Skip to main content
Log in

Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The contribution of extra virgin olive oil (EVOO) macro- and micro-constituents in heart oxidative and inflammatory status in a hypercholesterolemic rat model was evaluated. Fatty acid profile as well as α-tocopherol, sterol, and squalene content was identified directly in rat hearts to distinguish the effect of individual components or to enlighten the potential synergisms.

Methods

Oils and oil-products with discernible lipid and polar phenolic content were used. Wistar rats were fed a high-cholesterol diet solely, or supplemented with one of the following oils, i.e., EVOO, sunflower oil (SO), and high-oleic sunflower oil (HOSO) or oil-products, i.e., phenolics-deprived EVOO [EVOO(−)], SO enriched with the EVOO phenolics [SO(+)], and HOSO enriched with the EVOO phenolics [HOSO(+)]. Dietary treatment lasted 9 weeks; at the end of the intervention blood and heart samples were collected.

Results

High-cholesterol-diet-induced dyslipidemia was shown by increase in serum total cholesterol, low-density lipoprotein cholesterol, and triacylglycerols. Dyslipidemia resulted in increased malondialdehyde (MDA) and tumor necrosis factor-α (TNF-α) levels, while glutathione and interleukin 6 levels remained unaffected in all intervention groups. Augmentation observed in MDA and TNF-α was attenuated in EVOO, SO(+), and HOSO(+) groups. Heart squalene and cholesterol content remained unaffected among all groups studied. Heart α-tocopherol was determined by oil α-tocopherol content. Variations were observed for heart β-sitosterol, while heterogeneity was reported with respect to heart fatty acid profile in all intervention groups.

Conclusions

Overall, we suggest that the EVOO-polar phenolic compounds decreased MDA and TNF-α in hearts of cholesterol-fed rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292. doi:10.1161/01.cir.0000441139.02102.80

    Article  Google Scholar 

  2. Covas MI (2008) Bioactive effects of olive oil phenolic compounds in humans: reduction of heart disease factors and oxidative damage. Inflammopharmacology 16(5):216–218. doi:10.1007/s10787-008-8019-6

    Article  CAS  Google Scholar 

  3. Jiangwei M, Zengyong Q, Xia X (2011) Aqueous extract of Astragalus mongholicus ameliorates high cholesterol diet induced oxidative injury in experimental rats models. J Med Plants Res 5(5):855–858

    Google Scholar 

  4. Ozden S, Alpertunga B (2010) Effects of methiocarb on lipid peroxidation and glutathione level in rat tissues. Drug Chem Toxicol 33(1):50–54. doi:10.3109/01480540903130708

    Article  CAS  Google Scholar 

  5. Al-Shudiefat AA, Sharma AK, Bagchi AK et al (2013) Oleic acid mitigates TNF-alpha-induced oxidative stress in rat cardiomyocytes. Mol Cell Biochem 372(1–2):75–82. doi:10.1007/s11010-012-1447-z

    Article  CAS  Google Scholar 

  6. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695. doi:10.1056/NEJMra043430

    Article  CAS  Google Scholar 

  7. Ridker PM, Rifai N, Pfeffer M et al (2000) Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 101(18):2149–2153

    Article  CAS  Google Scholar 

  8. Ma Z, Zhang J, Du R et al (2011) Rho kinase inhibition by fasudil has anti-inflammatory effects in hypercholesterolemic rats. Biol Pharm Bull 34(11):1684–1689

    Article  CAS  Google Scholar 

  9. Mente A, de Koning L, Shannon HS et al (2009) A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med 169(7):659–669. doi:10.1001/archinternmed.2009.38

    Article  CAS  Google Scholar 

  10. Covas MI, Konstantinidou V, Fito M (2009) Olive oil and cardiovascular health. J Cardiovasc Pharmacol 54(6):477–482. doi:10.1097/FJC.0b013e3181c5e7fd

    Article  CAS  Google Scholar 

  11. Schwingshackl L, Hoffmann G (2014) Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis 13:154. doi:10.1186/1476-511X-13-154

    Article  Google Scholar 

  12. Covas MI, Ruiz-Gutierrez V, De la Torre R et al. (2006) Minor components of olive oil: evidence to date of health benefits in humans. Nutr Rev 64(10):S20–S30. doi:10.1301/nr.2006.oct.S20–S30

