Skip to main content

Advertisement

Log in

Oilseeds ameliorate metabolic parameters in male mice, while contained lignans inhibit 3T3-L1 adipocyte differentiation in vitro

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose and background

The focus was directed to the study of two of the most lignan-rich food sources: sesame and flaxseeds. Recent epidemiological and experimental evidences suggesting that these foods may improve metabolic functions underlying metabolic syndrome (MetS).

Methods

To characterize the effect of these oilseeds on metabolic functions, we conducted an experimental study aimed at preventing adiposity and metabolic imbalance in a mouse model of high-fat diet (HFD)-induced MetS. Statistical analysis was performed by two-way analysis of variance test followed by post hoc Bonferroni analysis.

Results

We studied the effect of the oilseeds sesame and flaxseed on metabolic parameters in mice on a HFD. When the HFD was integrated with 20 % of sesame or flaxseed flours, the mice showed a decrease in body fat, already at day 15, from time 0. The size of the adipocytes was smaller in epididymal fat, liver steatosis was inhibited, and insulin sensitivity was higher in mice on the supplemented diets. The supplemented diets also resulted in a significant increase in the serum levels of the lignan metabolites enterodiol and enterolactone compared with the controls. The expression of genes associated with the inflammatory response, glucose metabolism, adipose metabolism and nuclear receptor were altered by the oilseed-supplemented diets. Some of the most abundant lignans in these oilseeds were studied in 3T3-L1 preadipocyte cells and were effective in inhibiting adipocyte differentiation at the minimal dose of 1 nM.

Conclusions

The consumption of sesame and flaxseed may be beneficial to decrease metabolic parameters that are generally altered in MetS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Milder IE, Feskens EJ, Arts IC, Bueno de Mesquita HB, Hollman PC, Kromhout D (2009) Intake of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in Dutch men and women. J Nutr 135:1202–1207

    Google Scholar 

  2. Ayres DC, Loike JD (1990) Lignans: chemical, biological and clinical properties. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  3. Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, Holmbom BR (2007) Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55:1337–1346

    Article  CAS  Google Scholar 

  4. Webb AL, McCullough ML (2005) Dietary lignans: potential role in cancer prevention. Nutr Cancer 51:117–131

    Article  CAS  Google Scholar 

  5. Dixon RA (2004) Phytoestrogens. Annu Rev Plant Biol 55:225–261

    Article  CAS  Google Scholar 

  6. Mazur W, Wähälä K, Rasku S, Makkonen A, Hase T, Adlercreutz H (1999) Lignans and isoflavonoid polyphenols in tea and coffee. J Med Food 2:199–202

    Article  CAS  Google Scholar 

  7. Adlercreutz H (2007) Lignans and human health. Crit Rev Clin Lab Sci 44:483–525

    Article  CAS  Google Scholar 

  8. Fletcher RJ (2003) Food sources of phyto-oestrogens and their precursors in Europe. Br J Nutr 89(1):S39–S43

    Article  CAS  Google Scholar 

  9. Valsta LM, Kilkkinen A, Mazur W, Nurmi T, Lampi AM, Ovaskainen ML, Korhonen T, Adlercreutz H, Pietinen P (2003) Phyto-oestrogen database of foods and average intake in Finland. Br J Nutr 89:31–38

    Article  Google Scholar 

  10. Touillaud MS, Thiébaut AC, Fournier A, Niravong M, Boutron-Ruault MC, Clavel-Chapelon F (2007) Dietary lignan intake and postmenopausal breast cancer risk by estrogen and progesterone receptor status. J Natl Cancer Inst 99:475–486

    Article  CAS  Google Scholar 

  11. Moreno-Franco B, García-González Á, Montero-Bravo AM, Iglesias-Gutiérrez E, Úbeda N, Maroto-Núñez L, Adlercreutz H, Peñalvo JL (2011) Dietary alkylresorcinols and lignans in the Spanish diet: development of the alignia database. J Agric Food Chem 59:9827–9834

    Article  CAS  Google Scholar 

  12. Knust U, Spiegelhalder B, Strowitzki T, Owen RW (2006) Contribution of linseed intake to urine and serum enterolignan levels in German females: a randomised controlled intervention trial. Food Chem Toxicol 44:1057–1064

