Skip to main content
Log in

Polymeric proanthocyanidins from Sicilian pistachio (Pistacia vera L.) nut extract inhibit lipopolysaccharide-induced inflammatory response in RAW 264.7 cells

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Background

Positive effects of pistachio nut consumption on plasma inflammatory biomarkers have been described; however, little is known about molecular events associated with these effects.

Purpose

We studied the anti-inflammatory activity of a hydrophilic extract from Sicilian Pistacia L. (HPE) in a macrophage model and investigated bioactive components relevant to the observed effects.

Methods

HPE oligomer/polymer proanthocyanidin fractions were isolated by adsorbance chromatography, and components quantified as anthocyanidins after acidic hydrolysis. Isoflavones were measured by gradient elution HPLC analysis. RAW 264.7 murine macrophages were pre-incubated with either HPE (1- to 20-mg fresh nut equivalents) or its isolated components for 1 h, then washed before stimulating with lipopolysaccharide (LPS) for 24 h. Cell viability and parameters associated with Nuclear Factor-κB (NF-κB) activation were assayed according to established methods including ELISA, Western blot, or cytofluorimetric analysis.

Results

HPE suppressed nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production and inducible NO-synthase levels dose dependently, whereas inhibited prostaglandin E2 (PGE2) release and decreased cyclo-oxygenase-2 content, the lower the HPE amount the higher the effect. Cytotoxic effects were not observed. HPE also caused a dose-dependent decrease in intracellular reactive oxygen species and interfered with the NF-κB activation. Polymeric proanthocyanidins, but not isoflavones, at a concentration comparable with their content in HPE, inhibited NO, PGE2, and TNF-α formation, as well as activation of IκB-α. Oligomeric proanthocyanidins showed only minor effects.

Conclusions

Our results provide molecular evidence of anti-inflammatory activity of pistachio nut and indicate polymeric proanthocyanidins as the bioactive components. The mechanism may involve the redox-sensitive transcription factor NF-κB. Potential effects associated with pistachio nut consumption are discussed in terms of the proanthocyanidin bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dreher ML, Maher CV, Kearney P (1996) The traditional and emerging role of nuts in healthful diets. Nutr Rev 54:241–245

    Article  CAS  Google Scholar 

  2. Blomhoff R, Carlsen MH, Frost Andersen L, Jacobs DR Jr (2006) Health benefits of nuts: potential role of antioxidants. Br J Nutr 96:S52–S60

    Article  CAS  Google Scholar 

  3. Ros E, Mataix J (2006) Fatty acid composition of nuts. Implications for cardiovascular health. Br J Nutr 96:S29–S35

    Article  CAS  Google Scholar 

  4. Segura R, Javierre C, Lizarraga MA, Ros E (2006) Other relevant components of nuts: phytosterols, folates and minerals. Br J Nutr 96:S36–S44

    Article  CAS  Google Scholar 

  5. Fraser GE, Sabate J, Beeson WL, Strahan TM (1992) A possible protective effect of nut consumption on risk of coronary heart disease. The adventist health study. Arch Intern Med 152:1416–1424

    Article  CAS  Google Scholar 

  6. Prineas RJ, Kushi LH, Folsom AR, Bostick RM, Wu Y (1993) Walnuts and serum lipids. N Engl J Med 329:359

    CAS  Google Scholar 

  7. Hu FB, Stampfer MJ, Manson JE, Rimm EB, Colditz GA, Rosner BA, Speizer FE, Hennekens CH, Willett WC (1998) Frequent nut consumption and risk of coronary heart disease in women: prospective cohort study. BMJ 317:1341–1345

    Article  CAS  Google Scholar 

  8. Hu FB, Stampfer MJ (1999) Nut consumption and risk of coronary heart disease: a review of epidemiological evidence. Curr Atheroscler Rep 1:204–209

    Article  CAS  Google Scholar 

  9. Kris-Etherton PM, Zhao G, Binkoski AE, Coval SM, Etherton TD (2001) The effects of nuts on coronary heart disease risk. Nutr Rev 59:103–111

