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Conclusions The results confirm the efficacy of specific 
additions to flatbread flour mixes for reducing PPG and the 
value of the in vitro model as a predictive tool with these 
ingredients and product format.
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Abbreviations
CPF  Chickpea flour
Cmax  Maximum observed glucose response
GG  Guar gum
GI  Glycaemic index
GL  Glycaemic load
HFF  High-fibre flour
KM  Konjac mannan
PPG  Post-prandial plasma glucose
+iAUC  Positive incremental area under the curve
RDS  Rapidly digestible starch
RS  Resistant starch
SDS  Slowly digestible starch
tAUC  Total area under the curve
Tmax  Time at which the Cmax is reached
T2DM  Type 2 diabetes mellitus

Introduction

The global incidence of type 2 diabetes mellitus (T2DM) 
is increasing at an alarming rate. Developing countries 
such as India have high and rapidly increasing prevalence 
of both pre-diabetes and diabetes [1], and consequently, 
there is considerable public health and consumer interest in 

Abstract 
Purpose Type 2 diabetes (T2DM) is increasing, particu-
larly in South-East Asia. Intake of high-glycaemic foods 
has been positively associated with T2DM, and feasible 
routes to reduce the glycaemic response to carbohydrate-
rich staple foods are needed. The research question was 
whether different fibre and legume flour mixes in flatbreads 
lower postprandial glucose (PPG) responses.
Methods Using a balanced incomplete block design, we 
tested the inclusion of guar gum (GG), konjac mannan 
(KM) and chickpea flour (CPF) in 10 combinations (2/4/6 g 
GG; 2/4 g KM; 15 g CPF, and 10 or 15 g CPF plus 2 or 
4 g GG) in 100 g total of a control commercial high-fibre 
flatbread flour mix (“atta”) on PPG in 38 normal-weight 
adults. Self-reported appetite was an additional exploratory 
outcome. An in vitro digestion assay was adapted for flat-
breads and assessed for prediction of in vivo PPG.
Results Flatbreads with 6 g GG, 4 g KM, and 15 g CPF 
plus 2 or 4 g GG reduced PPG ≥30 % (p < 0.01), while 
no other combinations differed significantly from the 
control. A statistical model with four in vitro parameters 
(rate of digestion, %RDS, AUC, carbohydrate level) was 
highly predictive of PPG results (adjusted R2 = 0.89). Test 
products were similar to the control for appetite-related 
measures.
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taking steps to reduce the risk of these conditions develop-
ing and progressing. In the early state of T2DM (pre-dia-
betes), the condition is reversible [2]. Evidence suggests 
that one of the earliest events in the aetiology of T2DM is 
dysregulated postprandial blood glucose (PPG) [3]. Tar-
geted reductions in PPG in (pre-)diabetic populations, 
using the α-glucosidase and α-amylase inhibitor acarbose, 
have been shown to result in significant reduction in PPG 
and improved long-term glycaemic control [4, 5], as well 
as significantly reducing the progression of pre-diabetes to 
T2DM and cardiovascular events [6]. The benefit of PPG 
lowering in the prevention of (pre-)diabetes [7] is endorsed 
by key professional bodies [8, 9].

Carbohydrate-rich staple foods are interesting candi-
dates for reducing PPG exposure, because their frequent 
and consistent use makes them an important contributor to 
daily glycaemic load [10]. The two most common staples 
in Southeast Asia are wheat-based flatbreads and rice [11]. 
Flatbreads are typically prepared at home from a com-
mercially-made whole-wheat flour mix (“atta”). Commer-
cially-viable, efficacious routes to reduce the PPG response 
to flatbreads are therefore of interest.

