rats [25]. Rats were fed modified semi-purified diets 
based on the American Institute of Nutrition’s recom-
mendation for growing laboratory rodents (AIN-93G) [26] 
with the addition of 1.6 g methionine/kg diet as recom-
mended by Reeves [27], and differed only in their pro-
tein sources (Table 1). All diets contained 20wt% protein. 
The AIN-93G diet was used instead of the AIN-93 M diet 
for maintenance containing 15 wt% protein, since rats 
would be in the growth phase throughout the intervention 
period (based on growth charts for Zucker rats from Har-
lan Laboratories, https ://www.envig o.com). In addition, 
obese Zucker rats have an impaired protein metabolism, 
which leads to inferior protein utilization and requires a 
greater protein intake to maintain a maximal rate of pro-
tein gain during growth [28]. The three intervention diets 
contained fish proteins produced from the same batch of 
headed and gutted blue whiting. All blue whiting protein 
diets contained 1/3 (by weight) of total dietary protein 
from blue whiting and the remaining 2/3 (by weight) of 
protein was casein. Blue whiting proteins were in the form 
of either blue whiting whole meal (BW-WM), blue whiting 
protein meal hydrolysate prepared with  Alcalase® (BW-
HA), or blue whiting protein meal hydrolysate prepared 
with  Protamex® (BW-HP). Casein was the sole protein 
source in the control diet (Table 1). All ingredients were 

https://www.envigo.com
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purchased from Dyets Inc. (Bethlehem, PA, USA) except 
casein which was purchased from Sigma-Aldrich (Munich, 
Germany) and fish proteins which were prepared from blue 
whiting by Nofima (Bergen, Norway).

Preparation of blue whiting proteins

The blue whiting was frozen on-board the fishing vessel, 
landed and then partially thawed at ambient temperature, 
and headed and gutted before further freeze storage until 
use. To produce whole meal, the frozen headed and gutted 
fish was partially thawed overnight, added equal amount of 
water and heated to 90 °C in a 150 L steam-heated kitchen 
cooker. After 10 min holding time, the cooked material 
was mechanically dewatered in a P13-SCR double-screw 
press (Stord Bartz AS, Bergen, Norway). The press liquid 
was heated to 90 °C and run through a Jesma VS 20/65 
Roto-Fluid sieve (Jesma, Velje, Denmark; 100 μm sieve net 
opening) to remove suspended solids. The Jesma solids was 
mixed with the press cake and dried to a press cake fish 
meal on a TG1 fluid bed dryer (Retsch GmbH & Co. KG, 
Germany) at 70 °C. The Jesma liquid was evaporated on a 
four-stage falling film evaporator (APV Anhydro, Søborg, 
Denmark) at 60–100 °C. The concentrate was mixed with 
an equivalent amount of press cake fish meal and dried on 

a TG1 fluid bed dryer at 70 °C to obtain a whole meal. The 
whole meal was milled on a Retsch ZM-1 centrifugal mill 
(Retsch GmbH, Haan, Germany) with a ring sieve aperture 
of 0.75 mm.

Two different protein hydrolysates were produced from 
the headed and gutted blue whiting. The headed and gutted 
fish was partially thawed and processed on a meat grinder 
with 7.5 mm aperture and was added an equal amount of 
water in a 200 L stirred tank reactor. The fish slurry was 
heated to 50 °C under continuous stirring before addition of 
the following combinations of enzyme (given on crude pro-
tein basis) and residence time:  Alcalase® 2.4 L (Novozymes 
AS, Bagsværd, Denmark) 0.5%, residence time 60 min 
and  Protamex® (Novozymes AS, Bagsværd, Denmark) 
1%, residence time 60 min. After the predefined residence 
time, the hydrolysates were heated to 90 °C and kept at this 
temperature level for 10 min to inactivate the enzyme. The 
hydrolysates were filtrated on a Jesma VS 20/65 Roto-Fluid 
sieve (Jesma, Velje, Denmark; 100 μm sieve net opening) 
before microfiltration by use of Membralox (Pall Corpora-
tion, Portsmouth, UK) ceramic membranes with pore size 
100 nm, removing all fats in the hydrolysates. The perme-
ates were concentrated in a four-stage falling film evaporator 
(APV Anhydro, Soeborg, Denmark) at 60–100 °C before 
final drying. The  Alcalase® protein hydrolysate was dried 

Table 1  Composition of the 
experimental diets

BW-WM blue whiting whole meal BW-HA blue whiting protein hydrolysate prepared with  Alcalase®, BW-
HP blue whiting protein hydrolysate prepared with  Protamex®

a Contains 92.5% crude protein, < 1% fat, 8% moisture, < 1% ash
b Contains 71.4% crude protein, 5% fat, 8% moisture, 9% ash
c Contains 76.0% crude protein, < 0.01% fat, 5% moisture, 13% ash
d Contains 78.2% crude protein, < 0.01% fat, 3% moisture, 12% ash
e Contains 41% choline
f Contains vitamin B12 (40 mg/kg) and vitamin K1 (25 mg/kg) mixed with sucrose (995 g/kg) and dextrose 
(5 g/kg)

Contents (g/kg diet) Control diet BW-WM diet BW-HA diet BW-HP diet

Caseina 216.0 144.0 144.0 144.0
Blue whiting whole meal  proteinb – 93.3 – –
Blue whiting protein hydrolysed with  Alcalase®c – – 87.7 –
Blue whiting protein hydrolysed with  Protamex®d – – – 85.3
Cornstarch 511.7 490.5 496.3 498.5
Sucrose 90.0 90.0 90.0 90.0
Cellulose 50.0 50.0 50.0 50.0
Soybean oil 70.0 70.0 70.0 70.0
t-Butylhydroquinone (TBHQ) 0.015 0.015 0.015 0.015
Mineral mix (AIN-93-MX) 35.0 35.0 35.0 35.0
Vitamin mix (AIN-93-VX) 10.0 10.0 10.0 10.0
l-Methionine 1.6 1.6 1.6 1.6
l-Cystine 3.0 3.0 3.0 3.0
Choline  bitartratee 2.5 2.5 2.5 2.5
Growth and maintenance  supplementf 10.0 10.0 10.0 10.0
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in a Christ Gamma 1–16 LSC freeze dryer (Martin Christ 
Gefriertrocknungsanlagen GmbH, Osterode am Harz, Ger-
many), and the  Protamex® protein hydrolysate in a Niro 
P-6.3 spray drier (Niro, Sjøborg, Denmark) with inlet and 
outlet temperature 200 and 94 °C, respectively. The dried 
 Alcalase® protein hydrolysate was milled on a Retsch ZM-1 
centrifugal mill with a ring sieve aperture of 1.0 mm, while 
the  Protamex® protein hydrolysate was used as is.