    Article  CAS  Google Scholar 

  13. Eeckhaut E, Struijs K, Possemiers S, Vincken JP, Keukeleire DD, Verstraete W (2008) Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem. J Agric Food Chem 56:4806–4812

    Article  CAS  Google Scholar 

  14. Wang CZ, Ma XQ, Yang DH, Guo ZR, Liu GR, Zhao GX, Tang J, Zhang YN, Ma M, Cai SQ, Ku BS, Liu SL (2010) Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiol 16:115

    Article  Google Scholar 

  15. Suzuki R, Rylander-Rudqvist T, Saji S, Bergkvist L, Adlercreutz H, Wolk A (2008) Dietary lignans and postmenopausal breast cancer risk by oestrogen receptor status: a prospective cohort study of Swedish women. Br J Cancer 98:636–640

    Article  CAS  Google Scholar 

  16. Hallmans G, Zhang JX, Lundin E, Stattin P, Johansson A, Johansson I, Hultén K, Winkvist A, Aman P, Lenner P, Adlercreutz H (2003) Rye, lignans and human health. Proc Nutr Soc 62:193–199

    Article  CAS  Google Scholar 

  17. Bloedon LT, Balikai S, Chittams J, Cunnane SC, Berlin JA, Rader DJ, Szapary PO (2008) Flaxseed and cardiovascular risk factors: results from a double blind, randomized, controlled clinical trial. J Am Coll Nutr 27:65–74

    Article  CAS  Google Scholar 

  18. Patade A, Devareddy L, Lucas EA, Korlagunta K, Daggy BP, Arjmandi BH (2008) Flaxseed reduces total and LDL cholesterol concentrations in Native American postmenopausal women. J Womens Health (Larchmt) 17:355–366

    Article  Google Scholar 

  19. Pan A, Yu D, Demark-Wahnefried W, Franco OH, Lin X (2009) Meta-analysis of the effects of flaxseed interventions on blood lipids. Am J Clin Nutr 90:288–297

    Article  CAS  Google Scholar 

  20. Sturgeon SR, Volpe SL, Puleo E, Bertone-Johnson ER, Heersink J, Sabelawski S, Wahala K, Bigelow C, Kurzer MS (2010) Effect of flaxseed consumption on urinary levels of estrogen metabolites in postmenopausal women. Nutr Cancer 62:175–180

    Article  CAS  Google Scholar 

  21. Sturgeon SR, Heersink JL, Volpe SL, Bertone-Johnson ER, Puleo E, Stanczyk FZ, Sabelawski S, Wahala K, Kurzer MS, Bigelow C (2008) Effect of dietary flaxseed on serum levels of estrogens and androgens in postmenopausal women. Nutr Cancer 60:612–618

    Article  Google Scholar 

  22. Hallund J, Tetens I, Bügel S, Tholstrup T, Bruun JM (2008) The effect of a lignan complex isolated from flaxseed on inflammation markers in healthy postmenopausal women. Nutr Metab Cardiovasc Dis 18:497–502

    Article  CAS  Google Scholar 

  23. Prasad K (2010) Natural products in regression and slowing of progression of atherosclerosis. Curr Pharm Biotechnol 11:794–800

    Article  CAS  Google Scholar 

  24. Prasad K (2009) Flaxseed and cardiovascular health. J Cardiovasc Pharmacol 54:369–377

    Article  CAS  Google Scholar 

  25. Prasad K (2007) A study on regression of hypercholesterolemic atherosclerosis in rabbits by flax lignan complex. J Cardiovasc Pharmacol Ther 12:304–313

    Article  CAS  Google Scholar 

  26. Penumathsa SV, Koneru S, Thirunavukkarasu M, Zhan L, Prasad K, Maulik N (2007) Secoisolariciresinol diglucoside: relevance to angiogenesis and cardioprotection against ischemia-reperfusion injury. J Pharmacol Exp Ther 320:951–959

