Skip to main content
Log in

Effects of pre-exercise feeding on serum hormone concentrations and biomarkers of myostatin and ubiquitin proteasome pathway activity

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study was to examine the acute effects of pre-exercise ingestion of protein, carbohydrate, and a non-caloric placebo on serum concentrations of insulin and cortisol, and the intramuscular gene expression of myostatin- and ubiquitin proteasome pathway (UPP)-related genes following a bout of resistance exercise.

Methods

Ten untrained college-aged men participated in three resistance exercise sessions (3 × 10 at 80 % 1RM for bilateral hack squat, leg press, and leg extension) in a cross-over fashion, which were randomly preceded by protein, carbohydrate, or placebo ingestion 30 min prior to training. Pre-supplement/pre-exercise, 2 h and 6 h post-exercise muscle biopsies were obtained during each session and analyzed for mRNA fold changes in myostatin (MSTN), activin IIB, follistatin-like 3 (FSTL3), SMAD specific E3 ubiquitin protein ligase 1 (SMURF1), forkhead box O3, F-box protein 32 (FBXO32), and Muscle RING-finger protein-1, with beta-actin serving as the housekeeping gene. Gene expression of all genes was analyzed using real-time PCR.

Results

Acute feeding appeared to have no significant effect on myostatin or UPP biomarkers. However, resistance exercise resulted in a significant downregulation of MSTN and FBXO32 mRNA expression and a significant upregulation in FSTL3 and SMURF1 mRNA expression (p < 0.05).

Conclusions

An acute bout of resistance exercise results in acute post-exercise alterations in intramuscular mRNA expression of myostatin and UPP markers suggestive of skeletal muscle growth. However, carbohydrate and protein feeding surrounding resistance exercise appear to have little influence on the acute expression of these markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McCroskery S, Thomas M, Maxwell L et al (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147. doi:10.1083/jcb.200207056

    Article  CAS  Google Scholar 

  2. Joulia D, Bernardi H, Garandel V et al (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286(2):263–275

    Article  CAS  Google Scholar 

  3. McFarlane C, Hennebry A, Thomas M et al (2008) Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp Cell Res 314(2):317–329. doi:10.1016/j.yexcr.2007.09.012

    Article  CAS  Google Scholar 

  4. Costelli P, Muscaritoli M, Bonetto A et al (2008) Muscle myostatin signalling is enhanced in experimental cancer cachexia. Eur J Clin Invest 38(7):531–538. doi:10.1111/j.1365-2362.2008.01970.x

    Article  CAS  Google Scholar 

  5. Gonzalez-Cadavid NF, Taylor WE, Yarasheski K et al (1998) Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95(25):14938–14943

    Article  CAS  Google Scholar 

  6. McFarlane C, Plummer E, Thomas M et al (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514. doi:10.1002/jcp.20757

    Article  CAS  Google Scholar 

  7. Amthor H, Otto A, Vulin A et al (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci USA 106(18):7479–7484. doi:10.1073/pnas.0811129106

    Article  CAS  Google Scholar 

  8. Kraemer WJ, Hakkinen K, Newton RU et al (1999) Effects of heavy-resistance training on hormonal response patterns in younger vs. older men. J Appl Physiol 87(3):982–992

    CAS  Google Scholar 

  9. Bird SP, Tarpenning KM, Marino FE (2006) Effects of liquid carbohydrate/essential amino acid ingestion on acute hormonal response during a single bout of resistance exercise in untrained men. Nutrition 22(4):367–375. doi:10.1016/j.nut.2005.11.005

    Article  CAS  Google Scholar 

  10. Allen DL, Cleary AS, Lindsay SF et al (2010) Myostatin expression is increased by food deprivation in a muscle-specific manner and contributes to muscle atrophy during prolonged food deprivation in mice. J Appl Physiol 109(3):692–701. doi:10.1152/japplphysiol.00504.2010

    Article  CAS  Google Scholar 

  11. Volpi E, Kobayashi H, Sheffield-Moore M et al (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78(2):250–258

    CAS  Google Scholar 

  12. Tipton KD, Elliott TA, Cree MG et al (2007) Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab 292(1):E71–E76. doi:10.1152/ajpendo.00166.2006

    Article  CAS  Google Scholar 

  13. Paddon-Jones D, Sheffield-Moore M, Aarsland A et al (2005) Exogenous amino acids stimulate human muscle anabolism without interfering with the response to mixed meal ingestion. Am J Physiol Endocrinol Metab 288(4):E761–E767. doi:10.1152/ajpendo.00291.2004

    Article  CAS  Google Scholar 

  14. Long YC, Cheng Z, Copps KD et al (2011) Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 31(3):430–441. doi:10.1128/MCB.00983-10

