Skip to main content
Log in

The combination of resveratrol and conjugated linoleic acid attenuates the individual effects of these molecules on triacylglycerol metabolism in adipose tissue

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The combination of resveratrol + conjugated linoleic acid (RSV + CLA) did not show the body fat-lowering effect exhibited by these molecules when administered separately. This study aimed to find metabolic explanations for this situation in an experimental model of diet-induced obesity.

Methods

Thirty-six male Wistar rats were divided into four groups: rats treated with saline (control), resveratrol (RSV), conjugated linoleic acid (CLA) and a combination of these molecules (RSV + CLA).

Results

Rats treated with RSV + CLA did not show the reduction in heparin-releasable lipoprotein lipase (HR-LPL) and fatty acid synthase activities observed in RSV group or the increased HSL expression found in RSV and CLA groups. These animals showed reduced sirtuin 1 expression and CLA isomer amounts in adipose tissue. Finally, intracellular Ca2+ concentration was increased.

Conclusion

The attenuation of the effects induced in adipose tissue triacylglycerol metabolism by RSV and CLA separately, such as the decrease in lipogenesis and fatty acid uptake and the increase in lipolysis, contributes to explain the lack of body fat-lowering effect of the combination RSV + CLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G (2006) Biological effects of conjugated linoleic acids in health and disease. J Nutr Biochem 17:789–810

    Article  CAS  Google Scholar 

  2. Wang YW, Jones PJ (2004) Conjugated linoleic acid and obesity control: efficacy and mechanisms. Int J Obes Relat Metab Disord 28:941–955

    Article  CAS  Google Scholar 

  3. Larsen TM, Toubro S, Astrup A (2003) Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: evidence from animal and human studies. J Lipid Res 44:2234–2241

    Article  CAS  Google Scholar 

  4. Navarro V, Miranda J, Churruca I, Fernández-Quintela A, Rodríguez V, Portillo M (2006) Effects of trans-10, cis-12 conjugated linoleic acid on body fat and serum lipids in young and adult hamsters. J Physiol Biochem 62:81–87

    Article  CAS  Google Scholar 

  5. Salas-Salvado J, Marquez-Sandoval F, Bullo M (2006) Conjugated linoleic acid intake in humans: a systematic review focusing on its effect on body composition, glucose, and lipid metabolism. Crit Rev Food Sci Nutr 46:479–488

    Article  CAS  Google Scholar 

  6. Azain MJ, Hausman DB, Sisk MB, Flatt WP, Jewell DE (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130:1548–1554

    CAS  Google Scholar 

  7. Tsuboyama-Kasaoka N, Takahashi M, Tanemura K et al (2000) Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49:1534–1542

    Article  CAS  Google Scholar 

  8. Clement L, Poirier H, Niot I et al (2002) Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 43:1400–1409

    Article  CAS  Google Scholar 

  9. Faulconnier Y, Arnal MA, Patureau Mirand P, Chardigny JM, Chilliard Y (2004) Isomers of conjugated linoleic acid decrease plasma lipids and stimulate adipose tissue lipogenesis without changing adipose weight in post-prandial adult sedentary or trained Wistar rat. J Nutr Biochem 15:741–748

    Article  CAS  Google Scholar 

  10. Kang K, Miyazaki M, Ntambi JM, Pariza MW (2004) Evidence that the anti-obesity effect of conjugated linoleic acid is independent of effects on stearoyl-CoA desaturase 1 expression and enzyme activity. Biochem Biophys Res Commun 315:532–537

    Article  CAS  Google Scholar 

  11. Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  Google Scholar 

  12. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  CAS  Google Scholar 

  13. Ahn J, Cho I, Kim S, Kwon D, Ha T (2008) Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J Hepatol 49:1019–1028

    Article  CAS  Google Scholar 

  14. Macarulla MT, Alberdi G, Gómez S et al (2009) Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 65:369–376

    Article  CAS  Google Scholar 

  15. Rivera L, Morón R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063

    Article  CAS  Google Scholar 

  16. Alberdi G, Rodríguez VM, Miranda J et al (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 8:29

    Article  CAS  Google Scholar 

  17. Cho SJ, Jung UJ, Choi MS (2012) Differential effects of low-dose resveratrol on adiposity and hepatic steatosis in diet-induced obese mice. Br J Nutr 108:2166–2175