Soluble viscous fibres are known to lower PPG, mainly 
by reducing the rates of gastric emptying and glucose 
absorption in the intestine [12]. In addition, legume flours, 
such as chickpea flour (CPF), are known to give a flatter 
blood glucose response than wheat flours [13]. Previous 
research has shown that soluble viscous fibres (viz., beta-
glucan, psyllium and fenugreek) with or without legume 
flour can lower the PPG of flatbreads [14–16]. While there 
are no human studies on the combination of guar gum 
(GG) and CPF, a study in rats showed that a combination 
of 5 % CPF and 1 % GG gave a reduction in fasting blood 
glucose superior to 2 or 3 % GG alone [17]. As the addition 
of high levels of viscous fibres may have adverse effects on 
flatbread mix cost and sensory attributes, routes to achieve 
efficacy at lower fibre additions are of interest. However, to 
date there is no clinical study which systematically tested 
the potential for different soluble fibres with or without leg-
ume flour to lower the PPG response to flatbreads. A fur-
ther question is whether GG could partly be replaced by 
CPF in flatbreads to achieve reductions in PPG similar to a 
higher GG level alone. This research was therefore under-
taken as a first step in a programme to find efficacious, but 
also affordable and acceptable routes to lower the PPG 
response to commercial flatbread mixes.

From the existing literature, additions of konjac man-
nan (KM) and of GG alone or combined with CPF were 
prioritized for potential feasibility and efficacy in clini-
cal testing [17–21]. The primary objective of this study 
was to identify one or more flour compositions that gave 
a significant difference in the positive incremental area 
under the 2-h curve (+iAUC2hr) for plasma glucose after 

consumption of the test relative to the control product. 
Exploratory objectives were to estimate the maximum 
observed glucose response (Cmax), the time at which the 
Cmax was reached (Tmax) and the mean plasma glucose 
level at 3 h. As soluble viscous fibres and CPFs are also 
claimed to increase satiety [22, 23], an additional explora-
tory objective was to assess possible effects on appetite-
related parameters. Finally, an in vitro digestibility assay 
specifically adapted for flatbreads was developed to assess 
how well this predicted the observed in vivo results in this 
product format.

Methods

Test product and preparation

The research was based on 12 test products containing 
100 g flour per serving. An existing commercial fibre-
enriched (high-fibre flour, HFF) commercial mix (market 
standard atta, Hindustan Unilever Ltd., India) containing 
whole wheat flour with 5 g bran per 100 g was used as 
the control. The 11 products tested against this included a 
“market standard” product (no added fibres) and 10 experi-
mental products based on the HFF control with the inclu-
sion of 10 or 15 g CPF, 2 or 4 g KM, 2, 4 or 6 g GG per 
100 g flour in combinations shown in Table 1. The viscos-
ity of the GG and KM was tested and verified, and these 
data are also reported in Table 1. All flour mixes were for-
mulated by the research sponsor (Unilever R&D, Vlaardin-
gen, The Netherlands). For clinical testing, flatbreads were 
prepared fresh at the test site. For each single test serving, 
100 g flour was kneaded to a soft and uniform consist-
ency with the addition of ~73 ml water and allowed to rest 
for 30 min and then divided into 3 equal balls and rolled 
to 2–3 mm thickness. More water was added as needed 
to achieve the desired texture when fibres or legume flour 
were incorporated (see Table 1). Flatbreads were subse-
quently baked and kept warm until consumption within 
30 min of cooking or used for in vitro analysis.

Human study

Participants

Seventy-three apparently healthy volunteers were recruited 
for screening from an existing database of potential partici-
pants in the local area of Leatherhead Food International 
(Leatherhead, UK), where the study was conducted. For 
the detailed selection criteria, see Supplemental Table 1 
(Online Resource). The study was conducted according to 
the principles of Good Clinical Practice, the Declaration of 
Helsinki (2008) and applicable local laws and regulations 
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concerning studies conducted on human subjects, not test-
ing a medical product or device. Ethical approval for the 
study was obtained from the East Kent Local Research 
Committee. Each participant provided written informed 
consent prior to his/her inclusion in the study.

