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Abstract
Background  Arrhythmias may originate from surgically unaffected right ventricular (RV) regions in patients with tetralogy 
of Fallot (TOF). We aimed to investigate action potential (AP) remodelling and arrhythmia susceptibility in RV myocardium 
of patients with repaired and with unrepaired TOF, identify possible correlations with clinical phenotype and myocardial 
fibrosis, and compare findings with data from patients with atrial septal defect (ASD), a less severe congenital heart disease.
Methods  Intracellular AP were recorded ex vivo in RV outflow tract samples from 22 TOF and three ASD patients. Arrhyth-
mias were provoked by superfusion with solutions containing reduced potassium and barium chloride, or isoprenaline. 
Myocardial fibrosis was quantified histologically and associations between clinical phenotype, AP shape, tissue arrhythmia 
propensity, and fibrosis were examined.
Results  Electrophysiological abnormalities (arrhythmias, AP duration [APD] alternans, impaired APD shortening at 
increased stimulation frequencies) were generally present in TOF tissue, even from infants, but rare or absent in ASD 
samples. More severely diseased and acyanotic patients, pronounced tissue susceptibility to arrhythmogenesis, and greater 
fibrosis extent were associated with longer APD. In contrast, APD was shorter in tissue from patients with pre-operative 
cyanosis. Increased fibrosis and repaired-TOF status were linked to tissue arrhythmia inducibility.
Conclusions  Functional and structural tissue remodelling may explain arrhythmic activity in TOF patients, even at a very 
young age. Surprisingly, clinical acyanosis appears to be associated with more severe arrhythmogenic remodelling. Further 
research into the clinical drivers of structural and electrical myocardial alterations, and the relation between them, is needed 
to identify predictive factors for patients at risk.
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Graphical Abstract
Central illustration: summary diagram of essential study results. Note that not all results are depicted here. For more detail, 
see text. APA action potential amplitude, APD action potential duration, AUC​ area under the curve, TOF tetralogy of Fallot.
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Abbreviations
AP	� Action potential
APA	� Action potential amplitude
APD	� Action potential duration
ASD	� Atrial septal defect
AUC​	� Area under the curve
dV/dtmax	� Maximum upstroke velocity
est.	� Estimate
proBNP	� Pro-brain natriuretic peptide
RMP	� Resting membrane potential
RV	� Right ventricle
RVOT	� Right ventricular outflow tract
RV–PA gradient	� Right-ventricle-to-pulmonary-artery 

pressure gradient
TOF	� Tetralogy of Fallot

Introduction

Despite modern clinical care, patients with tetralogy of Fal-
lot (TOF) remain at increased risk of ventricular arrhythmias 
and sudden cardiac death [1, 2]. Clinical electrophysiologi-
cal investigations have identified the right ventricle (RV), 
and specifically the RV outflow tract (RVOT), as the place 
of origin of these arrhythmias [3, 4]. While post-operative 
surgical scars were previously assumed to be the main cause 
of ventricular arrhythmias, more recent data indicate that 

pro-arrhythmic perturbations in patients with TOF may 
originate from RV myocardium unaffected by surgical inter-
ventions [5, 6]. Similarly, subclinical electrocardiographic 
changes have been demonstrated in these patients both 
before and after surgical repair [7, 8], and studies of isolated 
RVOT cardiomyocytes from young children with unrepaired 
TOF have revealed frequent spontaneous early afterdepolari-
sations [9, 10]. In a porcine model of repaired TOF, action 
potential (AP) duration (APD) and conduction velocity were 
altered in RVOT wedges [11], consistent with the increased 
dispersion of repolarisation repeatedly observed in electro-
cardiograms of patients with TOF [7, 12]. However, electro-
physiological remodelling of human RVOT cardiomyocytes 
from patients with TOF in their native multicellular envi-
ronment and the extent of their pro-arrhythmic constitution 
remain unconfirmed. In addition, the links between clinical 
phenotype, indicators of disease severity, and cardiomyocyte 
electrophysiology have yet to be investigated.