    Article  CAS  Google Scholar 

  10. Albert CM, Gaziano JM, Willett WC, Manson JE (2002) Nut consumption and decreased risk of sudden cardiac death in the physicians’ health study. Arch Intern Med 162:1382–1387

    Article  Google Scholar 

  11. Mukudden-Pedersen J, Oosthuizen W, Jerling JC (2005) A systematic review of the effects of nuts on blood lipid profiles in humans. J Nutr 135:2082–2089

    Google Scholar 

  12. Giner-Larza EM, Manez S, Recio MC, Giner RM, Prieto JM, Cerda-Nicolas M, Rios JL (2001) Oleanonic acid, a 3-oxotriterpene from pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur J Pharmacol 428:137–143

    Article  CAS  Google Scholar 

  13. Duru ME, Cakir A, Kordali S, Zengin H, Harmandar M, Izumi S, Hirata T (2003) Chemical composition and antifungal properties of essential oils of three pistacia species. Fitoterapia 74:170–176

    Article  CAS  Google Scholar 

  14. Ozcelik B, Aslan M, Orhan I, Karaoglu T (2005) Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiol Res 160:159–164

    Article  Google Scholar 

  15. Orhan I, Kupeli E, Aslan M, Kartal M, Yesilada E (2006) Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. J Ethnopharmacol 105:235–240

    Article  CAS  Google Scholar 

  16. Edwards K, Kwaw I, Matud J, Kurtz I (1999) Effects of pistachio nuts on serum lipid levels in patients with moderate hypercholesterolemia. J Am Coll Nutr 18:229–232

    CAS  Google Scholar 

  17. Kocyigit A, Koylu AA, Keles H (2006) Effects of pistachio nut consumption on plasma lipid profile and antioxidative status in healthy volunteers. Nutr Metab Cardiovasc Dis 16:202–209

    Article  CAS  Google Scholar 

  18. Sheridan MJ, Cooper JN, Erario M, Cheifetz CE (2007) Pistachio nut consumption and serum lipid levels. J Am Coll Nutr 26:141–148

    CAS  Google Scholar 

  19. Gebauer SK, West SG, Kay CD, Alaupovic P, Bagshaw D, Kris Etherton PM (2008) Effects of pistachios on cardiovascular disease risk factors and potential mechanisms of action: a dose-response study. Am J Clin Nutr 88:651–659

    CAS  Google Scholar 

  20. Sari I, Baltaci Y, Bagci C, Davutoglu V, Erel O, Celik H, Ozer O, Aksoy N, Aksoy M (2010) Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: a prospective study. Nutrition 26:399–404

    Article  CAS  Google Scholar 

  21. Kinlay S, Egido J (2006) Inflammatory biomarkers in stable atherosclerosis. Am J Cardiol 98:2P–8P

    Article  CAS  Google Scholar 

  22. Packard RR, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54:24–38

    Article  CAS  Google Scholar 

  23. Wilson PW (2008) Evidence of systemic inflammation and estimation of coronary artery disease risk: a population perspective. Am J Med 121:S15–S20

    Article  Google Scholar 

  24. Gentile C, Tesoriere L, Butera D, Fazzari M, Monastero M, Allegra M, Livrea MA (2007) Antioxidant activity of sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components. J Agric Food Chem 55:643–648

    Article  CAS  Google Scholar 

  25. Jordão AM, Gonçalves FJ, Correia AC, Cantão J, Rivero-Pérez MD, González Sanjosé ML (2010) Proanthocyanidin content, antioxidant capacity and scavenger activity of Portuguese sparkling wines (Bairrada Appellation of Origin). J Sci Food Agric 90:2144–2152

    Google Scholar 

  26. Porter JP, Hrstich LN, Chan BG (1985) The conversion of procyanidin and prodelphinidins to cyaniding and delphinidin. Phytochemistry 25:223–230

    Article  Google Scholar 

  27. Barnes PJ, Karin M (1997) Nuclear factor-kB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  CAS  Google Scholar 