Experimental design This study used a double-blind, rand-
omized, balanced-order incomplete block design. Randomi-
zation to treatment orders was executed using a computer 
with a random number generator by a second statistician, 
who was not involved in the study. All persons involved in 
the study were blinded. All subjects received the control 
(HFF) and 4 out of the 11 other test products. For this study 
design, a power calculation indicated that a minimum of 14 
subjects per test product would be required to test for the 
significance of a 30 % reduction in +iAUC2hr (the area of 
the PPG response lying above the baseline concentration) 
vs the control product, assuming a standard deviation of 
32.7 mmol/l.min (based on previous studies at the test site), 
at α = 0.20 and β = 0.80. With this design and 42 subjects in 
the study, all of the test products would be tested on at least 
15 participants (8 products tested by 15 subjects, 3 products 
tested by 16 subjects and all subjects getting the control).

Subjects attended the initial screening day followed by 
5 test days, at least 1 week apart. They were instructed to 
minimize changes in their diet and activity during the test 
period. On the day prior to each test day, each subject was 
instructed to refrain from physical activity and alcohol 
consumption and to consume their same evening meal. All 

participants fasted overnight (from 20.00 h until consump-
tion of the test product), but were allowed to drink water 
ad libitum. At time = 0 min on each test day, subjects 
consumed three freshly made flatbreads (100 g flour total) 
with 250 ml water as breakfast and completed this within 
a 15-min period at every visit at the same time and day of 
the week. They were allowed to drink up to 150 ml water 
every subsequent hour, to be consumed after finger pricks 
and self-reported appetite ratings. The volume of water 
consumed was registered.

Blood collection and glucose measurements Capillary 
blood was collected by finger prick into lithium heparin and 
sodium fluoride tubes for plasma glucose analysis. Three 
basal samples were collected at −15 min and then at 15, 
30, 45, 60, 90, 120 and 180 min after the test meals. All 
samples were centrifuged (3000 rpm for 10 min at 4 °C) 
prior to immediate analysis or storage at −20 °C. Plasma 
glucose concentrations were measured on a YSI 2300 STAT 
Plus™ Glucose and Lactate Analyzer (YSI Life Sciences).

Measurement of appetite Self-ratings of appetite feelings 
(“how hungry are you”, “how full are you” and “how strong 
is your desire to eat a meal”) were made at baseline (pre-
consumption) and 15, 30, 60 and 120 min post-prandially. 
These were scored by means of a mark on a 60-mm Elec-
tronic Visual Analogue Scale (EVAS) [24] on a pocket PC 
(iPAQ), anchored at the low and high end with “not at all” 
and “extremely” [25].

Table 1  Composition of test flatbreads: available carbohydrates, dietary fibre and water

a HFF high-fibre flour (control), CPF chickpea flour, GG guar gum, KM konjac mannan
b Chickpea flour (Avent Agro Pvt. Ltd., Delhi, India)
c Guar gum (Ace Gum Industries PVT. LTD, Mumbai, India); viscosity cold 1 % in water, measured by a Brookfield RVF viscometer 20-RPM 
Spindle no. 4, at 30 min: 4500 mpa.s, at 2 h 5400 CPS and 24 h: 5500 mpa.s
d Konjac mannan (Hubei Konson Konjac Gum Co., LTD., Wuhan Hubei, China); viscosity 25 °C, 1 %, mix round half an hour, measured by 
model NDJ-1 viscometer, spindle 4#, 12-RPM. Test after an hour dissolved; >22,000 mpa.s)

Flatbreads Compositiona Total available carbs (g) Total dietary fibre (g) (AOAC 2009.01) Water (% weight)

