Skip to main content
Log in

Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To investigate whether the ingestion of olive oil having different phenolic contents influences the expression of blood pressure-related genes, involved in the renin–angiotensin–aldosterone system, in healthy humans.

Methods

A randomized, double-blind, crossover human trial with 18 healthy subjects, who ingested 25 mL/day of olive oils (1) high (366 mg/kg, HPC) and (2) low (2.7 mg/kg, LPC) in phenolic compounds for 3 weeks, preceded by 2-week washout periods. Determination of selected blood pressure-related gene expression in peripheral blood mononuclear cells (PBMNC) by qPCR, blood pressure and systemic biomarkers.

Results

HPC decreased systolic blood pressure compared to pre-intervention values and to LPC, and maintained diastolic blood pressure values compared to LPC. HPC decreased ACE and NR1H2 gene expressions compared with pre-intervention values, and IL8RA gene expression compared with LPC.

Conclusions

The introduction to the diet of an extra-virgin olive oil rich in phenolic compounds modulates the expression of some of the genes related to the renin–angiotensin–aldosterone system. These changes could underlie the decrease in systolic blood pressure observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

CVD:

Cardiovascular diseases

HPC:

Extra-virgin olive oil high in phenolic compounds

LPC:

Olive oil low in phenolic compounds

OO:

Olive oil

PBMNC:

Peripheral blood mononuclear cells

PC:

Phenolic compounds

RAAS:

Renin–angiotensin–aldosterone system

References

  1. World Health Organization (WHO) (2013) A global brief on hypertension. Silent killer, global public health crisis. World Health Day 2013. Report, 1–39. World Health Organization, Geneva, Switzerland

  2. Hottenga JJ, Boomsma DI, Kupper N, Posthuma D, Snieder H, Willemsen G, de Geus EJ (2005) Heritability and stability of resting blood pressure. Twin Res Hum Genet 8(5):499–508

    Article  Google Scholar 

  3. Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ (2005) Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 45(1):80–85

    Article  CAS  Google Scholar 

  4. Psaltopoulou T, Naska A, Orfanos P, Trichopoulos D, Mountokalakis T, Trichopoulou A (2004) Olive oil, the Mediterranean diet, and arterial blood pressure: the Greek European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am J Clin Nutr 80(4):1012–1018

    CAS  Google Scholar 

  5. Bondia-Pons I, Schröder H, Covas MI, Castellote AI, Kaikkonen J, Poulsen HE, Gaddi AV, Machowetz A, Kiesewetter H, López-Sabater MC (2007) Moderate consumption of olive oil by healthy European men reduces systolic blood pressure in non-Mediterranean participants. J Nutr 137(1):84–87

    CAS  Google Scholar 

  6. Ferrara LA, Raimondi AS, d’Episcopo L, Guida L, Dello Russo A, Marotta T (2000) Olive oil and reduced need for antihypertensive medications. Arch Intern Med 160(6):837–842

    Article  CAS  Google Scholar 

  7. Perona JS, Cañizares J, Montero E, Sánchez-Domínguez JM, Catalá A, Ruiz-Gutiérrez V (2004) Virgin olive oil reduces blood pressure in hypertensive elderly subjects. Clin Nutr 23(5):1113–1121

    Article  CAS  Google Scholar 

  8. Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, Ruiz-Gutiérrez V, Covas MI, Fitó M, Gómez-Gracia E, López-Sabater MC, Vinyoles E, Arós F, Conde M, Lahoz C, Lapetra J, Sáez G, Ros E, PREDIMED Study Investigators (2006) Effects of a Mediterranean-style diet on cardiovascular risk factors: a randomized trial. Ann Intern Med 145(1):1–11

    Article  Google Scholar 

  9. Alonso A, Ruiz-Gutierrez V, Martínez-González MA (2006) Monounsaturated fatty acids, olive oil and blood pressure: epidemiological, clinical and experimental evidence. Public Health Nutr 9(2):251–257

    Article  Google Scholar 

  10. Ruíz-Gutiérrez V, Muriana FJ, Guerrero A, Cert AM, Villar J (1996) Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources. J Hypertens 14(12):1483–1490

    Article  Google Scholar 

  11. Fitó M, Cladellas M, de la Torre R, Martí J, Alcántara M, Pujadas-Bastardes M, Marrugat J, Bruguera J, López-Sabater MC, Vila J, Covas MI, Members of the SOLOS Investigators (2005) Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: a randomized, crossover, controlled, clinical trial. Atherosclerosis 181(1):149–158