Design

Rats were fed ad libitum for 5 weeks, with free access to 
tap water and chewing sticks. Rats were weighed weekly 
during the intervention period. One week before end point, 
rats were housed individually in metabolic cages (Ancare 
Corp., NY, USA) for 24 h for collection of urine and meas-
urement of feed intake, without fasting in advance. Blood 
pressure was measured in conscious rats at baseline (Day 
0) and 3 days before end point (Day 32). At the end of the 
experimental period, after a 12 h fast, rats were euthanized 
while anaesthetized with isoflurane (Isoba vet, Intervet, 
Schering-Plough Animal Health, Boxmeer, The Nether-
lands) mixed with nitrous oxide and oxygen. Blood was 
drawn from the heart and collected in Vacuette Z Serum Clot 
Activator Tubes for isolation of serum (Greiner Bio-One, 
Austria) and in Vacuette K2EDTA tubes (Greiner Bio-One) 
for isolation of plasma. Liver and epididymal white adipose 
tissue (WATepi) were dissected out and frozen. All biologi-
cal samples were stored at − 80 °C.

Analyses of diets

Contents of amino acids (except α-aminobutyric acid, 
β-alanine, γ-aminobutyric acid, citrulline, 4-hydroxypro-
line, 1-methylhystidine and 3-methylhistidine), energy and 
sodium content in diets, and crude protein, fat, moisture, ash 
and peptide size distribution of blue whiting protein meals, 
were measured by Nofima BioLab (Bergen, Norway). Amino 
acids were measured using HPLC [29]. Dietary caloric 
content was determined by a bomb calorimeter method 
in accordance with ISO9831:1998 [30] using a Parr 6400 
calorimeter (Parr Instrument Company, Illinois). Dietary 
sodium content was determined by flame atomic absorption 
spectrometry in accordance with ISO6869:2000 [31] using 
Perkin Elmer Analyst 400 with an AS 90plus autosampler 
(PerkinElmer, Massachusetts). Crude protein was deter-
mined according to the Kjeldahl method [32]. Fat content 
was determined gravimetrically after chloroform/methanol 
extraction [33]. Moisture content was measured gravimet-
rically after drying in a forced-air oven at 103 ± 1 °C for 
4.5 h [34]. Total ash content was determined gravimetrically 
after incineration at 550 °C [35]. Peptide size distributions 
for the blue whiting proteins were measured by HPLC size 

exclusion chromatography as described previously [36]. 
Fatty acid composition of diets was analysed by gas chro-
matography after lipid extraction as described below.

α-Aminobutyric acid, β-alanine, γ-aminobutyric 
acid, citrulline, 4-hydroxyproline, 1-methylhystidine 
(π-methylhistidine), 3-methylhistidine (τ-methylhistidine) 
and taurine were quantified in diets as described below, after 
total acid hydrolysis (6 M HCl, 24 h, 110 °C).

Renin and ACE inhibition in vitro

Casein and BW-WM protein were added Trizma buffer 
(50 mM, pH 8.0) and hydrolysed using trypsin from bovine 
pancreas (T1426 from Sigma) at 45 °C for 4 h as recom-
mended by Shalaby et al. [37]. The two blue whiting pro-
tein hydrolysates (BW-HA, BW-HP) were not hydrolysed 
with trypsin prior to analyses. Protein in hydrolysates were 
quantified on the Cobas c111 system (Roche Diagnostics 
GmbH, Mannheim, Germany) using the TP2 kit from Roche. 
Renin inhibition was measured using the Renin Assay Kit 
(MAK157, from Sigma-Aldrich) as described in the user 
manual. ACE-inhibition was measured using the method by 
Shalaby et al. [37], as previously described [20].

Blood pressure measurements

Systolic and diastolic blood pressures were measured at 
baseline and end point. Rats were pre-warmed in a heating 
cabinet at 32 °C for 30 min before blood pressure was meas-
ured using the tail-cuff method (CODA-6, Kent Scientific 
Corporation, Torrington, CT, USA).

Analyses in serum, plasma, urine and kidney

Serum concentrations of creatinine, alanine transaminase 
and aspartate transaminase (the latter two were measured 
with pyridoxal phosphate activation), and urine concentra-
tions of creatinine, total protein, carbamide, uric acid and 
ammonium were analysed on the Cobas c111 system (Roche 
Diagnostics GmbH, Mannheim, Germany) using the CREP2 
(Creatinine plus ver.2), ALTL (Alanine aminotransferase 
acc. IFCC), ASTL (Aspartate aminotransferase), TP2 (Total 
Protein Gen.2 monochromatic), UREAL (Urea/BUN), UA2 
(Uric Acid ver.2) and NH3L (Ammonia) kits from Roche 
Diagnostics. Sodium concentrations in serum and urine 
were analysed on the Cobas c111 system (Roche Diagnos-
tics GmbH, Mannheim, Germany) using the Ion-Selective 
Electrode module from Roche Diagnostics.

Plasma and urine concentrations of cystatin C were quan-
tified using the Mouse/Rat Cystatin C  Quantikine® ELISA 
(catalogue number MSCTC0) from R&D Systems, Bio-
Techne, MN.
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Plasma for glutathione measurements was added to four 
volumes of ice-cold 5% meta-phosphoric acid, mixed and 
stored on ice for 15 min before centrifugation, and the 
supernatant was stored at − 80 °C until analysis. Total and 
oxidized glutathione were analysed using the Glutathione 
(GSSG/GSH) detection kit (ADI-900-160) from Enzo Life 
Sciences AG, Lausen, Switzerland. Reduced glutathione 
was calculated as the difference between total and oxidized 
glutathione.

Serum concentrations of monocyte chemoattractant pro-
tein (MCP)-1, interleukin (IL)-1b, IL-6 and tumor necrosis 
factor (TNF) α were measured using the  MILLIPLEX® MAP 
Rat Cytokine/Chemokine Magnetic Bead Panel (RECYT-
MAG-65 K) from EMD Millipore Corp. (St. Charles, MO).

Kidneys were homogenized in Tris-buffer (pH 7.8) before 
analyses of T cell immunoglobulin mucin-1 (TIM-1), using 
the Rat TIM-1/KIM-1/HAVCR  Quantikine® ELISA (cata-
logue number RKM100) from R&D Systems. Kidney pro-
tein content was measured with the Bradford dye-binding 
method [38] using Protein Assay Dye Reagent (Bio-Rad 
Laboratories, Germany) with bovine serum albumin (Bio-
Rad Protein Assay Standard II, Bio-Rad Laboratories) as 
standard.