    Article  CAS  Google Scholar 

  15. Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 17(7):1807–1819. doi:10.1681/ASN.2006010083

    Article  CAS  Google Scholar 

  16. Andersen LL, Tufekovic G, Zebis MK et al (2005) The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism 54(2):151–156. doi:10.1016/j.metabol.2004.07.012

    Article  CAS  Google Scholar 

  17. Hartman JW, Tang JE, Wilkinson SB et al (2007) Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters. Am J Clin Nutr 86(2):373–381

    CAS  Google Scholar 

  18. Wilkinson SB, Tarnopolsky MA, Macdonald MJ et al (2007) Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. Am J Clin Nutr 85(4):1031–1040

    CAS  Google Scholar 

  19. Cribb PJ, Hayes A (2006) Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc 38(11):1918–1925. doi:10.1249/01.mss.0000233790.08788.3e

    Article  Google Scholar 

  20. Hulmi JJ, Kovanen V, Lisko I et al (2008) The effects of whey protein on myostatin and cell cycle-related gene expression responses to a single heavy resistance exercise bout in trained older men. Eur J Appl Physiol 102(2):205–213. doi:10.1007/s00421-007-0579-4

    Article  CAS  Google Scholar 

  21. Hulmi JJ, Kovanen V, Selanne H et al (2009) Acute and long-term effects of resistance exercise with or without protein ingestion on muscle hypertrophy and gene expression. Amino Acids 37(2):297–308. doi:10.1007/s00726-008-0150-6

    Article  CAS  Google Scholar 

  22. Hulmi JJ, Lockwood CM, Stout JR (2010) Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: a case for whey protein. Nutr Metab (Lond) 7:51. doi:10.1186/1743-7075-7-51

    Article  Google Scholar 

  23. Esmarck B, Andersen JL, Olsen S et al (2001) Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol 535(Pt 1):301–311

    Article  CAS  Google Scholar 

  24. Joulia-Ekaza D, Cabello G (2007) The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7(3):310–315. doi:10.1016/j.coph.2006.11.011

    Article  CAS  Google Scholar 

  25. Hill JJ, Davies MV, Pearson AA et al (2002) The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277(43):40735–40741. doi:10.1074/jbc.M206379200

    Article  CAS  Google Scholar 

  26. Ma K, Mallidis C, Bhasin S et al (2003) Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab 285(2):E363–E371. doi:10.1152/ajpendo.00487.2002

    CAS  Google Scholar 

  27. Gilson H, Schakman O, Combaret L et al (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148(1):452–460. doi:10.1210/en.2006-0539

    Article  CAS  Google Scholar 

  28. Reid MB (2005) Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 288(6):R1423–R1431. doi:10.1152/ajpregu.00545.2004

    Article  CAS  Google Scholar 

  29. Bodine SC, Latres E, Baumhueter S et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294(5547):1704–1708. doi:10.1126/science.1065874

    Article  CAS  Google Scholar 

  30. Sacheck JM, Ohtsuka A, McLary SC et al (2004) IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am J Physiol Endocrinol Metab 287(4):E591–E601. doi:10.1152/ajpendo.00073.2004

    Article  CAS  Google Scholar 

  31. Dalbo VJ, Roberts MD, Hassell SE et al (2011) Effects of age on serum hormone concentrations and intramuscular proteolytic signaling before and after a single bout of resistance training. J Strength Cond Res 25(1):1–9. doi:10.1519/JSC.0b013e3181fc5a68

    Article  Google Scholar 

  32. Baechle T, Earle R (2000) Essentials of strength and conditioning, 2nd edn. Human Kinetics, Champaign

    Google Scholar 

  33. Dalbo VJ, Roberts MD, Sunderland KL et al (2011) Acute loading and aging effects on myostatin pathway biomarkers in human skeletal muscle after three sequential bouts of resistance exercise. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glr091

    Google Scholar 

  34. Mahoney DJ, Carey K, Fu MH et al (2004) Real-time RT-PCR analysis of housekeeping genes in human skeletal muscle following acute exercise. Physiol Genomics 18(2):226–231. doi:10.1152/physiolgenomics.00067.2004

    Article  CAS  Google Scholar 

  35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucl Acids Res 29(9):e45

    Article  CAS  Google Scholar 

  36. Louis E, Raue U, Yang Y et al (2007) Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol 103(5):1744–1751. doi:10.1152/japplphysiol.00679.2007

    Article  CAS  Google Scholar 

  37. Costa A, Dalloul H, Hegyesi H et al (2007) Impact of repeated bouts of eccentric exercise on myogenic gene expression. Eur J Appl Physiol 101(4):427–436