    Article  Google Scholar 

  13. Vivancos M, Moreno JJ (2008) Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br J Nutr 99(6):1199–1207. doi:10.1017/S0007114507876203

    Article  CAS  Google Scholar 

  14. Saeidnia S, Manayi A, Gohari AR et al (2014) The story of beta-sitosterol—a review. Eur J Med Plants 4(5):590–609

    Article  CAS  Google Scholar 

  15. Xu J, Zhou X, Deng Q et al (2011) Rapeseed oil fortified with micronutrients reduces atherosclerosis risk factors in rats fed a high-fat diet. Lipids Health Dis 10:96. doi:10.1186/1476-511X-10-96

    Article  CAS  Google Scholar 

  16. Karantonis HC, Zabetakis I, Nomikos T et al (2003) Antiatherogenic properties of lipid minor constituents from seed oils. J Sci Food Agric 83(12):1192–1204

    Article  CAS  Google Scholar 

  17. Deiana M, Rosa A, Corona G et al (2007) Protective effect of olive oil minor polar components against oxidative damage in rats treated with ferric-nitrilotriacetate. Food Chem Toxicol 45(12):2434–2440. doi:10.1016/j.fct.2007.06.028

    Article  CAS  Google Scholar 

  18. Montero MF, Saurim R, Bonservizi WG et al (2014) Heart injury following intestinal ischemia reperfusion in rats is attenuated by association of ischemic preconditioning and adenosine. Acta Cir Bras 29(Suppl 2):67–71

    Article  Google Scholar 

  19. Gioxari A, Kaliora AC, Papalois A et al (2011) Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis. J Med Food 14(11):1403–1411. doi:10.1089/jmf.2010.0240

    Article  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  21. Iverson SJ, Lang SL, Cooper MH (2001) Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36(11):1283–1287

    Article  CAS  Google Scholar 

  22. Gutfinger T (1981) Polyphenols in olive oils. J Am Chem Soc 58(11):966–968

    CAS  Google Scholar 

  23. Anastasopoulos E, Kalogeropoulos N, Kaliora AC et al (2012) Quality characteristics and antioxidants of mavrolia cv. virgin olive oil. J Am Oil Chem Soc 89(2):253–259

    Article  CAS  Google Scholar 

  24. Chiou A, Kalogeropoulos N, Efstathiou P et al (2013) French Fries oleuropein content during the successive deep frying in oils enriched with an olive leaf extract. Int J Food Sci Technol 48(6):1165–1171. doi:10.1111/ijfs.12070

    Article  CAS  Google Scholar 

  25. Chiou A, Kalogeropoulos N, Salta FN et al (2009) Pan-frying of French fries in three different edible oils enriched with olive leaf extract: oxidative stability and fate of microconstituents. LWT Food Sci Technol 42(6):1090–1097

    Article  CAS  Google Scholar 

  26. Boskou D (2008) Phenolic compounds in olives and olive oil. In: Boskou D (ed) Olive oil: minor constituents and health. CRC Press, Boca Raton, pp 11–44

    Chapter  Google Scholar 

  27. Di Benedetto R, Attorri L, Chiarotti F et al (2010) Effect of micronutrient-enriched sunflower oils on plasma lipid profile and antioxidant status in high-fat-fed rats. J Agric Food Chem 58(9):5328–5333. doi:10.1021/jf904360y

    Article  Google Scholar 

  28. Gorinstein S, Leontowicz H, Leontowicz M et al (2003) Seed oils improve lipid metabolism and increase antioxidant potential in rats fed diets containing cholesterol. Nutr Res 23(3):317–330

    Article  CAS  Google Scholar 

  29. Radcliffe JD, Czajka-Narins DM (2006) Lipids and tocopherols in serum and liver of female rats fed diets containing corn oil or cottonseed oil. Plant Foods Hum Nutr 61(1):35–38. doi:10.1007/s11130-006-0011-y

    Article  CAS  Google Scholar 

  30. Chan YM, Demonty I, Pelled D et al (2007) Olive oil containing olive oil fatty acid esters of plant sterols and dietary diacylglycerol reduces low-density lipoprotein cholesterol and decreases the tendency for peroxidation in hypercholesterolaemic subjects. Br J Nutr 98(3):563–570. doi:10.1017/S0007114507730775