HFF (control) 100 g high-fibre flour (HFF) 61 11 34.5

1 81 g HFF + 15 g CPFb + 4 g GGc 55 16 37.1

2 83 g HFF + 15 g CPF + 2 g GG 56 14 34.6

3 85 g HFF + 15 g CPF 57 13 30.6

4 86 g HFF + 10 g CPF + 4 g GG 56 15 36.8

5 88 g HFF + 10 g CPF + 2 g GG 57 14 34.5

6 94 g HFF + 6 g GG 57 16 39.7

7 96 g HFF + 4 g GG 59 14 37.2

8 98 g HFF + 2 g GG 60 13 36.8

9 96 g HFF + 4 g KMd 59 14 39.2

10 98 g HFF + 2 g KM 60 13 37.9

11 Market standard atta 64 8 33.6
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In vitro determination of starch digestibility

Starch digestibility in vitro was assessed by an adaptation 
of the Englyst method [26, 27] which has been demon-
strated to show good correlation between PPG responses 
and in vitro starch digestibility in terms of rapidly digest-
ible starch (RDS), slowly digestible starch (SDS) and 
resistant starch (RS) for a wide range of products [28]. 
The method was modified with the methods described by 
Sopade [29] and Van Kempen [30] to provide a glucose 
release profile describing how much glucose is released 
per unit of time. Briefly, sliced pieces of chapatti (500 mg) 
were mixed for 30 s with an α-amylase solution (1 ml, 300 
U Sigma 10080) to simulate starch digestion in the mouth. 
Gastric digestion was simulated by 30-min incubation at 
37 °C in pepsin solution (5 ml, 16 kU Sigma P77160 in 
0.05 M HCl). After neutralization with NaOH, intesti-
nal digestion was simulated by 4-h incubation at 37 °C in 
pancreatic solution (30 ml, 56 mg Sigma P1625 + 100 U 
Sigma A7095 + 1 kU invertase in 0.2 M acetate buffer pH 
6.0). Aliquots (200 µL) from this phase were collected into 
ethanol at 0, 20, 60, 120, 180 and 240 min, to stop further 
enzyme activity, and analysed for glucose (Sigma Glucose 
assay kit GAGO20). The average (n = 2) glucose data were 
fitted with the Chapman–Richards model to give the rate of 
digestion (k) and the AUC120 using the trapezoidal model 
(See Online Resource for further explanation).

Statistical methods The primary outcome variable was 
plasma glucose +iAUC2hr. This was calculated using the 
trapezoidal rule, and linear interpolation was used to estab-
lish the time of crossing between time points where the PPG 
crossed the baseline value. Statistical comparisons were 
only made between the control and other test products using 
a mixed model analysis of variance, with subject as a ran-
dom effect and product as a fixed effect. Baseline (fasting 
score) for each product was included as a covariate, as was 
the average baseline per subject over all products, the lat-
ter to avoid bias in the product estimates due to the mixed 
model. Gender, body weight and the order of product test-
ing were all included as covariates. Dunnett’s test was used 
to adjust for the multiple comparisons using an overall sig-
nificance level of 0.20. All analyses were performed with 
SAS version 9.2 (SAS Institute, Cary, NC, USA). Explora-
tory variables included the maximum postmeal plasma 
glucose concentration (Cmax), time when this was reached 
(Tmax), mean plasma glucose at 3 h and self-reported scores 
on the 3 appetite-related measures. The AUC for appetite 
ratings scales was calculated using the trapezoidal rule 
and expressed as the original scale units by dividing by the 
length of time measured. There were no pre-planned statis-
tical analyses of exploratory measures, and therefore, only 

descriptive statistics are presented for these. The relation-
ship between in vitro and in vivo measures was analysed 
with a regression model. Initial correlations and scatter plots 
for each of these variables with +iAUC showed that a linear 
model was unlikely to provide good prediction, so a quad-
ratic model was used.

Results

Subject baseline characteristics

From the initial 73 subjects screened for the study, 27 were 
excluded and 38 subjects completed the study (see Fig. 1), 
leaving it slightly below the planned power for most test 
products (9–14 subjects per product). The baseline char-
acteristics of participants are shown in Table 2 (and sepa-
rately by gender in the Online Resource information sup-
plemental Table 2).