The aim of this study was to characterise AP properties 
and myocardial arrhythmia susceptibility in patients with 
unrepaired and repaired TOF by intracellular membrane 
potential recording in RVOT myectomies, and to exam-
ine correlations between clinical phenotype and AP shape, 
including abnormal depolarisation or repolarisation. For 
comparison, we used RVOT biopsies from patients under-
going surgical closure of a large atrial septal defect (ASD). 
ASD is a much milder congenital heart defect than TOF, 
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but nevertheless also affects the RV by volume overload and 
increases arrhythmic risk in adulthood [13–15].

TOF is typically considered a primarily structural rather 
than electrical disease. Histological and magnetic resonance 
imaging data have suggested that patients with TOF suffer 
from myocardial fibrosis (an excess accumulation of extra-
cellular matrix) [16–21], and both focal/scar-associated and 
diffuse fibrosis seem to contribute to ventricular arrhythmias 
in repaired patients [22]. This line of thought is supported 
by data from porcine models of repaired TOF, in which RV 
fibrosis was a predictor of spontaneous arrhythmogenesis 
[11], whereas ventricular arrhythmias were not spontane-
ously present and could not be induced in the absence of 
RV fibrosis [23].

In patients with TOF, alterations of the mechanical envi-
ronment of cardiomyocytes by both haemodynamic load 
and fibrosis may alter cardiomyocyte electrophysiology 
[24], potentially making patients more prone to ventricu-
lar arrhythmogenesis [24, 25]. We therefore hypothesised 
that electrophysiological remodelling of cardiomyocytes is 
more severe in the presence of pronounced RVOT fibrosis 
in patients with TOF. To address this hypothesis, the extent 
of fibrosis, AP properties, propensity for tissue arrhythmias, 
and clinical indicators potentially predisposing for severe 
remodelling were investigated.

Materials and methods

Tissue collection

RVOT samples were resected from patients with TOF and 
patients with ASD during repair operation or re-operation 
and collected, together with clinical patient data, by the 
CardioVascular BioBank (CVBB) of the University Heart 
Center Freiburg. The use of TOF and ASD tissue and data 
were approved by the Ethics Committee of the University 
of Freiburg (ethics vote number 393/16 for the CVBB, and 
589/17 for this study). The study complies with the Decla-
ration of Helsinki. Informed consent was obtained from all 
patients or their legal guardians.

Intracellular membrane potential recording

For a detailed description of the methods, see Supplemen-
tal Material. In brief, live RVOT tissue was placed in a 
chamber continuously perfused with oxygenated, hypoc-
alcaemic Krebs–Henseleit solution heated to physiological 
temperature. Under pacing with a frequency of 1 Hz, the 
calcium concentration in the solution was gradually raised 
to 1.8 mM. The tissue was impaled with a microelectrode 
filled with 3 M KCl and connected to a bridge amplifier, and 
the potential was recorded using a custom-made script in 

LabView software (National Instruments, Austin, TX, USA; 
script available from authors upon request). A minimum of 
20 AP were recorded from at least three locations within a 
sample at stimulation frequencies of 0.5, 1, 2, 3, and 4 Hz 
each. Any spontaneous arrhythmias (‘tissue arrhythmias’) 
and other AP abnormalities were also recorded. Thereafter, 
arrhythmia provocation was performed by superfusion with 
a hypokalaemic Krebs–Henseleit solution containing BaCl2, 
and, in the case of stable conditions, with a normokalaemic 
Krebs–Henseleit solution containing isoprenaline. Any tis-
sue arrhythmias or other AP abnormalities were recorded 
during drug provocation.