    Article  CAS  Google Scholar 

  27. Dodin S, Cunnane SC, Mâsse B, Lemay A, Jacques H, Asselin G, Tremblay-Mercier J, Marc I, Lamarche B, Légaré F, Forest JC (2008) Flaxseed on cardiovascular disease markers in healthy menopausal women: a randomized, double-blind, placebo-controlled trial. Nutrition 24:23–30

    Article  CAS  Google Scholar 

  28. Zhang S, Ho SC (2005) Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 81:397–408

    Google Scholar 

  29. Wu WH, Kang YP, Wang NH, Jou HJ, Wang TA (2006) Sesame ingestion affects sex hormones, antioxidant status, and blood lipids in postmenopausal women. J Nutr 136:1270–1275

    CAS  Google Scholar 

  30. Carreau C, Flouriot G, Bennetau-Pelissero C, Potier M (2008) Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERalpha transcriptional activation in human breast cancer cells. J Steroid Biochem Mol Biol 110:176–185

    Article  CAS  Google Scholar 

  31. Penttinen P, Jaehrling J, Damdimopoulos AE, Inzunza J, Lemmen JG, van der Saag P, Pettersson K, Gauglitz G, Mäkelä S, Pongratz I (2007) Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 148:4875–4886

    Article  CAS  Google Scholar 

  32. Pan A, Sun J, Chen Y, Ye X, Li H, Yu Z, Wang Y, Gu W, Zhang X, Chen X, Demark-Wahnefried W, Liu Y, Lin X (2007) Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients: a randomized, double-blind, cross-over trial. PLoS One 2:e1148

    Article  Google Scholar 

  33. Salas-Salvadó J, Fernández-Ballart J, Ros E, Martínez-González MA, Fitó M, Estruch R, Corella D, Fiol M, Gómez-Gracia E, Arós F, Flores G, Lapetra J, Lamuela-Raventós R, Ruiz-Gutiérrez V, Bulló M, Basora J, Covas MI (2008) Effect of a Mediterranean diet supplemented with nuts on metabolic syndrome status: one-year results of the PREDIMED randomized trial. Arch Intern Med 168:2449–2458

    Article  Google Scholar 

  34. Carlson JJ, Joey RD, Eisenmann C, Norman GJ, Ortiz KA, Young PC (2011) Dietary Fiber and nutrient density are inversely associated with the metabolic syndrome in US adolescents. J Am Diet Assoc 111:1688–1695

    Article  Google Scholar 

  35. Namiki M (2007) Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr 47:651–673

    Article  CAS  Google Scholar 

  36. Muir AD, Westcott ND (2000) Quantitation of the lignan secoisolariciresinol diglucoside in baked goods containing flax seed or flax meal. J Agric Food Chem 48:4048–4052

    Article  CAS  Google Scholar 

  37. Grougnet R, Magiatis P, Mitaku S, Terzis A, Tillequin F, Skaltsounis AL (2006) New lignans from the perisperm of Sesamum indicum. J Agric Food Chem 54:7570–7574

    Article  CAS  Google Scholar 

  38. Milder IE, Arts IC, van de Putte B, Venema DP, Hollman PC (2005) Lignan contents of Dutch plant foods: a database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. Br J Nutr 93:393–402

    Article  CAS  Google Scholar 

  39. Smeds AI, Hakala K, Hurmerinta TT, Kortela L, Saarinen NM, Mäkelä SI (2006) Determination of plant and enterolignans in human serum by high-performance liquid chromatography with tandem mass spectrometric detection. J Pharm Biomed Anal 7:898–905

    Article  Google Scholar 

  40. Moazzami AA, Kamal-Eldin A (2006) Sesame seed is a rich source of dietary lignans. JAOCS 83:719–723

    CAS  Google Scholar 

  41. Papadakis EN, Lazarou D, Grougnet R, Magiatis P, Skaltsounis AL, Papadopoulou-Mourkidou E, Papadopoulos AI (2008) Effect of the form of the sesame-based diet on the absorption of lignans. Br J Nutr 100:1213–1219

    Article  CAS  Google Scholar 

  42. Wikul A, Damsud T, Kataoka K, Phuwapraisirisan P (2012) (+)-Pinoresinol is a putative hypoglycemic agent in defatted sesame (Sesamum indicum) seeds though inhibiting α-glucosidase. Bioorg Med Chem Lett 22:5215–5217