    Article  CAS  Google Scholar 

  18. Timmers S, Konings E, Bilet L et al (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622

    Article  CAS  Google Scholar 

  19. Picard F, Kurtev M, Chung N et al (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776

    Article  CAS  Google Scholar 

  20. Rayalam S, Della-Fera MA, Yang JY, Park HJ, Ambati S, Baile CA (2007) Resveratrol potentiates genistein’s antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J Nutr 137:2668–2673

    CAS  Google Scholar 

  21. Bai L, Pang WJ, Yang YJ, Yang GS (2008) Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 307:129–140

    Article  CAS  Google Scholar 

  22. Szkudelska K, Nogowski L, Szkudelski T (2009) Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 113:17–24

    Article  CAS  Google Scholar 

  23. Fischer-Posovszky P, Kukulus V, Tews D et al (2010) Resveratrol regulates human adipocyte number and function in a Sirt1-dependent manner. Am J Clin Nutr 92:5–15

    Article  CAS  Google Scholar 

  24. Chen S, Li Z, Li W, Shan Z, Zhu W (2011) Resveratrol inhibits cell differentiation in 3T3-L1 adipocytes via activation of AMPK. Can J Physiol Pharmacol 89:793–799

    CAS  Google Scholar 

  25. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Baile CA (2007) Enhanced pro-apoptotic and anti-adipogenic effects of genistein plus guggulsterone in 3T3-L1 adipocytes. BioFactors 30:159–169

    Article  CAS  Google Scholar 

  26. Rayalam S, Della-Fera MA, Ambati S, Boyan B, Baile CA (2007) Enhanced effects of guggulsterone plus 1,25(OH)2D3 on 3T3-L1 adipocytes. Biochem Biophys Res Commun 364:450–456

    Article  CAS  Google Scholar 

  27. Park HJ, Yang JY, Ambati S et al (2008) Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J Med Food 11:773–783

    Article  CAS  Google Scholar 

  28. Rayalam S, Della-Fera MA, Ambati S, Yang JY, Park HJ, Baile CA (2008) Enhanced effects of 1,25 (OH)(2)D(3) plus genistein on adipogenesis and apoptosis in 3T3-L1 adipocytes. Obesity (Silver Spring) 16:539–546

    Article  CAS  Google Scholar 

  29. Rayalam S, Yang JY, Della-Fera MA, Park HJ, Ambati S, Baile CA (2009) Anti-obesity effects of xanthohumol plus guggulsterone in 3T3-L1 adipocytes. J Med Food 12:846–853

    Article  CAS  Google Scholar 

  30. Bruckbauer A, Zemel MB, Thorpe T et al (2012) Synergistic effects of leucine and resveratrol on insulin sensitivity and fat metabolism in adipocytes and mice. Nutr Metab (Lond) 9:77

    Article  CAS  Google Scholar 

  31. Brown J, McIntosh M (2003) Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivity. J Nutr 133:3041–3046

    CAS  Google Scholar 

  32. Taylor CG, Zahradka P (2004) Dietary conjugated linoleic acid and insulin sensitivity and resistance in rodent models. Am J Clin Nutr 79:1164S–1168S

    CAS  Google Scholar 

  33. Szkudelska K, Szkudelski T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635:1–8

    Article  CAS  Google Scholar 

  34. Szkudelski T, Szkudelska K (2011) Anti-diabetic effects of resveratrol. Ann N Y Acad Sci 1215:34–39

    Article  CAS  Google Scholar 

  35. Arias N, Macarulla MT, Aguirre L et al (2011) The combination of resveratrol and conjugated linoleic acid is not useful in preventing obesity. J Physiol Biochem 67:471–477

    Article  CAS  Google Scholar 

  36. Navarro V, Zabala A, Macarulla MT et al (2003) Effects of conjugated linoleic acid on body fat accumulation and serum lipids in hamsters fed an atherogenic diet. J Physiol Biochem 59:193–199

    Article  CAS  Google Scholar 

  37. Miranda J, Fernández-Quintela A, Macarulla MT et al (2009) A comparison between CLNA and CLA effects on body fat, serum parameters and liver composition. J Physiol Biochem 65:25–32