    Article  Google Scholar 

  12. Medina-Remón A, Zamora-Ros R, Rotchés-Ribalta M, Andres-Lacueva C, Martínez-González MA, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Ruiz-Gutiérrez V, García de la Corte FJ, Fiol M, Pena MA, Saez GT, Ros E, Serra-Majem L, Pinto X, Warnberg J, Estruch R, Lamuela-Raventos RM, PREDIMED Study Investigators (2011) Total polyphenol excretion and blood pressure in subjects at high cardiovascular risk. Nutr Metab Cardiovasc Dis 21(5):323–331. doi:10.1016/j.numecd.2009.10.019

    Article  Google Scholar 

  13. Moreno-Luna R, Munoz-Hernandez R, Miranda ML, Costa AF, Jimenez-Jimenez L, Vallejo-Vaz AJ, Muriana FJ, Villar J, Stiefel P (2012) Olive oil polyphenols decrease blood pressure and improve endothelial function in young women with mild hypertension. Am J Hypertens 25:1229–1304

    Google Scholar 

  14. Ruano J, Lopez-Miranda J, Fuentes F, Moreno JA, Bellido C, Perez-Martinez P, Lozano A, Gómez P, Jiménez Y, Pérez Jiménez F (2005) Phenolic content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J Am Coll Cardiol 46(10):1864–1868

    Article  CAS  Google Scholar 

  15. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    Article  CAS  Google Scholar 

  16. Covas MI, Nyyssönen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H, Gaddi A, de la Torre R, Mursu J, Bäumler H, Nascetti S, Salonen JT, Fitó M, Virtanen J, Marrugat J, EUROLIVE Study Group (2006) The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 145(5):333–341

    Article  CAS  Google Scholar 

  17. Konstantinidou V, Covas MI, Muñoz-Aguayo D, Khymenets O, de la Torre R, Saez G, Tormos Mdel C, Toledo E, Marti A, Ruiz-Gutiérrez V, Ruiz Mendez MV, Fito M (2010) In vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet: a randomized controlled trial. FASEB J 24(7):2546–2557. doi:10.1096/fj.09-148452

    Article  CAS  Google Scholar 

  18. Farràs M, Valls RM, Fernández-Castillejo S, Giralt M, Solà R, Subirana I, Motilva MJ, Konstantinidou V, Covas MI, Fitó M (2013) Olive oil polyphenols enhance the expression of cholesterol efflux related genes in vivo in humans. A randomized controlled trial. J Nutr Biochem 24(7):1334–1339. doi:10.1016/j.jnutbio.2012.10.008

    Article  Google Scholar 

  19. Castañer O, Corella D, Covas MI, Sorlí JV, Subirana I, Flores-Mateo G, Nonell L, Bulló M, de la Torre R, Portolés O, Fitó M, PREDIMED study investigators (2013) In vivo transcriptomic profile after a Mediterranean diet in high-cardiovascular risk patients: a randomized controlled trial. Am J Clin Nutr 98(3):845–853. doi:10.3945/ajcn.113.060582

    Article  Google Scholar 

  20. Williams B (2001) Angiotensin II and the pathophysiology of cardiovascular remodeling. Am J Cardiol 87(8A):10C–17C

    Article  CAS  Google Scholar 

  21. Morello F, de Boer RA, Steffensen KR, Gnecchi M, Chisholm JW, Boomsma F, Anderson LM, Lawn RM, Gustafsson JA, Lopez-Ilasaca M, Pratt RE, Dzau VJ (2005) Liver X receptors alpha and beta regulate renin expression in vivo. J Clin Invest 115(7):1913–1922

    Article  CAS  Google Scholar 

  22. Kim HY, Choi JH, Kang YJ, Park SY, Choi HC, Kim HS (2011) Reparixin, an inhibitor of CXCR1 and CXCR2 receptor activation, attenuates blood pressure and hypertension-related mediators expression in spontaneously hypertensive rats. Biol Pharm Bull 34(1):120–127

    Article  CAS  Google Scholar 

  23. Hu C, Dandapat A, Mehta JL (2007) Angiotensin II induces capillary formation from endothelial cells via the LOX-1 dependent redox-sensitive pathway. Hypertension 50(5):952–957

    Article  CAS  Google Scholar 

  24. Sugawara A, Uruno A, Kudo M, Matsuda K, Yang CW, Ito S (2010) Effects of PPARγ on hypertension, atherosclerosis, and chronic kidney disease. Endocr J 57(10):847–852

    Article  CAS  Google Scholar 

  25. Guimaraes S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacol Rev 53:319–356

    CAS  Google Scholar 

  26. Patten GS, Abeywardena MY, Head RJ, Bennett LE (2012) Processed dietary plants demonstrate broad capacity for angiotensin converting enzyme and angiotensin II receptor binding inhibition in vitro. J Funct Foods 4(4):851–863. doi:10.1016/j.jff.2012.06.002