Postprandial plasma glucose concentrations

Fasting plasma glucose values were similar within test 
product groups and also within subjects on different test 
days (data not shown). The observed PPG response pat-
terns for addition of GG, KM and CPF or combinations of 
CPF + GG are shown in Fig. 2a–d. Data for per cent differ-
ences in plasma glucose +iAUC2hr vs control are shown in 
Fig. 3, and the absolute values are given in Table 3. Post-
prandial plasma glucose +iAUC2hr was statistically sig-
nificantly reduced from the control HFF in 4 test products: 
15 g CPF + 4 g GG, 15 g CPF + 2 g GG, 6 g GG and 
4 g KM (Table 3; Fig. 2). The data show a general dose–
response reduction in +iAUC2hr with 2 and 4 g KM and 
2, 4 and 6 g GG relative to control, with the addition of 
10 g CPF to 2 and 4 g GG having little further effect. While 
addition of 15 g CPF alone led to a non-significant increase 
in PPG and the use of 2 g GG and 4 g GG non-significantly 
decreased PPG, the combination of 15 g CPF and 2 or 4 g 
GG led to marked and significant reductions in glucose 
+iAUC2h, exceeding a 30 % reduction (Fig. 3).  

Exploratory outcomes

Cmax, Tmax and 3-h plasma glucose data are shown in 
Table 3. Cmax data were largely consistent with the +iAUC 
data, while Tmax was in general little different from the 
control. Mean plasma glucose at 3 h for most treatments 
was mildly raised relative to the control. Appetite data 
were similar for all test products and suggest no consistent 
effects relative to the control (See Supplemental Fig. 2a–c 
(Online Resource)).
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Adverse events

There were 5 adverse events that possibly could be consid-
ered related to the study procedures: 2 times nausea with 
vomiting, 2 times nausea alone and once with flatulence. 
Nausea occurred only in conjunction with GG. The partici-
pants reporting adverse events were excluded from the sta-
tistical analysis.

In vitro measures of starch digestibility

The separate measures alone from the in vitro assay, such 
as RDS, SDS, RS, k and AUC, individually had inconsist-
ent relationships with the dose and types of added fibres 
and likely to be poor predictors for the in vivo +iAUC. 
A model based on just the Englyst [26, 27] parameters 
(RDS and RS) also had a poor predictive value (see Online 
Resource). In contrast, a statistical model comprised of the 
in vitro parameters k (for rate of digestion), %RDS, AUC 

in vitro (=AUC for 120 min) and CHO (=carbohydrate 
level) was highly predictive of the observed clinical PPG 
results (R2 = 0.97 and adjusted R2 = 0.89) (see Fig. 4). The 
resulting model was:

where k = rate of digestion from Chapman–Richards 
model; AUC in vitro = AUC for 120 min; CHO = carbo-
hydrates content of flour mix; RDS = rapidly digestible 
starch [see Supplemental Table 5 (Online Resource)].

Discussion

This research demonstrates that several flatbread flour mix 
(atta) formulations incorporating GG, KM and CPF sig-
nificantly lower PPG levels relative to a commercial prod-
uct with added bran fibre. These findings build on previous 
reports demonstrating that incorporation of viscous die-
tary fibres and/or legume flours into other staple flatbread 
foods from India (chapatti, naan, rotis) can lower the PPG 
response after a meal [14–16]. A novel result is the demon-
strated efficacy of KM in this format and the combination 
of CPF with low levels of GG in human subjects, as effi-
cacy of this combination previously had been shown only in 
animals [17]. This suggests the potential for affordable, effi-
cacious formulations with lower levels of GG, which may 
mitigate its adverse sensory impact.