Amino acids in plasma, urine and HCl‑hydrolysed 
diets

Free amino acids in EDTA-plasma and urine, and total 
amino acids in HCl-hydrolysed diets were quantified by 
reverse-phase high performance liquid chromatography, 
using the S 433 Automatic Amino Acid Analyser (Sykam 
GmbH, Eresing, Germany), equipped with integrated 
dual-channel photometer for the detection of amino acids 
at 440–570 nm, cooled autosampler and reagent storage, 
and integrated vacuum degasser. The autosampler and 
reagent storage were kept at 13–14 °C, and total acquisi-
tion time was 111 min. Mobile phases were lithium cit-
rate buffer A-1 (0.12 N, pH 2.90), lithium citrate buffer 
B-1 (0.30 N, pH 4.20), lithium citrate/borate buffer C-4 
(0.30 N, pH 8.0) and regeneration solution (0.45 N) (all for 
physiological program, from Sykam GmbH), with post-
column derivatization with ninhydrin (Sykam GmbH). The 
mobile phases were delivered according to the following 
scheme at constant flow of 0.450 ml/min: 0–12.50 min, 
100% buffer A-1; 12.60–38.00 min: 74% buffer A-1/26% 
buffer B.1; 38.10–50.00 min: 46% buffer A-1/54% buffer 
B-1; 50.10–62.00 min: 22% buffer A-1/78% buffer B-1; 
62.10–63.50 min: 100% buffer B-1; 63.60–71.00 min: 76% 
buffer B-1/24% buffer C-4; 71.10–85.00 min: 100% buffer 
C-4; 85.10–94.00 min: 80% buffer C-1/20% Regeneration 
solution, 94.10–107.00 min: 74% buffer C-4/26% regenera-
tion buffer, 107.10–111.00 min: 100% regeneration buffer. 
Column oven temperature was 39 °C (0–88 min), 60 °C 

(88–89 min); 70 °C (89–111 min). Amino acids were deri-
vatized post-column with ninhydrin (Sykam GmbH), with 
a constant reactor temperature of 130 °C. Clarity Amino 
chromatography station version 7.4.1.99 (Sykam GmbH) 
was used for data acquisition and analysis. Plasma and urine 
samples for quantification of amino acids were prepared as 
follows: four volumes of plasma or urine was added to one 
volume of 5-sulfosalicylic acid dihydrate (Sigma-Aldrich, 
Munich, Germany), containing the internal standard norleu-
cine (Sigma-Aldrich), to precipitate proteins. After centrifu-
gation (2000 × g, 5 min), the supernatant from plasma was 
diluted 1:1 with Lithium citrate buffer A-1 (Sykam GmbH), 
whereas the supernatant from urine was diluted 2:1 with 
the same buffer. The amino acid standard stock solution 
for physiological samples (PH, from Sykam GmbH) added 
to l-glutamine (Sigma-Aldrich) was used as calibrator. 
γ-Aminobutyric acid and β-alanine were quantified in urine 
but were not found in plasma, and tryptophan was quanti-
fied in plasma but could not be quantified in urine. Oth-
erwise the same compounds were analysed in plasma and 
urine. Only α-aminobutyric acid, β-alanine, γ-aminobutyric 
acid, citrulline, 4-hydroxyproline, 1-methylhystidine 
(π-methylhistidine), 3-methylhistidine (τ-methylhistidine) 
and taurine were quantified using this method in the diets.

Fatty acids in serum, liver, WATepi and diets

Lipids in liver and diets were extracted according to the 
method described by Bligh and Dyer [33] using a mixture 
of methanol and chloroform, before methylation. Serum and 
WATepi were methylated without prior extraction of lipids. 
Fatty acids in liver and diet extracts, serum and WATepi 
were analysed by gas chromatography as described previ-
ously [39].

Statistical analyses

Statistical analyses were conducted using SPSS Statis-
tics version 25 (SPSS, Inc., IBM Company, Armonk, NY, 
USA). All variables were evaluated for normality using the 
Shapiro–Wilks test, Q–Q plots and histograms and most 
variables were normally distributed. One-way analysis of 
variance (ANOVA) was used to compare groups, followed 
by the Fisher’s LSD post hoc test to determine significant 
differences between groups when appropriate. All biological 
data are presented as means ± standard deviations. Bivari-
ate correlations were calculated using Pearson’s two-tailed 
test of significance. Results from the measurements of 
renin and ACE inhibition by dietary proteins are presented 
as means ± standard error of mean. The cut off value for 
statistical significance was set at a probability of 0.05. One 
rat in the control group was excluded from all statistical 
analyses due to apparent disease, thus results are presented 
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as N = 5 rats for the control group and N = 6 rats for each of 
the intervention groups.

Results

Blue whiting protein peptide size distribution

Analyses of peptide size distribution showed that the 
enzymatic hydrolysis protocols were sufficient to pro-
duce > 80% of peptides with a molecular size below 4000 g/
mol (83.5 and 91.2% in hydrolysates BW-HA and BW-HP, 
respectively) and the hydrolysates contained negligible quan-
tities of large proteins > 20,000 g/mol (Table 2). The water-
soluble protein fraction of the non-hydrolysed BW-WM con-
sisted of 29.5% peptides with molecular weight > 20,000 g/
mol and the peptide fraction with molecular weight < 200 g/
mol (comprising free amino acids and miscellaneous water-
soluble components absorbing light with a wavelength of 
214 nm) amounted to 45.3%.

Diets, dietary intake, growth and organ weights

Dietary contents of indispensable amino acids were in gen-
eral similar between the diets (Table 3); however the content 
of the conditionally essential amino acid arginine was higher 
in all blue whiting protein diets. β-Alanine, 3-methylhistidine 
and taurine were detected only in blue whiting protein diets, 
with highest amount in BW-HA and BW-HP. 4-Hydroxy-
proline and 1-methylhystidine were also found only in diets 
containing blue whiting meal, with little differences between 

these diets. The content of γ-aminobutyric acid was lower 
in the blue whiting containing diets compared to the control 
diet. The amounts of α-aminobutyric acid and citrulline were 
below the level of detection in all diets. Arachidonic acid 
(20:4n-6) and the n-3 PUFAs 20:5n-3, 22:5n-3 and 22:6n-3 
(Σn-3 PUFA 0.11 wt%) were detected only in the BW-WM 
diet, otherwise fatty acid composition was similar between 
diets.

Body weight at baseline, body weight-to-body length 
ratio at euthanasia, weight of WATepi relative to body 
weight and daily energy and protein intake measured at week 
4 were similar between groups (Table 4). The percent growth 
from baseline to end point was higher in the BW-HA and 
BW-HP groups compared to control group, and was higher 
in BW-HA group compared to BW-WM group. Otherwise, 
growth was similar between groups. 