    Article  CAS  Google Scholar 

  27. Persson IAL, Persson K, Hagg S, Andersson RGG (2010) Effects of green tea, black tea and Rooibos tea on angiotensin-converting enzyme and nitric oxide in healthy volunteers. Public Health Nutr 13:730–737

    Article  Google Scholar 

  28. Kurita I, Maeda-Yamamoto M, Tachibana H, Kamei M (2010) Antihypertensive effect of Benifuuki tea containing O-methylated EGCG. J Agric Food Chem 58:1903–1908

    Article  CAS  Google Scholar 

  29. Miró-Casas E, Farré Albaladejo M, Covas MI, Rodriguez JO (2001) Capillary gas chromatography-mass spectrometry quantitative determination of hydroxytyrosol and tyrosol in human urine after olive oil intake. Anal Biochem 294(1):63–72

    Article  Google Scholar 

  30. Khymenets O, Fitó M, Covas MI, Farré M, Pujadas MA, Muñoz D, Konstantinidou V, de la Torre R (2009) Mononuclear cell transcriptome response after sustained virgin olive oil consumption in humans: an exploratory nutrigenomics study. OMICS 13(1):7–19. doi:10.1089/omi.2008.0079

    Article  CAS  Google Scholar 

  31. Visvikis-Siest S, Marteau JB, Samara A, Berrahmoune H, Marie B, Pfister M (2007) Peripheral blood mononuclear cells (PBMCs): a possible model for studying cardiovascular biology systems. Clin Chem Lab Med 45(9):1154–1168

    Article  CAS  Google Scholar 

  32. Seo D, Ginsburg GS, Goldschmidt-Clermont PJ (2006) Gene expression analysis of cardiovascular diseases: novel insights into biology and clinical applications. J Am Coll Cardiol 48(2):227–235

    Article  CAS  Google Scholar 

  33. Konstantinidou V, Covas MI, Sola R, Fitó M (2013) Up-to date knowledge on the in vivo transcriptomic effect of the Mediterranean diet in humans. Mol Nutr Food Res 57(5):772–783. doi:10.1002/mnfr.201200613

    Article  CAS  Google Scholar 

  34. Bochud M, Guessous I (2012) Gene-environment interactions of selected pharmacogenes in arterial hypertension. Expert Rev Clin Pharmacol 5(6):677–686. doi:10.1586/ecp.12.58

    Article  CAS  Google Scholar 

  35. Ahimastos AA, Natoli AK, Lawler A, Blombery PA, Kingwell BA (2005) Ramipril reduces large-artery stiffness in peripheral arterial disease and promotes elastogenic remodeling in cell culture. Hypertension 45(6):1194–1199

    Article  CAS  Google Scholar 

  36. Van Bortel LM, Kool MJ, Boudier HA, Struijker Boudier HA (1995) Effects of antihypertensive agents on local arterial distensibility and compliance. Hypertension 26(3):531–534

    Article  Google Scholar 

  37. Oboh G, Akinyemi AJ, Ademiluyi AO (2013) inhibitory effect of phenolic extract from garlic on angiotensin-1 converting enzyme and cisplatin induced lipid peroxidation—in vitro. Int J Biomed Sci 9(2):98–106

    CAS  Google Scholar 

  38. Oboh G, Ademosun AO, Ademiluyi AO, Omojokun OS, Nwanna EE, Longe KO (2014) In vitro studies on the antioxidant property and inhibition of α-amylase, α-glucosidase, and angiotensin i-converting enzyme by polyphenol-rich extracts from cocoa (Theobroma cacao) bean. Patholog Res Int. doi:10.1155/(2014)/549287

    Google Scholar 

  39. Actis-Goretta L, Ottaviani JI, Fraga CG (2006) Inhibition of angiotensin converting enzyme activity by flavanol-rich foods. J Agric Food Chem 54(1):229–234

    Article  CAS  Google Scholar 

  40. Aviram M, Dornfeld L (2001) Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 158(1):195–198

    Article  CAS  Google Scholar 

  41. Leibowitz A, Faltin Z, Perl A, Eshdat Y, Hagay Y, Peleg E, Grossman E (2014) Red grape berry-cultured cells reduce blood pressure in rats with metabolic-like syndrome. Eur J Nutr 53(3):973–980. doi:10.1007/s00394-013-0601-z

    Article  CAS  Google Scholar 

  42. Luo P, Yan M, Frohlich ED, Mehta JL, Hu C (2011) Novel concepts in the genesis of hypertension: role of LOX-1. Cardiovasc Drugs Ther 25(5):441–449. doi:10.1007/s10557-011-6337-1

    Article  CAS  Google Scholar 

  43. Derosa G, D’Angelo A, Mugellini A, Pesce RM, Fogari E, Maffioli P (2012) Evaluation of emerging biomarkers in cardiovascular risk stratification of hypertensive patients: a 2-year study. Curr Med Res Opin 28(9):1435–1445