    Article  CAS  Google Scholar 

  31. Chetty KN, Calahan L, Harris KC et al (2003) Garlic attenuates hypercholesterolemic risk factors in olive oil fed rats and high cholesterol fed rats. Pathophysiology 9(3):127–132

    Article  CAS  Google Scholar 

  32. Calandra S, Pasquali-Ronchetti I, Gherardi E et al (1977) Chemical and morphological changes of rat plasma lipoproteins after a prolonged administration of diets containing olive oil and cholesterol. Atherosclerosis 28(4):369–387

    Article  CAS  Google Scholar 

  33. Joris I, Zand T, Nunnari JJ et al (1983) Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 113(3):341–358

    CAS  Google Scholar 

  34. Takeuchi H, Nakamoto T, Mori Y et al (2001) Comparative effects of dietary fat types on hepatic enzyme activities related to the synthesis and oxidation of fatty acid and to lipogenesis in rats. Biosci Biotechnol Biochem 65(8):1748–1754

    Article  CAS  Google Scholar 

  35. Ferramosca A, Savy V, Zara V (2008) Olive oil increases the hepatic triacylglycerol content in mice by a distinct influence on the synthesis and oxidation of fatty acids. Biosci Biotechnol Biochem 72(1):62–69

    Article  CAS  Google Scholar 

  36. Jemai H, Bouaziz M, Fki I et al (2008) Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem Biol Interact 176(2–3):88–98. doi:10.1016/j.cbi.2008.08.014

    Article  CAS  Google Scholar 

  37. Tabernero M, Sarria B, Largo C et al (2014) Comparative evaluation of the metabolic effects of hydroxytyrosol and its lipophilic derivatives (hydroxytyrosyl acetate and ethyl hydroxytyrosyl ether) in hypercholesterolemic rats. Food Funct 5(7):1556–1563. doi:10.1039/c3fo60677e

    Article  CAS  Google Scholar 

  38. Fki I, Bouaziz M, Sahnoun Z et al (2005) Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg Med Chem 13(18):5362–5370. doi:10.1016/j.bmc.2005.05.036

    Article  CAS  Google Scholar 

  39. Moghadasian MH (2002) Experimental atherosclerosis: a historical overview. Life Sci 70(8):855–865

    Article  CAS  Google Scholar 

  40. Nielsen NS, Pedersen A, Sandstrom B et al (2002) Different effects of diets rich in olive oil, rapeseed oil and sunflower-seed oil on postprandial lipid and lipoprotein concentrations and on lipoprotein oxidation susceptibility. Br J Nutr 87(5):489–499. doi:10.1079/BJNBJN2002567

    Article  CAS  Google Scholar 

  41. Ochoa JJ, Quiles JL, Ibanez S et al (2003) Aging-related oxidative stress depends on dietary lipid source in rat postmitotic tissues. J Bioenerg Biomembr 35(3):267–275

    Article  CAS  Google Scholar 

  42. Bayram B, Ozcelik B, Grimm S et al (2012) A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Res 15(1):71–81. doi:10.1089/rej.2011.1245

    Article  CAS  Google Scholar 

  43. Ghosh S, Kewalramani G, Yuen G et al (2006) Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med 41(9):1413–1424. doi:10.1016/j.freeradbiomed.2006.07.021

    Article  CAS  Google Scholar 

  44. Paul S, Mohanan A, Varghese MV et al (2012) Ameliorative effect of alpha-tocopherol on monosodium glutamate-induced cardiac histological alterations and oxidative stress. J Sci Food Agric 92(15):3002–3006. doi:10.1002/jsfa.5714

    Article  CAS  Google Scholar 

  45. Ciftci O, Disli OM, Timurkaan N (2013) Protective effects of protocatechuic acid on TCDD-induced oxidative and histopathological damage in the heart tissue of rats. Toxicol Ind Health 29(9):806–811. doi:10.1177/0748233712442735

    Article  CAS  Google Scholar 

  46. Molinar-Toribio E, Perez-Jimenez J, Ramos-Romero S et al (2014) Cardiovascular disease-related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome. PLoS ONE 9(8):e104637. doi:10.1371/journal.pone.0104637