The sodium content was higher in all blue whiting pro-
tein diets compared to the control diet, resulting in a higher 
sodium intake in all blue whiting protein-fed groups com-
pared to the control group, with the highest sodium intake 
in the BW-HA group (Table 4). Urine sodium concentration 
relative to creatinine was similar in the BW-WM group and 
control group and higher in both groups fed blue whiting 
protein hydrolysate, with the highest urine sodium concen-
tration in the BW-HP group (Table 4). A strong positive 
correlation was observed between dietary sodium intake and 
urine sodium concentration (Pearson correlation 0.81 with 
two-tailed significance of p = 3.2 × 10− 6). Serum sodium 
concentration was within normal range for all rats (the mean 
for all rats was 140 with SD 1 mmol/l) with no differences 
between the groups (p ANOVA = 0.98, data not presented).

Blood pressure

Systolic and diastolic blood pressures were similar between 
groups at baseline (p ANOVA values were 0.31 and 0.39, 
respectively, Table  4). After 5  weeks intervention, the 
increases in both systolic and diastolic blood pressure 
were significantly smaller in the BW-WM group (p values 
0.014 and 0.010, respectively), BW-HA group (p values 
0.032 and 0.025, respectively) and BW-HP group (p values 
0.0066 and 0.029, respectively) when compared to the con-
trol group (Figs. 1a, b). The increase from baseline to end 
point in systolic and diastolic blood pressures was similar 
between all groups fed blue whiting protein diets. The sys-
tolic and diastolic blood pressures were strongly correlated 
(Pearson correlation was 0.97 with two-tailed significance 
of p = 1.6 × 10− 29).

Renin and ACE inhibition by dietary proteins

For renin activity inhibition, no measurable inhibition was 
detected for casein, therefore casein was not included in 

Table 2  Molecular weight distribution of water-soluble peptides

BW-WM blue whiting whole meal, BW-HA blue whiting protein 
hydrolysate prepared with  Alcalase®, BW-HP blue whiting protein 
hydrolysate prepared with  Protamex®, LOD level of detection
a The peptide fraction with molecular weight < 200  g/mol comprises 
free amino acids and miscellaneous water-soluble components 
absorbing light with a wavelength of 214 nm)

g/mol BW-WM 
protein

BW-HA protein BW-HP protein

 > 20,000 29.5 0.4 < LOD
20,000–15,000 4.5 0.3 < LOD
15,000–10,000 5.1 1.2 0.4
10,000–8000 2.4 1.8 0.9
8000–6000 2.1 4.0 2.2
6000–4000 1.8 8.6 5.4
4000–2000 1.5 18.4 15.1
2000–1000 0.8 20.2 20.1
1000–500 0.7 14.9 19.3
500–200 6.4 12.2 17.5
 < 200a 45.3 17.8 19.2
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the ANOVA analysis. The capacity for in vitro inhibition 
of renin activity was found to be most potent for BW-HP 
and slightly lower for BW-HA and BW-WM (Fig. 2a). The 
capacity for in vitro ACE inhibition was similar for casein, 
BW-WM protein and BW-HP protein, while the IC50 value 
for BW-HA protein was significantly higher (i.e., less potent) 
than the other dietary proteins including casein (Fig. 2b).

Markers of kidney function, organ damage, 
inflammation and oxidative status

Serum concentrations of creatinine, cystatin C, alanine 
transaminase and aspartate transaminase were not signifi-
cantly different between the experimental groups (Table 5). 
Also, no difference was seen between the groups for urine 
creatinine concentration. Urine concentrations (relative to 

creatinine) of total protein and cystatin C were abnormally 
high and comparable to concentrations previously seen 
in obese Zucker fa/fa rats with prominent hyperperfusion 
damage in podocytes [25, 40], but concentrations were 
similar in all groups (Table 5). Urine carbamide and uric 
acid concentrations were also abnormally high; however, 
the carbamide concentration was lower in all blue whiting 
protein-fed groups compared to the control group and uric 
acid concentration was lower in the BW-HA-fed rats, but 
similar in BW-WM and BW-HP-fed rats when compared to 
controls. The ammonium urine concentration was lower in 
the BW-HA and WW-HP groups when compared to the con-
trol and BW-WM groups. TIM-1 was found in kidneys from 
all rats in amounts ranging from 3 to 134 pg/mg protein, 
with no differences between the groups (data not presented, 
p ANOVA 0.57).

Table 3  Dietary content of 
indispensable amino acids, 
non-proteogenic amino acids, 
arginine, taurine, and fatty acids

BW-WM blue whiting whole meal, BW-HA blue whiting protein hydrolysate prepared with  Alcalase®, BW-
HP blue whiting protein hydrolysate prepared with  Protamex®, ND not detected
a Measured in diets after HCl-hydrolysis
b Only fatty acids found in concentrations > 0.5 g/kg diet, 20:4n-6 and long chain n-3 polyunsaturated fatty 
acids (20:5n-3, 22:5n-3, 22:6n-3) are shown

Control diet BW-WM diet BW-HA diet BW-HP diet

Amino acids (g/kg diet)
Arginine 6.9 9.4 9.6 9.2
β-alanineb ND 0.20 0.48 0.40
Citrullineb ND ND ND ND
γ-aminobutyric  acidb 0.03 0.01 0.01 0.01
Histidine 5.6 5.2 5.2 4.9
4-Hydroxyprolineb ND 0.54 0.57 0.42
Isoleucine 10.2 9.8 9.7 8.9
Leucine 18.3 17.0 18.0 17.0
Lysine 16.4 18.0 19.0 18.0
Methionine 6.9 7.5 7.3 7.4
1-Methylhistidineb ND 0.03 0.02 0.03
3-Methylhistidineb ND 0.37 0.94 0.72
Phenylalanine 10.1 9.5 9.3 8.5
Threonine 8.5 8.6 8.6 7.9
Valine 13.0 13.0 13.0 12.0
Taurineb ND 0.34 1.05 0.75
Fatty acidsb (g/kg diet)
16:0 6.7 7.2 6.9 6.1
18:0 2.3 2.4 2.4 2.1
18:1 n-9 12.4 13.0 13.2 11.7
18:1 n-7 0.8 0.9 0.8 0.7
18:2 n-6 29.0 29.7 31.1 27.5
20:4 n-6 ND 0.04 ND ND
18:3 n-3 3.4 3.5 3.7 3.3
20:5 n-3 ND 0.30 ND ND
22:5 n-3 ND 0.03 ND ND
22:6 n-3 ND 0.77 ND ND
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Serum concentrations of MCP-1, IL-1b, IL-6 and TNFα 
were similar between the experimental groups (data not 
presented). Plasma concentration of reduced glutathione 
was similar in all groups, whereas plasma concentrations 

of total and oxidized glutathione were significantly higher 
in the BW-WM group when compared to the control group, 
with no differences for either of these between the other 
groups (Table 5).