+iAUC = 31, 417+ 334.6 ∗ CHO− 9729 ∗ k

− 4.739 ∗ AUC_in vitro− 32.03 ∗ RDS

+ 18.38 ∗ CHO ∗ k ∗ 1.183 ∗ k ∗ AUC_in vitro

−3.542 ∗ CHO
2
−132.2 ∗ k2

Fig. 1  Flow diagram of partici-
pants throughout the study

Table 2  Subject baseline demographic characteristics, mean ± standard  
deviation

Subject baseline demographic 
characteristics (mean ± SD)

Age (year) 37 ± 9

Gender (male/female) 3/35

Height (m) 1.67 ± 0.06

Body weight (kg) 64.1 ± 8.7

BMI (kg/m2) 22.8 ± 1.6

Fasting plasma glucose (mmol/l) 5.1 ± 0.4
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We chose to measure the area under the curve and par-
ticularly the +iAUC, because this has frequently been used 
in human intervention studies (e.g. testing variation in gly-
caemic index (GI)) [31]. In addition, the +iAUC describes 
the glycaemic response to foods more accurately [32] than 
the total AUC. The Cmax data are also largely consistent 
with the +iAUC, which is to be expected, and a reduced 
Cmax is also seen as clinically beneficial [33]. The Cmax 
data further suggest that the lowering of the iAUC is not so 
much due to a higher insulin response [34], but more likely 

due to other processes, e.g. rate of uptake. In contrast, Tmax 
data are similar amongst treatments. The plasma glucose 
level at three hours (see Table 3) was mildly increased for 
the flatbreads containing viscous fibres compared to the 
control, which may reflect a slower digestion of starch and 
thus continued absorption of glucose from the intestine, as 
well as a lower insulin response and thus slower return of 
glucose to fasting levels. Although that effect is small, it 
would contribute to reduced glycaemic variability, which is 
seen as a risk factor for diabetes [3].
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Fig. 2  Effect of flatbreads consumption with different amounts 
of viscous fibres and legume flour on postprandial glucose 
(mean ± SEM) (HFF high-fibre flatbread control). a Effect of flat-
bread consumption with different amounts of guar gum on post-
prandial plasma glucose (mean ± SEM) (HFF high-fibre flatbread 
control). b Effect of flatbread consumption with different amounts 
of chickpea flour (15 g) without or with guar gum on postprandial 

plasma glucose (mean ± SEM) (HFF high-fibre flatbread control). 
c Effect of flatbread consumption with different amounts of konjac 
mannan on postprandial plasma glucose (mean ± SEM) (HFF high-
fibre flatbread control). d Effect of flatbread consumption with chick-
pea flour (10 g) and different amounts of guar gum on postprandial 
plasma glucose (mean ± SEM) (HFF high-fibre flatbread control)
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Although a general dose–response effect for the addition 
of 2, 4 and 6 g of GG alone was observed in this study, the 
effect of 6 g GG was much larger and statistically signifi-
cant compared to the control product. Other studies have 

shown the efficacy of GG for lowering PPG [19, 20, 35, 
36]; however, a general threshold and dose–response level 
cannot be determined from those studies, partly because 
different sources of GG (e.g. different molecular weights 
and chain lengths) were used and in different food formats. 
There are, however, a number of studies testing GG incor-
porated into bread, and these gave results broadly similar 
to the GG outcomes here. Wolever et al. [36] showed that 
5 g GG in bread (10 % of the carbohydrate component) 
lowered the +iAUC by 42 %, while Gatenby et al. [35] 
observed that 7.6 g GG with different molecular weights 
reduced the +iAUC by 23–27 %. Those results were also 
reflected in data from Wolf et al. [20], who showed that 5 g 
GG in a drink (containing 25 g maltodextrin), consumed 
together with bread, lowered the +iAUC by 24 %. Lastly, 
addition of medium-weight GG (3.8 g, 9 g and 14.8 g) to 
breads containing high-amylose whole grain corn flour pro-
duced a dose-related reduction in glycaemic response [19].