    Article  CAS  Google Scholar 

  44. Wong ND, Gransar H, Narula J, Shaw L, Moon JH, Miranda-Peats R, Rozanski A, Hayes SW, Thomson LE, Friedman JD, Berman DS (2009) Myeloperoxidase, subclinical atherosclerosis, and cardiovascular disease events. JACC Cardiovasc Imaging 2(9):1093–1099. doi:10.1016/j.jcmg.2009.05.012

    Article  Google Scholar 

  45. van der Zwan LP, Teerlink T, Dekker JM, Henry RM, Stehouwer CD, Jakobs C, Heine RJ, Scheffer PG (2010) Plasma myeloperoxidase is inversely associated with endothelium-dependent vasodilation in elderly subjects with abnormal glucose metabolism. Metabolism 59(12):1723–1729. doi:10.1016/j.metabol.2010.04.012

    Article  Google Scholar 

  46. Tsumbu CN, Deby-Dupont G, Tits M, Angenot L, Frederich M, Kohnen S, Mouithys-Mickalad A, Serteyn D, Franck T (2012) Polyphenol content and modulatory activities of some tropical dietary plant extracts on the oxidant activities of neutrophils and myeloperoxidase. Int J Mol Sci 13(1):628–650. doi:10.3390/ijms13010628

    Article  CAS  Google Scholar 

  47. Derochette S, Franck T, Mouithys-Mickalad A, Deby-Dupont G, Neven P, Serteyn D (2013) Intra- and extracellular antioxidant capacities of the new water-soluble form of curcumin (NDS27) on stimulated neutrophils and HL-60 cells. Chem Biol Interact 201(1–3):49–57. doi:10.1016/j.cbi.2012.12.010

    Article  CAS  Google Scholar 

  48. Ibero-Baraibar I, Abete I, Navas-Carretero S, Massis-Zaid A, Martinez JA, Zulet MA (2014) Oxidised LDL levels decreases after the consumption of ready-to-eat meals supplemented with cocoa extract within a hypocaloric diet. Nutr Metab Cardiovasc Dis 24(4):416–422. doi:10.1016/j.numecd.2013.09.017

    Article  CAS  Google Scholar 

  49. Ketsawatsomkron P, Pelham CJ, Groh S, Keen HL, Faraci FM, Sigmund CD (2010) Does peroxisome proliferator-activated receptor-gamma (PPAR gamma) protect from hypertension directly through effects in the vasculature? J Biol Chem 285(13):9311–9316. doi:10.1074/jbc.R109.025031

    Article  CAS  Google Scholar 

  50. Chetty VT, Sharma AM (2006) Can PPARgamma agonists have a role in the management of obesity-related hypertension? Vascul Pharmacol 45(1):46–53

    Article  CAS  Google Scholar 

  51. Milenkovic D, Jude B, Morand C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64:40–51. doi:10.1016/j.freeradbiomed.2013.05.046

    Article  CAS  Google Scholar 

  52. Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, de la Torre R (2015) Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 20(3):4655–4680. doi:10.3390/molecules20034655

    Article  Google Scholar 

  53. Declerck K, Vel Szic KS, Palagani A, Heyninck K, Haegeman G, Morand C, Milenkovic D, Berghe WV (2016) Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer–reader–eraser proteins. Curr Top Med Chem 16(7):788–806

    Article  CAS  Google Scholar 

  54. Pacurari M, Tchounwou PB (2015) Role of MicroRNAs in renin-angiotensin-aldosterone system-mediated cardiovascular inflammation and remodeling. Int J Inflam 2015:101527. doi:10.1155/2015/101527

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU Commission (QLK1-CT-2001-00287), Instituto de Salud Carlos III FEDER (RD12-0042, CB06/03/0028, CB06/02/0029, CA11/00215, CM08/00054), Ministry of Economy and Competitiveness (AGL2012-40144-C03-01, AGL2012-40144-C03-02, AGL2012-40144-C03-03, FPI:BES-2010-040766) and Agency for Management of University and Research Grants (2009 SGR 1195, 2014 SGR 240). S.M.-P. was supported by a postdoctoral contract of the ISCIII (Sara Borrell, CD10/00224). M.F. was supported by a joint contract of the ISCIII and Health Department of the Catalan Government (Generalitat de Catalunya) (CP 06/00100). CIBEROBN is an initiative of Institute of Health Carlos III of Spain which is supported by FEDER funds (CB06/03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Montse Fitó.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Peláez, S., Castañer, O., Konstantinidou, V. et al. Effect of olive oil phenolic compounds on the expression of blood pressure-related genes in healthy individuals. Eur J Nutr 56, 663–670 (2017). https://doi.org/10.1007/s00394-015-1110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-1110-z

Keywords

Navigation