Table 4  Body weight, growth, body weight-to-body length ratio, WATepi weight, blood pressure, and dietary intake and urine output of sodium 
(Means and standard deviations)

Data are presented as mean ± standard deviation for N = 5 rats in the control group, N = 6 rats in the BW-WM group, N = 6 rats in the BW-HA 
group and N = 6 rats in the BW-HP group. p values are shown for the comparisons of BW-WM group, BW-HA group, BW-HP group and control 
group using one-way ANOVA and the p values in the table show results from the one-way ANOVA comparisons. Fisher’s LSD was used as post 
hoc test when appropriate, and different letters indicate significant differences between groups
BW-WM blue whiting whole meal, BW-HA blue whiting protein hydrolysate prepared with  Alcalase®, BW-HP blue whiting protein hydrolysate 
prepared with  Protamex®, WATepi epididymal white adipose tissue, ANOVA analysis of variance, LSD least significant difference
p < 0.05 was considered significant

Control group BW-WM group BW-HA group BW-HP group ANOVA
p

Body weight (g) at baseline 318 ± 8 325 ± 11 311 ± 7 323 ± 13 0.11
Growth (% change in body weight from baseline to end point) 72 ± 8a 76 ± 16ab 91 ± 11c 88 ± 4bc 0.030
Body weight-to-body length ratio (kg/m2) at end point 10.0 ± 0.6 10.1 ± 0.8 10.5 ± 0.5 10.8 ± 0.4 0.092
WATepi (g/kg BW) 29 ± 2 27 ± 3 31 ± 3 32 ± 4 0.12
Energy intake (kJ/kg BW/24 h) 863 ± 69 865 ± 183 943 ± 53 928 ± 66 0.48
Protein intake (g/kg BW/24 h) 9.4 ± 0.75 9.4 ± 1.99 10.4 ± 0.58 10.2 ± 0.72 0.40
Systolic blood pressure (mmHg) at baseline 114 ± 11 125 ± 9 123 ± 13 127 ± 15 0.31
Diastolic blood pressure (mmHg) at baseline 79 ± 11 89 ± 10 86 ± 11 88 ± 9 0.39
Sodium intake (mg/kg BW/24 h) 89 ± 7a 122 ± 26b 208 ± 12c 183 ± 13d 5.8 × 10− 10

Urine sodium (mmol/mmol creatinine) 21 ± 2a 23 ± 5a 29 ± 3b 34 ± 2c 1.3 × 10− 5
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Fig. 1  Increases in mean systolic blood pressure (a) and diastolic 
blood pressure (b) from baseline to end point. The figure shows val-
ues as the mean with their standard deviation shown by vertical bars 
for N = 5 rats in the control group, N = 6 rats in the BW-WM group, 
N = 6 rats in the BW-HA group and N = 6 rats in the BW-HP group. 
BW-WM group, BW-HA group, BW-HP group and control group 
were compared using one-way ANOVA. p ANOVA values were 

0.031 and 0.047 for comparisons of systolic and diastolic blood pres-
sure, respectively. Fisher’s LSD was used as post hoc test and differ-
ent letters indicate significant differences between groups; p < 0.05 
was considered significant; BW-WM blue whiting whole meal, BW-
HA blue whiting protein hydrolysate prepared with  Alcalase®, BW-
HP blue whiting protein hydrolysate prepared with  Protamex®, 
ANOVA analysis of variance, LSD least significant difference
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Fig. 2  IC10 values for renin inhibition (a) and IC50 values for ACE 
inhibition (b) by dietary proteins. Data are presented as the amount 
of protein in ug/ml needed to inhibit 10% of renin activity and 50% 
of the ACE activity in a 0.25 U ACE assay, respectively. Data are 
presented as the mean with their standard error of mean shown by 
vertical bars for two different measurements. The dietary proteins 
were compared using one-way ANOVA. Casein was not included in 
the ANOVA analysis for renin inhibition since no measurable renin 

inhibition was detected for casein. Fisher’s LSD was used as post hoc 
test and different letters indicate significant differences between pro-
teins; p < 0.05 was considered significant. Casein was prepared with 
trypsin; BW-WM blue whiting whole meal prepared with trypsin, 
BW-HA blue whiting protein hydrolysate prepared with  Alcalase®, 
BW-HP blue whiting protein hydrolysate prepared with  Protamex®, 
ANOVA analysis of variance, LSD least significant difference

Table 5  Markers of kidney function, organ damage and inflammation (Means and standard deviations)

Data are presented as mean ± standard deviation for N = 5 rats in the control group, N = 6 rats in the BW-WM group, N = 6 rats in the BW-HA 
group and N = 6 rats in the BW-HP group. p values are shown for the comparisons of BW-WM group, BW-HA group, BW-HP group and control 
group using one-way ANOVA and the p values in the table show results from the one-way ANOVA comparisons. Fisher’s LSD was used as post 
hoc test when appropriate, and different letters (a, b, c) indicate significant differences between groups
BW-WM blue whiting whole meal, BW-HA blue whiting protein hydrolysate prepared with  Alcalase®, BW-HP blue whiting protein hydrolysate 
prepared with  Protamex®, WATepi epididymal white adipose tissue, ANOVA analysis of variance, LSD least significant difference
p < 0.05 was considered significant

Control group BW-WM group BW-HA group BW-HP group ANOVA
p

Serum creatinine (µmol/l) 17.4 ± 1.1 17.0 ± 1.3 20.8 ± 4.0 18.0 ± 2.1 0.059
Serum cystatin C (ng/ml) 2266 ± 452 2382 ± 311 2565 ± 334 2451 ± 323 0.57
Serum alanine transaminase (U/l) 93 ± 37 98 ± 52 100 ± 21 86 ± 23 0.50
Serum aspartate transaminase (U/l) 143 ± 52 192 ± 134 198 ± 53 143 ± 47 0.48
Urine creatinine (mmol/l) 4.9 ± 1.0 3.9 ± 1.4 4.4 ± 1.3 4.8 ± 0.8 0.47
Urine total protein (g/mmol creatinine) 3.5 ± 1.7 3.8 ± 1.0 3.2 ± 1.4 3.8 ± 0.7 0.81
Urine cystatin C (µg/mmol creatinine) 1464 ± 891 1515 ± 175 1111 ± 323 1289 ± 298 0.55
Urine carbamide (mmol/mmol creatinine) 342 ± 23a 278 ± 36b 200 ± 15c 254 ± 15b 8.3 × 10− 8