    Article  Google Scholar 

  47. Olorunnisola OS, Bradley G, Afolayan AJ (2012) Protective effect of T. violacea rhizome extract against hypercholesterolemia-induced oxidative stress in wistar rats. Molecules 17(5):6033–6045. doi:10.3390/molecules17056033

    Article  CAS  Google Scholar 

  48. Abe C, Ikeda S, Uchida T et al (2007) Triton WR1339, an inhibitor of lipoprotein lipase, decreases vitamin E concentration in some tissues of rats by inhibiting its transport to liver. J Nutr 137(2):345–350

    CAS  Google Scholar 

  49. Jenkins MY, Mitchell GV, Grundel E (2000) Natural tocopherols in a dietary supplement of lutein affect tissue distribution of tocopherols in young rats. Nutr Cancer 37(2):207–214. doi:10.1207/S15327914NC372_14

    Article  CAS  Google Scholar 

  50. Elmarakby AA, Sullivan JC (2012) Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther 30(1):49–59. doi:10.1111/j.1755-5922.2010.00218.x

    Article  CAS  Google Scholar 

  51. Jain SK, Rains J, Croad J et al (2009) Curcumin supplementation lowers TNF-alpha, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-alpha, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal 11(2):241–249. doi:10.1089/ars.2008.2140

    Article  CAS  Google Scholar 

  52. Balkova P, Jezkova J, Hlavackova M et al (2009) Dietary polyunsaturated fatty acids and adaptation to chronic hypoxia alter acyl composition of serum and heart lipids. Br J Nutr 102(9):1297–1307. doi:10.1017/S0007114509389242

    Article  CAS  Google Scholar 

  53. Nikolaidis MG, Petridou A, Mougios V (2006) Comparison of the phospholipid and triacylglycerol fatty acid profile of rat serum, skeletal muscle and heart. Physiol Res 55(3):259–265

    CAS  Google Scholar 

  54. Kalogeropoulos N, Panagiotakos DB, Pitsavos C et al (2010) Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clin Chim Acta 411(7–8):584–591. doi:10.1016/j.cca.2010.01.023

    Article  CAS  Google Scholar 

  55. Farvin KH, Anandan R, Kumar SH et al (2006) Cardioprotective effect of squalene on lipid profile in isoprenaline-induced myocardial infarction in rats. J Med Food 9(4):531–536. doi:10.1089/jmf.2006.9.531

    Article  CAS  Google Scholar 

  56. Vivancos M, Moreno JJ (2005) Beta-sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free Radic Biol Med 39(1):91–97. doi:10.1016/j.freeradbiomed.2005.02.025

    Article  CAS  Google Scholar 

  57. Paniagua-Perez R, Madrigal-Bujaidar E, Reyes-Cadena S et al (2008) Cell protection induced by beta-sitosterol: inhibition of genotoxic damage, stimulation of lymphocyte production, and determination of its antioxidant capacity. Arch Toxicol 82(9):615–622. doi:10.1007/s00204-007-0277-3

    Article  CAS  Google Scholar 

  58. Rubis B, Paszel A, Kaczmarek M et al (2008) Beneficial or harmful influence of phytosterols on human cells? Br J Nutr 100(6):1183–1191. doi:10.1017/S0007114508981423

    Article  CAS  Google Scholar 

  59. Danesi F, Ferioli F, Caboni MF et al (2011) Phytosterol supplementation reduces metabolic activity and slows cell growth in cultured rat cardiomyocytes. Br J Nutr 106(4):540–548. doi:10.1017/S0007114511000626

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) Research Funding Program “Heraclitus II—Investing in knowledge society through the European Social Fund”. This work was funded by Grant by the Experimental Research Center of ELPEN S.A. Pharmaceuticals, Pikermi, Athens, Greece (E.R.C.E.). Professor V. T. Karathanos is gratefully acknowledged for his valuable comments and fruitful conversations. We are grateful to Mr. Kyriopoulos K. (MINERVA S.A., Athens, Greece) for his help with olive oil supplementation.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia Chiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsarou, A.I., Kaliora, A.C., Chiou, A. et al. Amelioration of oxidative and inflammatory status in hearts of cholesterol-fed rats supplemented with oils or oil-products with extra virgin olive oil components. Eur J Nutr 55, 1283–1296 (2016). https://doi.org/10.1007/s00394-015-0947-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-015-0947-5

Keywords

Navigation