    Article  Google Scholar 

  38. Yang Y, Creer A, Jemiolo B et al (2005) Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 98(5):1745–1752

    Article  CAS  Google Scholar 

  39. Hulmi JJ, Tannerstedt J, Selanne H et al (2009) Resistance exercise with whey protein ingestion affects mTOR signaling pathway and myostatin in men. J Appl Physiol 106(5):1720–1729. doi:10.1152/japplphysiol.00087.2009

    Article  CAS  Google Scholar 

  40. Mascher H, Tannerstedt J, Brink-Elfegoun T et al (2008) Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF-1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294(1):E43–E51. doi:10.1152/ajpendo.00504.2007

    Article  CAS  Google Scholar 

  41. Fry AC, Lohnes CA (2010) Acute testosterone and cortisol responses to high power resistance exercise. Fiziol Cheloveka 36(4):102–106

    CAS  Google Scholar 

  42. McCaulley GO, McBride JM, Cormie P et al (2009) Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. Eur J Appl Physiol 105(5):695–704. doi:10.1007/s00421-008-0951-z

    Article  CAS  Google Scholar 

  43. Dugue B, Leppanen EA, Teppo AM et al (1993) Effects of psychological stress on plasma interleukins-1 beta and 6, C-reactive protein, tumour necrosis factor alpha, anti-diuretic hormone and serum cortisol. Scand J Clin Lab Invest 53(6):555–561

    Article  CAS  Google Scholar 

  44. Takai N, Yamaguchi M, Aragaki T et al (2004) Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults. Arch Oral Biol 49(12):963–968. doi:10.1016/j.archoralbio.2004.06.007

    Article  CAS  Google Scholar 

  45. Borgenvik M, Apro W, Blomstrand E (2012) Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol Endocrinol Metab 302(5):E510–E521. doi:10.1152/ajpendo.00353.2011

    Article  CAS  Google Scholar 

  46. Raue U, Slivka D, Jemiolo B et al (2006) Myogenic gene expression at rest and after a bout of resistance exercise in young (18–30 yr) and old (80–89 yr) women. J Appl Physiol 101(1):53–59. doi:10.1152/japplphysiol.01616.2005

    Article  CAS  Google Scholar 

  47. Hulmi JJ, Ahtiainen JP, Kaasalainen T et al (2007) Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Med Sci Sports Exerc 39(2):289–297. doi:10.1249/01.mss.0000241650.15006.6e

    Article  CAS  Google Scholar 

  48. Willoughby DS (2004) Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 36(4):574–582

    Article  Google Scholar 

  49. Coffey VG, Shield A, Canny BJ et al (2006) Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes. Am J Physiol Endocrinol Metab 290(5):E849–E855. doi:10.1152/ajpendo.00299.2005

    Article  CAS  Google Scholar 

  50. Cribb PJ, Williams AD, Stathis CG et al (2007) Effects of whey isolate, creatine, and resistance training on muscle hypertrophy. Med Sci Sports Exerc 39(2):298–307. doi:10.1249/01.mss.0000247002.32589.ef

    Article  CAS  Google Scholar 

  51. Candow DG, Burke NC, Smith-Palmer T et al (2006) Effect of whey and soy protein supplementation combined with resistance training in young adults. Int J Sport Nutr Exerc Metab 16(3):233–244

    CAS  Google Scholar 

  52. Kerksick CM, Rasmussen CJ, Lancaster SL et al (2006) The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J Strength Cond Res 20(3):643–653. doi:10.1519/R-17695.1

    Google Scholar 

  53. Roberts MD, Dalbo VJ, Hassell SE et al (2010) Effects of preexercise feeding on markers of satellite cell activation. Med Sci Sports Exerc 42(10):1861–1869. doi:10.1249/MSS.0b013e3181da8a29

    Article  CAS  Google Scholar 

  54. Deldicque L, Theisen D, Francaux M (2005) Regulation of mTOR by amino acids and resistance exercise in skeletal muscle. Eur J Appl Physiol 94(1–2):1–10. doi:10.1007/s00421-004-1255-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the subjects who participated in this study as well as all laboratory assistants who assisted with data collection and analysis. We would also like to graciously thank the reviewers who took time to critique this manuscript.

Conflict of interest

The authors have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent J. Dalbo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalbo, V.J., Roberts, M.D., Hassell, S. et al. Effects of pre-exercise feeding on serum hormone concentrations and biomarkers of myostatin and ubiquitin proteasome pathway activity. Eur J Nutr 52, 477–487 (2013). https://doi.org/10.1007/s00394-012-0349-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-012-0349-x

Keywords

Navigation