Urine uric acid (µmol/mmol creatinine) 401 ± 41a 360 ± 51ab 293 ± 39b 329 ± 49ab 0.0066
Urine ammonium (µmol/mmol creatinine) 40.0 ± 16.7a 32.3 ± 9.0a 20.4 ± 2.4b 18.5 ± 2.3b 0.0051
Plasma total glutathione (µmol/L) 11 ± 2a 17 ± 6b 14 ± 2ab 14 ± 2ab 0.039
Plasma oxidized glutathione (µmol/L) 6 ± 1a 9 ± 3b 7 ± 1ab 8 ± 2ab 0.049
Plasma reduced glutathione (µmol/L) 5 ± 1 8 ± 3 7 ± 2 6 ± 2 0.33



538 European Journal of Nutrition (2021) 60:529–544

1 3

n‑3 and n‑6 PUFAs in serum, liver and WATepi

The ratio of n-3/n-6 PUFA was higher in serum, liver and 
WATepi in the BW-WM group compared to the control 
group and both blue whiting hydrolysate groups (Supple-
mental Table). Rats fed BW-HA had lower ratio of n-3/n-6 
ratio in serum when compared to the control group, other-
wise no differences were seen in this ratio in serum, liver and 
WATepi for rats fed blue whiting hydrolysate diets compared 
to the control group. Rats fed BW-WM had higher levels of 
20:5n-3 and 22:6n-3 in serum, higher levels of 20:5n-3 and 
22:5n-3 in liver, and higher levels of 20:5n-3, 22:5n-3 and 
22:6n-3 in WATepi. Serum level of 20:4n-6 was highest in 
BW-WM fed rats, but 20:4n-6 levels were not different from 
the other groups in liver and WATepi.

Amino acids in plasma

Plasma concentration of α-aminobutyric acid was lower 
in rats fed BW-WM or BW-HA when compared to control 
group but was similar to the BW-HP group (Supplemen-
tal Table 2). Plasma glutamine concentration was lower in 
the BW-HA and BW-HP groups than in the control group, 
but was similar to the BW-WM group. The BW-WM fed 
rats had lower plasma methionine concentration compared 
to control rats and BW-HA-fed rats, but the concentration 
was similar to that in BW-HP-fed rats. Plasma taurine con-
centration was higher in BW-HA-fed rats compared to the 
control and BW-WM groups and similar to BW-HP-fed rats, 
with no difference between control rats and rats fed BW-WM 
or BW-HP diets. Plasma 3-methylhistidine concentration 
was higher in blue whiting protein-fed rats, in the order 
BW-HA > BW-HP > BW-WM > control groups. Otherwise, 
no differences were observed for plasma concentrations of 
amino acids and related compounds between the experimen-
tal groups.

Amino acids in urine

Urine concentrations (relative to creatinine) of 
γ-aminobutyric acid and phenylalanine were lower in all 
blue whiting protein-fed groups, whereas 4-hydroxyproline 
concentration was higher when compared to the control 
group (Supplemental Table 3). Asparagine concentration 
was lower and glycine concentration was higher in urine in 
the BW-WM group compared to all other groups. Urine orni-
thine concentration was lower in the BW-HA and BW-HP 
groups compared to the control and BW-WM groups, 
whereas threonine concentration was lower in the BW-HA 
and BW-HP groups compared to the control, but was similar 
to that of the BW-WM group. Urine α-aminobutyric acid 
concentration was lower in the BW-HA group when com-
pared to the other groups, and that of β-alanine was higher 

in the BW-HP group compared to BW-WM and BW-HA, 
but with no differences between the control group and blue 
whiting containing diets. The concentrations of 1-methyl-
histidine and 3-methylhistidine in urine were higher in rats 
fed BW-WM, BW-HA and BW-HP diets when compared 
to the control group. Urine 3-methylhistidine concentration 
was markedly higher in rats fed BW-HA and BW-HP diets 
compared to rats in the BW-WM group, whereas concen-
tration of 1-methylhistidine was lower in rats fed BW-HA 
compared to the BW-WM and BW-HP groups. Urine tau-
rine concentration was higher in the BW-HP group com-
pared to BW-WM and BW-HA, but was similar to that of 
the control group. The total amount of free proteinogenic 
amino acids in urine was not different between the groups 
(p ANOVA = 0.20, data not presented).

Discussion

In the present study, we show that diets containing 1/3 of 
total protein as blue whiting protein from either whole meal 
or protein hydrolysates attenuated the development of high 
blood pressure in obese Zucker fa/fa rats, but did not affect 
markers of kidney function, organ damage or inflammation. 
We chose to use obese Zucker fa/fa rats aged 8–9 weeks 
at the start of the intervention, since these rats develop 
an increase in blood pressure already before the age of 
10 weeks [15–17] and spontaneously develop proteinuria 
and renal failure as they get older [18]. The obese Zucker fa/
fa rats is considered to be a valuable experimental model for 
hypertension as it develops an age-related increase in blood 
pressure, as is also seen in humans [41].

The ability of the blue whiting proteins to attenuate the 
development of high blood pressure in obese Zucker fa/fa 
rats in the present study could be caused by the presence of 
bioactive peptides, e.g., peptides with physiological effects 
beyond being suppliers of amino acids, since antihyperten-
sive peptides taken orally has been retrieved in its intact 
form in plasma in both rats and humans [42]. Blue whiting 
protein hydrolysates [23, 24] and Atlantic cod protein [19, 
20, 43, 44] have been shown to inhibit ACE activity in vitro, 
and in addition Atlantic cod proteins are potent inhibitors of 
in vitro renin activity [19, 44]. Renin and ACE affect blood 
pressure by converting angiotensinogen via angiotensin I 
to the active vasoconstrictor angiotensin II in the circula-
tion, and therefore inhibition of renin and/or ACE may lower 
blood pressure through reduced production of angiotensin II. 
All three blue whiting meals inhibited renin activity in vitro, 
whereas casein showed no measurable effect on renin inhibi-
tion. Renin is considered to be the rate-determining enzyme 
for production of angiotensin II [14], thus our findings 
from in vitro renin inhibition is in line with the lower blood 
pressure development in the blue whiting protein-fed rats. 
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Compared to casein, ACE IC50 values of the blue whiting 
proteins were similar (BW-WM and BW-HP) or higher (BW-
HA) and therefore did not correspond to the observed effects 
on blood pressure. Assessments of renin and ACE inhibi-
tory activities of the protein hydrolysates with an in vitro 
assay are not sufficient for concluding whether the effects 
on blood pressure observed in vivo may or may not involve 
the ACE pathway. However, the findings that the stronger 
renin inhibitory in vitro activity of the blue whiting meals 
corresponds to the attenuated blood pressure increase in rats 
fed blue whiting diets are of interest and suggest that  the 
blood pressure regulation may be mediated through the 
renin–angiotensin system.