    Article  CAS  Google Scholar 

  43. Biswas A, Dhar P, Ghosh S (2010) Antihyperlipidemic effect of sesame (Sesamum indicum L.) protein isolate in rats fed a normal and high cholesterol diet. J Food Sci 75:H274–H279

    Article  CAS  Google Scholar 

  44. Jenkins DJ, Kendall CW, Vidgen E, Agarwal S, Rao AV, Rosenberg RS, Diamandis EP, Novokmet R, Mehling CC, Perera T, Griffin LC, Cunnane SC (1999) Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. Am J Clin Nutr 69:395–402

    CAS  Google Scholar 

  45. Babu US, Mitchell GV, Wiesenfeld P, Jenkins MY, Gowda H (2000) Nutritional and hematological impact of dietary flaxseed and defatted flaxseed meal in rats. Int J Food Sci Nutr 51:109–117

    Article  CAS  Google Scholar 

  46. Edel AL, Aliani M, Pierce GN (2013) Supported liquid extraction in the quantitation of plasma enterolignans using isotope dilution GC/MS with application to flaxseed consumption in healthy adults. J Chromatogr B Analyt Technol Biomed Life Sci 912:24–32

    Article  CAS  Google Scholar 

  47. Wu JH, Hodgson JM, Puddey IB, Belski R, Burke V, Croft KD (2009) Sesame supplementation does not improve cardiovascular disease risk markers in overweight men and women. Nutr Metab Cardiovasc Dis 19:774–780

    Article  CAS  Google Scholar 

  48. Kallio P, Tolppanen AM, Kolehmainen M, Poutanen K, Lindström J, Tuomilehto J, Kuulasmaa T, Kuusisto J, Pulkkinen L, Uusitupa M (2009) Association of sequence variations in the gene encoding insulin-like growth factor binding protein 5 with adiponectin. Int J Obes (Lond) 33:80–88

    Article  CAS  Google Scholar 

  49. Ning Y, Schuller AG, Bradshaw S, Rotwein P, Ludwig T, Frystyk J, Pintar JE (2006) Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3, -4, and -5. Mol Endocrinol 2:2173–2186

    Article  Google Scholar 

  50. Gleason CE, Ning Y, Cominski TP, Gupta R, Kaestner KH, Pintar JE, Birnbaum MJ (2010) Role of insulin-like growth factor-binding protein 5 (IGFBP5) in organismal and pancreatic beta-cell growth. Mol Endocrinol 24:178–192

    Article  CAS  Google Scholar 

  51. Di Cola G, Cool MH, Accili D (1997) Hypoglycemic effect of insulin-like growth factor-1 in mice lacking insulin receptors. J Clin Invest 99:2538–2544

    Article  Google Scholar 

  52. Ramachandrappa S, Farooqi IS (2011) Genetic approaches to understanding human obesity. J Clin Invest 121:2080–2086

    Article  CAS  Google Scholar 

  53. McCullough RS, Edel AL, Bassett CM, Lavallée RK, Dibrov E, Blackwood DP, Ander BP, Pierce GN (2011) The alpha linolenic acid content of flaxseed is associated with an induction of adipose leptin expression. Lipids 6:1043–1052

    Article  Google Scholar 

  54. Woting A, Clavel T, Loh G, Blaut M (2010) Bacterial transformation of dietary lignans in gnotobiotic rats. FEMS Microbiol Ecol 72:507–514

    Article  CAS  Google Scholar 

  55. Gustafsson JA (2006) Comments to the paper “tools to evaluate estrogenic potency of dietary phytoestrogens: a consensus paper from the EU Thematic Network “Phytohealth” (QLKI-2002-2453)”. Genes Nutr 1:159–160

    Article  Google Scholar 

  56. Fukumitsu S, Aida K, Ueno N, Ozawa S, Takahashi Y, Kobori M (2008) Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. Br J Nutr 100:669–676