The potential mechanisms of action of viscous soluble 
fibres such as GG and KM on PPG can be very diverse, 
ranging from reducing the rate of gastric emptying to 
reducing starch digestion and absorption in the intestine 
resulting in a lower PPG and insulin response [12]. The 
viscosity generated by plant gums is a function of the con-
centration of the dissolved gum and its molecular weight 
(MW) [37]. In this study, we used native GG, but commer-
cially this can be hydrolysed into GG with lower MWs and 
correspondingly lower viscosity in the mouth as well as 
gastrointestinal tract, often resulting in a decreased effect 

Fig. 3  Percentage change 
(mean ± SEM) in PPG 
(+iAUC2hr) of flatbreads with 
different amounts of viscous 
fibres and/or legume flour and 
p value for change relative to 
the control flatbread without 
additions of viscous fibres or 
legume flour

Fig. 4  Observed in vivo response (+iAUC) for postprandial plasma 
glucose response versus the value predicted based on in vitro data 
(statistical model as described in text and Online Resource). HFF 
high-fibre flour (control), CPF chickpea flour, GG guar gum and KM 
konjac mannan
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on PPG [34, 35, 38, 39]. There are also indications that 
some viscous fibres (e.g. GG) can directly inhibit digestive 
enzymes [40]. On the product level, viscous fibres can also 
alter the rheological and/or microstructural properties of 
the food, resulting in reduced ability of the starch to gelati-
nize during cooking [41]. Viscous fibres are believed to 
compete with starch for water in food formats resulting in 
decreased gelatinization [42]. In addition, GG galactoman-
nans may form a “barrier” around starch granules, making 
them resistant to enzymatic hydrolysis [43].

KM, another viscous fibre, was also introduced into this 
study to test the influence of viscosity on PPG. Chearskul 
et al. [44] evaluated the effect of 1 g KM in a capsule given 
30 min before an oral glucose tolerance test in 20 diabetic 
subjects. At 60 min, the blood glucose concentration with 
KM was 7 % higher than in the control group, while at 120 
min there was no difference between the two groups. The 
lack of any apparent beneficial effect in that study can pos-
sibly be explained by the matrix. The capsules, although 
taken with water, may not fully develop their viscosity 
under gastrointestinal conditions due to the time required 
for the fibre to fully hydrate. Doi [18] showed that 3.9 g 
KM mixed into soup decreased the rise in blood glucose at 
30 min after consumption by about 30 % versus the control.

In our study, the addition of 4 g KM had nearly the same 
effect as 6 g GG, and this can likely be attributed to the 
higher viscosity of KM compared to GG (see footnotes to 
Table 1). KM is a glucomannan, while GG is a galactoman-
nan. Compared with other native dietary fibres at similar 
concentrations, glucomannan has the highest viscosity and 
MW, ranging from 200 to 2000 kDa, depending upon the 
origin, method of processing and storage time [45]. Oth-
ers have reported a highly significant inverse relationship 
between the peak blood glucose response and the log vis-
cosity of drinks differing in the amounts of viscous fibre 
[46]. In the present study, only the highest level of 4 g KM 
had a substantial and statistically significant effect and not 
the 2 g addition, which was comparable in viscosity to the 
4 g guar gum. A possible explanation is that the KM may 
not have been fully viscosified under gastrointestinal condi-
tions, due to the lower solubility of KM in the solid food 
matrix.

In addition to increasing viscosity, replacement of wheat 
flour by legume flour could also have a beneficial effect on 
PPG. There is some evidence that CPF can lower the PPG 
due to its higher content of resistant starch [47] and high 
concentration of slowly digestible starch [48]. Zafar et al. 
[21] found that supplementation of whole wheat bread with 
35 % (but not 25 %) CPF significantly reduced the glycae-
mic response. This result was also corroborated by Johnson 
et al. [49] in white bread. In contrast to the fact that 15 g 
CPF in combination with 2 and 4 g of GG markedly and 
significantly reduced PPG, we found that the inclusion of 

15 g CPF alone in the flatbreads (though not significantly) 
increased PPG. The reason for the latter could be that fine 
grinding of legumes (as is the case for CPF) disrupts the 
cell structure and renders starch more readily accessible for 
digestion [50].