Proteinuria develops in the obese Zucker fa/fa rat already 
at around age 10 weeks [45] and decreased renal function is 
seen in obese Zucker fa/fa rats at around 12 weeks age [46], 
thus elevated urine concentrations (relative to creatinine) 
of total protein, free proteinogenic amino acids, cystatin C, 
carbamide and uric acid could be expected. Indeed, when 
compared to previous findings in male obese Zucker fa/fa 
rats [20, 25, 40], the urine concentrations of total protein, 
free proteinogenic amino acids, cystatin C, carbamide, uric 
acid and ammonium were abnormally high in all experimen-
tal groups with no difference between control group and blue 
whiting protein-fed groups, thus indicating renal dysfunc-
tion in all groups. Amino acids filtered by the glomeruli 
will normally be reabsorbed by the tubules and are therefore 
not excreted in urine [47], and the presence of proteins and 
amino acids in urine is amongst the earliest sign of almost all 
renal diseases in both humans and animals [48–50]. Serum 
creatinine is a commonly used marker of kidney function, 
since it is produced at a relatively constant rate mainly 
depending on the muscle mass, muscle function, diet and 
health status [51]. However, serum cystatin C [52] and urine 
cystatin C [53, 54] are considered to be better markers than 
serum creatinine for early detection of renal damage, in addi-
tion to the presence of proteins in urine [48]. Here, we found 
no differences between the groups for serum concentrations 
of creatinine and cystatin C. TIM-1 has emerged as a useful 
early indicator of tubular injury as TIM-1 is not detectable 
in normal kidney tissue, but is expressed on the proximal 
tubule apical membrane in response to renal injury [55]. In 
the present study, proteins were found in urine and TIM-1 
was found in kidney homogenate to a similar extent in all 
rats, indicating that renal injury was evident in all groups. 
Since no differences were seen between the groups for serum 
creatinine concentrations, total urine concentration of pro-
teinogenic amino acids, renal concentration of TIM-1 as well 
as concentrations of cystatin C in serum and urine, we con-
clude that dietary blue whiting proteins did not affect kidney 
function in these rats.

Plasma total and oxidized glutathione concentrations 
were higher in the BW-WM group compared to the control 

group, thus suggesting that the endogenous synthesis of the 
powerful antioxidant glutathione is upregulated, possibly to 
counteract and prevent lipid peroxidation in these hyperlipi-
demic rats [56]. Oxidative stress can potentially contribute 
to generation and maintenance of hypertension via inactiva-
tion of nitric oxide, which acts as vasodilator and regulates 
arterial tone [57, 58]. Glutathione plays an important role in 
nitric oxide metabolism by preventing the negative effects 
of nitric oxide scavenging by superoxide, and may thereby 
have an important function in blood pressure regulation [59]. 
Thus, the higher plasma concentration of glutathione in BW-
WM-fed rats may partially explain the lower blood pressure 
increase in these rats when compared to the control group.

High fish intake [5–12] and fish oil supplementation 
[60] are associated with lower blood pressure. In the pre-
sent study, the long-chain n-3 PUFAs 20:5n-3, 22:5n-3 
and 22:6n-3 were found in the BW-WM diet, albeit in low 
amounts (0.11 wt%), but were not detected in the control 
diet or in the blue whiting protein hydrolysate containing 
diets. In line with this, the n-3/n-6 PUFA ratio was higher 
in serum, liver and white adipose tissue from BW-WM fed 
rats compared to both control and the blue whiting protein 
hydrolysate groups. A higher n-3/n-6 PUFA ratio could 
have contributed to the lower blood pressure increase in the 
BW-WM group by reducing the erythrocyte cell membrane 
arachidonic acid content, thereby suppressing the concentra-
tion of the contractile factor thromboxane A2 [61]. In con-
trast, the n-3/n-6 ratio in serum was lower in rats fed BW-HA 
diet compared to the control group, and otherwise no differ-
ences were seen between rats fed blue whiting hydrolysate 
containing diets and control group for n-3/n-6 ratio in serum, 
liver and WATepi. Since the blue whiting hydrolysate diets 
did not contain LC n-3 PUFA but still affected blood pres-
sure development, it is not likely that the lower blood pres-
sure increase in rats fed hydrolysed blue whiting proteins 
is mediated through n-3 PUFA and lower thromboxane A2 
concentration. However, the higher n-3/n-6 PUFA may be a 
component in the delayed development of high blood pres-
sure in rats fed the BW-WM diet.

Dietary factors other than peptides and long chain n-3 
PUFAs, such as arginine, taurine and sodium, may have 
affected the blood pressure development in the present study. 
The higher arginine intake in the blue whiting protein-fed 
groups is of interest since arginine is a conditionally essen-
tial amino acid in rats [62] and serves as substrate for vas-
cular production of the vasodilator nitric oxide [58]. Dietary 
supplementation of arginine has been shown to lower blood 
pressure in humans [63] and curb salt-induced blood pres-
sure increase in salt-sensitive rats [64]. It has been suggested 
that dietary fish proteins attenuate development of hyperten-
sion due to higher arginine content in fish protein compared 
to casein [65]. Citrulline is a substrate for renal arginine syn-
thesis [66], and increased citrulline accompanied by reduced 
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arginine concentration in circulation has been shown in early 
stages of kidney disease [67]. The observation of no differ-
ences between the experimental groups for plasma and urine 
concentrations of citrulline and arginine further strengthens 
the assumption that blue whiting proteins did not affect kid-
ney function in the present study. Still, the higher arginine 
intake may have contributed to the lower blood pressure 
increase in the blue whiting protein-fed groups.

Taurine supplementation has been shown to have antihy-
pertensive properties in both humans and rats [68], and it 
has been shown that dietary taurine lower blood pressure in 
rats without affecting circulating or hepatic concentrations 
of taurine [69]. Taurine was found in all blue whiting protein 
containing diets, with the highest amounts in the hydrolysate 
diets; however, we observed no direct association between 
plasma taurine concentration and blood pressure develop-
ment. The plasma elimination half-life for taurine after oral 
intake is estimated to be < 2 h in both rats and humans [70, 
71], and since our rats were fasted for 12 h before blood 
sampling, the lack of association between dietary taurine 
intake and plasma concentration of taurine can most likely 
be explained by the rapid turnover of taurine. The higher 
dietary intake of taurine in rats fed blue whiting protein diets 
may be among the nutrients contributing to the lower blood 
pressure increase in these groups.