    Article  CAS  Google Scholar 

  38. Del Prado M, Hernandez-Montes H, Villalpando S (1994) Characterization of a fluorometric method for lipoprotein lipase. Arch Med Res 25:331–335

    Google Scholar 

  39. Zabala A, Fernandez-Quintela A, Macarulla MT et al (2006) Effects of conjugated linoleic acid on skeletal muscle triacylglycerol metabolism in hamsters. Nutrition 22:528–533

    Article  CAS  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  41. Andres-Lacueva C, Macarulla MT, Rotches-Ribalta M et al (2012) Distribution of resveratrol metabolites in liver, adipose tissue, and skeletal muscle in rats fed different doses of this polyphenol. J Agric Food Chem 60:4833–4840

    Article  CAS  Google Scholar 

  42. Rotches-Ribalta M, Urpi-Sarda M, Llorach R et al (2012) Gut and microbial resveratrol metabolite profiling after moderate long-term consumption of red wine versus dealcoholized red wine in humans by an optimized ultra-high-pressure liquid chromatography tandem mass spectrometry method. J Chromatogr A 1265:105–113

    Article  CAS  Google Scholar 

  43. Xu X, Storkson J, Kim S, Sugimoto K, Park Y, Pariza MW (2003) Short-term intake of conjugated linoleic acid inhibits lipoprotein lipase and glucose metabolism but does not enhance lipolysis in mouse adipose tissue. J Nutr 133:663–667

    CAS  Google Scholar 

  44. Kim MR, Park Y, Albright KJ, Pariza MW (2002) Differential responses of hamsters and rats fed high-fat or low-fat diets supplemented with conjugated linoleic acid. Nutrition research (New York, NY) 22: 715–722

  45. Maier-Salamon A, Hagenauer B, Reznicek G, Szekeres T, Thalhammer T, Jäger W (2008) Metabolism and disposition of resveratrol in the isolated perfused rat liver: role of Mrp2 in the biliary excretion of glucuronides. J Pharm Sci 97:1615–1628

    Article  CAS  Google Scholar 

  46. Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci 1215:9–15

    Article  CAS  Google Scholar 

  47. Kennedy A, Overman A, Lapoint K et al (2009) Conjugated linoleic acid-mediated inflammation and insulin resistance in human adipocytes are attenuated by resveratrol. J Lipid Res 50:225–232

    Article  CAS  Google Scholar 

  48. Kim JH, Mynatt RL, Moore JW, Woychik RP, Moustaid N, Zemel MB (1996) The effects of calcium channel blockade on agouti-induced obesity. FASEB J 10:1646–1652

    CAS  Google Scholar 

  49. Boon N, Hul GB, Stegen JH et al (2007) An intervention study of the effects of calcium intake on faecal fat excretion, energy metabolism and adipose tissue mRNA expression of lipid-metabolism related proteins. Int J Obes (Lond) 31:1704–1712

    Article  CAS  Google Scholar 

  50. Zhang L, Lookene A, Wu G, Olivecrona G (2005) Calcium triggers folding of lipoprotein lipase into active dimers. J Biol Chem 280:42580–42591

    Article  CAS  Google Scholar 

  51. Ponugoti B, Kim DH, Xiao Z et al (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285:33959–33970

    Article  CAS  Google Scholar 

  52. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministerio de Ciencia e Innovación (AGL2008-01005-ALI), Instituto de Salud Carlos III (CIBERobn and RETIC PREDIMED), Government of the Basque Country (GIC 07/120-IT-265-07), University of the Basque Country (UPV/EHU) (UFI 11/32) and INGENIO-CONSOLIDER Program, Fun-C-Food CSD2007-063. RSV and CLA were generous gifts from Monteloeder (Elche, Spain) and Lipid Nutrition (Wormerveer, The Netherlands), respectively. N. Arias is a recipient of a doctoral fellowship from the Basque Country Government.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Portillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, N., Miranda, J., Macarulla, M.T. et al. The combination of resveratrol and conjugated linoleic acid attenuates the individual effects of these molecules on triacylglycerol metabolism in adipose tissue. Eur J Nutr 53, 575–582 (2014). https://doi.org/10.1007/s00394-013-0566-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-013-0566-y

Keywords

Navigation