  28. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75:639–653

    Article  CAS  Google Scholar 

  29. Herschman HR (1996) Prostaglandin synthase 2. Biochim Biophys Acta 1299:125–140

    Google Scholar 

  30. Tilley SL, Coffman TM, Koller BH (2001) Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest 108:15–23

    CAS  Google Scholar 

  31. Tsasanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661

    Article  Google Scholar 

  32. Aggarwal BB (2004) Nuclear factor-kB: the enemy within. Cancer Cell 6:203–208

    Article  CAS  Google Scholar 

  33. Baeuerle PA, Henkel T (1994) Function and activation of NF-kB in the immune system. Annu Rev Immunol 12:141–179

    Article  CAS  Google Scholar 

  34. Gloire G, Legrand-Poels S, Piette J (2006) NF-kB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  CAS  Google Scholar 

  35. Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med 48:1121–1132

    Article  CAS  Google Scholar 

  36. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS (2004) Cutting edge: direct interactions of TLR4 with NADPH oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kB. J Immunol 173:3589–3593

    CAS  Google Scholar 

  37. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nutr Rev Immunol 1:181–189

    Article  Google Scholar 

  38. Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-kB activation. Antiox Redox Signal 11:2209–2222

    Article  CAS  Google Scholar 

  39. Blay M, Espinel AE, Delgado MA, Baiges I, Bladé C, Arola L, Salvadó J (2010) Isoflavone effect on gene expression profile and biomarkers of inflammation. J Pharm Biomed Anal 51:382–390

    Article  CAS  Google Scholar 

  40. Dijsselbloem N, Goriely S, Albarani V, Gerlo S, Francoz S, Marine J-C, Goldman M, Haegeman G, Vanden BW (2007) A critical role for p53 in the control of NF-κB-dependent gene expression in TLR4-stimulated dendritic cells exposed to genistein. J Immunol 178:5048–5057

    CAS  Google Scholar 

  41. Li WG, Zhang XY, Wu YJ, Tian X (2001) Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharm Sin 22:1117–1120

    CAS  Google Scholar 

  42. Das DK, Kalfin R, Righi A, Del Rosso A, Bagchi D, Generini S, Guiducci S, Cerinic MM (2002) Activin, a grapeseed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1 and E-selectin) in systemic sclerosis. Free Radical Res 36:819–825

    Article  Google Scholar 

  43. Hou DX, Masuzaki S, Hashimoto F, Uto T, Tanigawa S, Fujii M, Sakata Y (2007) Green tea proanthocyanidins inhibit cyclooxygenase-2 expression in LPS-activated mouse macrophages: molecular mechanisms and structure-activity relationship. Arch Biochim Biophys 460:67–74

    Article  CAS  Google Scholar 

  44. Terra X, Valls J, Vitrac X, Mérrillon JM, Arola L, Ardèvol A, Bladé C, Fernandez-Larrea J, Pujadas G, Salvadó J, Blay M (2007) Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 55:4357–4365

    Article  CAS  Google Scholar 

  45. Virgili F, Kobuchi H, Packer L (1998) Procyanidins extracted from Pinus maritime (Pycnogenol): scavengers of free radical species and modulators of nitrogen monoxide metabolism in activated murine RAW 264.7 macrophages. Free Radic Biol Med 24:1120–1129

    Article  CAS  Google Scholar 

  46. Zhang W-y, Liu H-q, Xie K-q, Yin L-l, Li Y, Kwik-Uribe CL, Zhu X-z (2006) Procyanidin dimer B2 [epicathechin-(4β8)-epicathechin] suppresses the expression of cyclooxygenase-2 in endotoxin-treated monocytic cells. Biochim Biophys Res Commun 345:508–515

    Article  CAS  Google Scholar 

  47. Jung M, Triebel S, Anke T, Richling E, Erkel G (2009) Influence of apple polyphenols on inflammatory gene expression. Molec Nutr Food Res 53:1263–1280