High sodium intake can increase blood pressure, as 
sodium acts as a vasoconstrictor and controls blood vol-
ume by increasing arterial constriction and peripheral vas-
cular resistance [72]. Despite the higher sodium intake in 
blue whiting protein-fed rats when compared to the control 
rats, the blood pressure increase was lower in blue whiting 
protein-fed rats and circulating sodium concentrations were 
similar in all groups. The strong positive correlation between 
dietary sodium intake and urine sodium excretion indicates 
that the kidneys in rats fed blue whiting protein diets coped 
well with the higher sodium dietary load by excreting 
sodium in the urine and maintaining serum sodium concen-
tration within normal range. However, we cannot exclude 
the possibility that the blue whiting proteins might have had 
more pronounced effect on the blood pressure development 
in the rats if the sodium content was lower in the diets, espe-
cially in the BW-HA and BW-HP groups.

Diets containing the blue whiting proteins seem to have 
little effects on the concentrations of proteinogenic amino 
acids in plasma and urine when compared to the control 
diet, whereas concentrations of non-proteinogenic amino 
acids differed to a larger extent between the groups. We 
have recently shown that serum and urine concentrations 
of 1-methylhistidine were increased after 8 weeks with a 
weekly intake of 750 g of Atlantic cod fillet in healthy adults 
with overweight/obesity, whereas serum and urine concen-
trations of 3-methylhistidine were not affected [73]. When 
obese Zucker fa/fa rats were fed diets containing Atlantic 

cod fillet proteins (25% of total protein intake), we found 
higher concentrations of 1-methylhistidine and 3-methylhis-
tidine in both plasma and urine when compared to rats fed 
diets containing milk proteins as the sole protein source [20]. 
In the present study, 3-methylhistidine and β-alanine were 
detected only in diets containing blue whiting protein meals 
after HCl-hydrolysis, with the highest levels in BW-HA and 
BW-HP, whereas 1-methylhystidine was found in compara-
ble amounts in the three blue whiting diets and not in the 
control diet. 1- and 3-methylhistidine are also found in rat 
muscle in anserine (a dipeptide of β-alanine and 1-methyl-
histidine) and carnosine (a dipeptide of β-alanine and his-
tidine), and in skeletal and intestinal muscle proteins [74, 
75]. Although elevated plasma and urine concentration of 
3-MeHis could indicate increased proteolysis, this is valid 
only when the diet is devoid of 3-MeHis. These methylhisti-
dines are not reutilized for protein synthesis or metabolized 
but are excreted in the urine, and in line with the dietary 
contents the urine concentrations of 1- and 3-methylhisti-
dine were higher in rats fed diets containing blue whiting 
protein meal, especially the hydrolysed forms. β-Alanine, 
on the other hand, can be metabolized to  CO2, malonyl-CoA 
or acetyl-CoA, thus explaining the smaller differences in 
urine β-alanine concentrations between the dietary groups 
when compared to the concentrations of the methylhisti-
dines. Thus, the higher urine and plasma concentrations of 
3-methylhistidine in rats fed diets containing blue whiting 
proteins are most likely reflections of the dietary intake and 
not of muscle protein catabolism.

4-Hydroxyproline was found only in diets containing blue 
whiting proteins, and rats fed these diets had higher urine 
4-hydroxyproline concentration compared to the control 
group. 4-Hydroxyproline is excreted mainly by the lungs 
(about 75%) as  CO2 and by the kidneys (25%) primarily as 
proline–hydroxyproline and glycine–proline–hydroxyproline 
due to low peptidase activity [76]. Thus, the higher urine 
4-hydroxyproline in blue whiting protein-fed rats probably 
does not indicate a larger degradation of collagen in connec-
tive tissue in these rats, but is most likely a reflection of the 
4-hydroxyproline intake.

The present study has some methodological strengths 
and limitations. Dietary sodium content was higher in 
all blue whiting protein diets compared to control, and 
although rats seemed to efficiently excrete excess sodium 
in urine, it is possible that the effects on blood pressure 
in the blue whiting protein-fed groups would have been 
more prominent if dietary sodium intake was lower. Blood 
pressure was measured using the tail-cuff method (volume-
pressure recording) at baseline and near end point of the 
intervention period. The tail-cuff method is a non-invasive 
and inexpensive method that does not require surgery, and 
was chosen instead of continuous intravascular blood pres-
sure measured by telemetry, since comparison of these 
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methods shows similar results over the physiological range 
of blood pressure in mice [77]. In future studies, we should 
consider extending the experiment until the rats reach a 
higher blood pressure, since we have observed in our labo-
ratory that rats from the same breeder as used in the pre-
sent study reached a blood pressure that was 15–20 mmHg 
higher than at end point in the present study. Also, blood 
pressure should be measured weekly to better monitor 
blood pressure development. A strength of the present 
study is that we used obese Zucker fa/fa rat, which is a val-
uable experimental model for hypertension as it develops 
an age-related increase in blood pressure, as is also seen 
in humans [41]. This study was designed to investigate the 
effects of intact and hydrolysed blue whiting meals in diets 
with 1/3 of protein from blue whiting meal on the develop-
ment of high blood pressure using an experimental design 
that is relevant to human nutrition. To reduce the number 
of animals, and in line with the 3Rs, we did not include 
lean Zucker rats since they do not experience an increase 
in blood pressure as they age, at least not in the age span 
relevant to the present study. Assessments of renin and 
ACE inhibitory activities of the protein hydrolysates with 
an in vitro assay are not sufficient for concluding whether 
the lower blood pressure increase observed in vivo medi-
ated through the ACE pathway, and in vivo analyses of 
ACE activity and renin activity should be implemented 
in future studies with similar design. The high sodium 
content in the fish protein hydrolysates may have affected 
the outcome of the study, and it is possible that the effects 
on blood pressure could have been even more prominent 
if sodium in the fish meals had been removed. Future stud-
ies with fish protein hydrolysates should aspire to remove 
excess sodium and at the same time retain short peptides 
and free amino acids, e.g., by using a reverse osmosis fil-
ter. The present study is small, but will constitute a base 
for sample size calculations for future studies with similar 
designs.

To conclude, the findings in this study demonstrate that 
proteins from blue whiting may attenuate the development 
of high blood pressure in obese Zucker fa/fa rats, and the 
effect was similar for intact and enzymatically hydrolysed 
blue whiting proteins. Our in vitro studies suggest that the 
effects of blue whiting protein on blood pressure devel-
opment may be mediated through the renin–angiotensin 
system, by inhibition of renin activity but not through inhi-
bition of ACE. The blue whiting proteins did not affect 
markers of kidney function when compared to the control 
group, and all groups showed signs of poor renal func-
tion with elevated urine concentrations of proteins and 
cystatin C. The findings in the present study suggest that 
blue whiting proteins may have a potential as functional 
food ingredients in the dietary prevention of high blood 
pressure in obesity.
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