    Article  CAS  Google Scholar 

  57. Dip R, Lenz S, Antignac JP, Le Bizec B, Gmuender H, Naegeli H (2008) Global gene expression profiles induced by phytoestrogens in human breast cancer cells. Endocr Relat Cancer 1:161–173

    Article  Google Scholar 

  58. Yang XW, Huang X, Ahmat M (2008) New neolignan from seed of Myristica fragrans. Zhongguo Zhong Yao Za Zhi 33:397–402

    CAS  Google Scholar 

  59. Filleur F, Pouget C, Allais DP, Kaouadji M, Chulia AJ (2002) Lignans and neolignans from Myristica argentea Warb. Nat Prod Lett 16:1–7

    Article  CAS  Google Scholar 

  60. Han KL, Choi JS, Lee JY, Song J, Joe MK, Jung MH, Hwang JK (2008) Therapeutic potential of peroxisome proliferators–activated receptor-alpha/gamma dual agonist with alleviation of endoplasmic reticulum stress for the treatment of diabetes. Diabetes 57:737–745

    Article  CAS  Google Scholar 

  61. Malini N, Rajesh H, Berwal P, Phukan S, Balaji VN (2008) Analysis of crystal structures of LXRbeta in relation to plasticity of the ligand-binding domain upon ligand binding. Chem Biol Drug Des 71:140–154

    Article  CAS  Google Scholar 

  62. Quaedackers ME, van den Brink CE, van der Saag PT, Tertoolen LG (2007) Direct interaction between estrogen receptor alpha and NF-kappaB in the nucleus of living cells. Mol Cell Endocrinol 273:42–50

    Article  CAS  Google Scholar 

  63. Jennewein C, Kuhn AM, Schmidt MV, Meilladec-Jullig V, von Knethen A, Gonzalez FJ, Brüne B (2008) Sumoylation of peroxisome proliferator-activated receptor gamma by apoptotic cells prevents lipopolysaccharide-induced NCoR removal from kappaB binding sites mediating transrepression of proinflammatory cytokines. J Immunol 181:5646–5652

    Article  CAS  Google Scholar 

  64. Chang L, Zhang Z, Li W, Dai J, Guan Y, Wang X (2007) Liver-X-receptor activator prevents homocysteine-induced production of IgG antibodies from murine B lymphocytes via the ROS-NF-kappaB pathway. Biochem Biophys Res Commun 357:772–778

    Article  CAS  Google Scholar 

  65. Penza M, Montani C, Romani A, Vignolini P, Pampaloni B, Tanini A, Brandi ML, Alonso-Magdalena P, Nadal A, Ottobrini L, Parolini O, Bignotti E, Calza S, Maggi A, Grigolato PG, Di Lorenzo D (2006) Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology 147:5740–5751

    Article  CAS  Google Scholar 

  66. Montani C, Penza M, Jeremic M, Biasiotto G, La Sala G, De Felici M, Ciana P, Maggi A, Di Lorenzo D (2008) Genistein is an efficient estrogen in the whole-body throughout mouse development. Toxicol Sci 103:57–67

    Article  CAS  Google Scholar 

  67. Abete I, Goyenechea E, Zulet MA, Martínez JA (2011) Obesity and metabolic syndrome: potential benefit from specific nutritional components. Nutr Metab Cardiovasc Dis 21:B1–B15

    Article  CAS  Google Scholar 

  68. Onat A (2011) Metabolic syndrome: nature, therapeutic solutions and options. Expert Opin Pharmacother 12:1887–1900

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Deborah Bordiga for histochemical analysis and Alessandro Bulla and Francesca Piazza for English writing and editing assistance. This work was supported in part by European Union Grants QLK4-CT-2002-02221 (EDERA) and LSHB-CT-2006-037168 (EXERA).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Di Lorenzo.

Additional information

Giorgio Biasiotto and Marialetizia Penza have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biasiotto, G., Penza, M., Zanella, I. et al. Oilseeds ameliorate metabolic parameters in male mice, while contained lignans inhibit 3T3-L1 adipocyte differentiation in vitro. Eur J Nutr 53, 1685–1697 (2014). https://doi.org/10.1007/s00394-014-0675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-014-0675-2

Keywords

Navigation