    Article  CAS  Google Scholar 

  48. Ho S-C, Hwang LS, Shen Y-J, Lin C–C (2007) Suppressive effect of a proanthocyanidin-rich extract from longan (Dimocarpus longan Lour.) flowers on nitric oxide production in LPS-stimulated macrophage cells. J Agric Food Chem 55:10664–10670

    Article  CAS  Google Scholar 

  49. Park YC, Rimbach G, Saliou C, Valacchi G, Packer L (2000) Activity of monomeric, dimeric, and trimeric flavonoids on NO production, TNF-α secretion, and NFkB-dependent gene expression in macrophages. FEBS Lett 465:93–97

    Article  CAS  Google Scholar 

  50. Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  CAS  Google Scholar 

  51. Plumb GW, De-Pascual-Teresa S, Santos-Buelga C, Chenier V, Williamson G (1998) Antioxidant properties of cathechins and proanthocyanidins: effect of polymerization, galloylation and glycosylation. Free Radic Res 29:351–358

    Article  CAS  Google Scholar 

  52. Hendrich AB (2006) Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol Sinica 27:27–40

    Article  CAS  Google Scholar 

  53. Delehanty JB, Johnson BJ, Hickey TE, Pons T, Ligler FS (2007) Binding and neutralization of lipopolysaccharides by plant proanthocyanidins. J Nat Prod 70:1718–1724

    Article  CAS  Google Scholar 

  54. Cuschieri J, Maier RV (2007) Oxidative stress, lipid raft, and macrophage reprogramming. Antiox Redox Signal 9:1485–1498

    Article  CAS  Google Scholar 

  55. Lu YC, Yeh WC, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145–151

    Article  CAS  Google Scholar 

  56. Lee JK, Kim SY, Kim YS, Lee W-H, Hwang D, Lee JY (2009) Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin. Biochem Pharmacol 77:1391–1400

    Article  CAS  Google Scholar 

  57. Wang L, Zhu LH, Jiang H, Tang Q-Z, Yan L, Wang D, Liu C, Bian Z-y, Li H (2010) Grape seed proanthocyanidins attenuate vascular smooth muscle cell proliferation via blocking phosphatidylinositol 3-kinase-dependent signaling pathways. J Cell Physiol 223:713–726

    CAS  Google Scholar 

  58. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  Google Scholar 

  59. Appeldoorn MM, Vincken JP, Gruppen H, Hollman PC (2009) Procyanidin dimers A1, A2, and B2 are absorbed without conjugation or methylation from the small intestine of rats. J Nutr 139:1469–1473

    Article  CAS  Google Scholar 

  60. Holt RR, Lazarus SA, Sullards MC, Zhu QY, Schramm DD, Hammerstone JF, Fraga CG, Schmitz HH, Keen CL (2002) Procyanidin dimer B2[epicathechin (4β-8)-epicathechin] in human plasma after the consumption of a flavonol-rich cocoa. Am J Clin Nutr 76:798–804

    CAS  Google Scholar 

  61. Rios LY, Bennett RN, Lazarus SA, Rémésy C, Scalbert A, Williamson G (2002) Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr 76:1106–1110

    CAS  Google Scholar 

  62. Halliwell B, Rafter J, Jenner A (2005) Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am J Clin Nutr 81:268S–276S

    CAS  Google Scholar 

  63. USDA National Nutrient Database for Standard Reference (www.ars.usda.gov/ba/bhnrc/ndl)

  64. Mahe S, Huneau JF, Marteau P, Thuillier F, Tome D (1992) Gastroileal nitrogen and humans. Am J Clin Nutr 56:410–416

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been carried out by a grant from Assessorato Agricoltura e Foreste Regione Sicilia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Livrea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentile, C., Allegra, M., Angileri, F. et al. Polymeric proanthocyanidins from Sicilian pistachio (Pistacia vera L.) nut extract inhibit lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Eur J Nutr 51, 353–363 (2012). https://doi.org/10.1007/s00394-011-0220-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0220-5

Keywords

Navigation