We found little apparent effect of the tested additions on 
self-reported appetite ratings. Other research suggests that 
changes in blood glucose per se may have limited effects 
on appetite [51, 52]. Clark and Slavin [53] furthermore 
described in a systematic review that most fibres do not 
reduce appetite in acute study designs. Nevertheless, there 
are a number of reports of enhanced satiety effects asso-
ciated with the addition of legumes or specific fibres to 
foods and beverages [22, 23]. A systematic review of rand-
omized controlled trials showed that GG (mean fibre dose: 
10.7 g) led to significantly reduced appetite ratings in half 
of the observed comparisons in the literature [23]. Studies 
with preloads of KM before a meal did not produce sig-
nificant effects on hunger, fullness or appetite scores [54, 
55]. Addition of 25 or 35 % CPF to whole wheat bread also 
did not decrease appetite scores [21]. While a recent meta-
analysis of acute feeding trials reported that dietary pulses 
(beans, peas, chickpeas and lentils) produced on average a 
31 % greater satiety iAUC [22], the doses used varied sub-
stantially, ranging from 7.6 to 311 g (median, 160 g).

While this study used Caucasian subjects, the results 
are likely to also be applicable (and even more relevant) to 
other populations, such as those in Asia. Asian populations 
in general have a higher PPG response than Caucasians 
[56], and lowering GI is more relevant for people with poor 
metabolic control [57].

The in vitro digestibility method used here showed a 
very high correlation with in vivo PPG results. Several 
other studies have found a good correlation between the 
in vitro digestion of breads and the in vivo glycaemic 
response [16, 58–60]. Our method is based on that of Eng-
lyst [26, 27], but modified to reflect more realistic physi-
ological conditions. The modification by Sopade [29] was 
introduced to simulate oral digestion by mixing the food 
with pancreatic alpha-amylase for 30 s. Another possible 
improvement in the Englyst method is the optimization 
of the intestinal pH and its amount for optimal function-
ing of the enzymes (see Online Resource). A final modi-
fication of the Englyst method was the extension of the 
number of data points to determine the rate of digestion 
of slowly digestible starches. By doing this, the in vitro 
starch digestibility curve provides more information than 
would be possible from using data only at 20 and 120 min. 
Single individual parameters measured or derived from 
in vitro digestion showed rather inconsistent relationships 
to the dose and types of added fibres or CPF. However, 
in vitro glucose release from starch could be modelled 
effectively with a modification of the Chapman–Richards 
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model (see Online Resource) described by van Van Kem-
pen [30]. With this model, the rate of starch digestibility 
(k) can be estimated, and together with %RDS, AUC 120 
and the carbohydrate level in a regression model there 
was a very high correlation with in vivo plasma glucose 
responses.

There are some limitations of the study that may affect 
direct extrapolation to other situations. The study popula-
tion has a very high proportion of women. However, we 
did not have any a priori selection criteria or hypotheses 
relating to gender, and previous research suggests gender 
is not a significant contributor to between-food variation 
in glycemic responses [61]. For some treatments, the study 
was underpowered due to unequal numbers of dropouts 
across treatment sequences. In addition, specific sources 
of GG and KM have been used and other types of GG or 
KM could possibly influence the glycaemic response dif-
ferently. One of the strengths of the study is that it is well 
controlled as the incomplete block design allows for all the 
comparisons to be executed within one study period and 
population.

Taken together, these data demonstrate that flatbread 
flour mixes supplemented with specific combinations 
of GG and CPF or higher concentrations of GG of KM 
alone can produce marked, significant reductions in PPGs 
(i.e. ≥30 % reduction in +iAUC) in healthy adults. The 
results also show that a model using a range of in vitro 
measured parameters may be a useful predictive tool for 
in vivo PPG responses to these ingredients in this product 
format.
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