All recordings were visually examined for arrhythmias 
and abnormal AP shapes, and AP with artefacts, AP ampli-
tude (APA; defined as potential difference, in mV, between 
the resting membrane potential [RMP] and the peak poten-
tial of the AP) below 75 mV, and those with insufficient 
separation of AP upstroke from the stimulation artefact were 
rejected. All AP without tissue arrhythmias and impaired 
APD shortening (see section ‘Pro-arrhythmic electrophysio-
logical tissue abnormalities’) were then analysed with a cus-
tom Python script [26] to identify the AP shape properties 
RMP, APA, maximum upstroke velocity (dV/dtmax), APD at 
20%, 50%, and 90% repolarisation (APD20, APD50, APD90), 
and area under the curve at 90% repolarisation (AUC​90). 
For the number of patients included in the analysis for each 
stimulation frequency, see Fig. S1.

Histological fibrosis quantification

After AP measurements, RVOT tissue samples were histo-
logically processed and analysed as previously described in 
[16] (see Supplemental Material). Briefly, a minimum of 30 
alternate tissue sections per patient were batch-stained with 
picrosirius red. Automated fibrosis quantification in these 
images, yielding percent-fibrosis for each section, was per-
formed with custom Python scripts as reported in [16]. In 
all but two patients the same sample was used for both elec-
trophysiology and histology.

Statistical analyses and clinical parameters

Statistical methods are described in detail in the Supple-
mental Material. In summary, we used a mixed linear effects 
model to evaluate associations of clinical parameters and 
tissue abnormalities with AP shape properties (dependent 
variables: RMP, APA, dV/dtmax, APD20, APD50, APD90, 
AUC​90). The following clinical and tissue parameters were 
defined as fixed effects: age, pre-operative clinical param-
eters (disease type, repair status, prolonged QRS duration 
[27, 28], cyanosis, echocardiographically measured pressure 
gradient between RV and pulmonary arteries [RV–PA gradi-
ent; categorised as mild, moderate, or severe], medication 
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with beta blockers, pro-brain natriuretic peptide [proBNP] 
elevation [categorised as none or mild, and severe]), occur-
rence of pre- or post-operative clinical arrhythmias in vivo, 
electrophysiological tissue abnormalities (see section ‘Pro-
arrhythmic electrophysiological tissue abnormalities’), as 
well as tissue pacing frequency. ‘Patient’ was defined as 
random effect.

The association of percent-fibrosis with AP properties 
at 1 Hz, clinical parameters, and electrophysiological tis-
sue abnormalities was assessed using a mixed linear effects 
model with percent-fibrosis as the dependent variable, 
patient as random effect, and AP properties, clinical param-
eters, and electrophysiological tissue abnormalities (see 
above) as fixed effects.

The association of clinical parameters, electrophysiologi-
cal tissue abnormalities, and fibrosis (as independent vari-
ables) with the occurrence of clinical arrhythmias and with 
the occurrence of tissue arrhythmias (as dependent varia-
bles) was evaluated by binomial logistic regressions. Com-
parison of AP properties between tissue with drug-induced 
arrhythmias and tissue with spontaneous arrhythmias was 
performed by two-sample t-test.

p-Values < 0.05 were considered as indicating sta-
tistical significance for all analyses. All values are given 
as mean ± standard error of the mean, unless indicated 
otherwise.

Results

Clinical patient characteristics

We performed AP measurements on RVOT samples 
from 25 patients with a mean age of 101 months (range 
4 months to 56 years; Table S3). The underlying con-
genital heart defect was TOF in 22 and ASD in three 
patients. Six patients with TOF (median age 27 years) 
had previously undergone a repair operation (‘repaired 
patients’); all other patients (median age 10 months) had 
not previously received a repair operation (‘unrepaired 
patients’). All repaired patients demonstrated prolonged 
QRS durations in the pre-operative electrocardiogram, 
while all unrepaired patients had normal (age-adjusted) 
pre-operative QRS durations. Six patients experienced 
post-operative supraventricular or junctional arrhythmias, 
but none had ventricular arrhythmias or history of any 
kind of pre-operative tachyarrhythmia. For further clini-
cal patient information, see Table 1 and Table S3.

Pro‑arrhythmic electrophysiological tissue 
abnormalities

During AP recording, 4 of 12 (33%) samples from young 
(< 1 year) and 7 of 10 (70%) samples from older (≥ 1 year) 
patients with TOF showed either spontaneous or drug-
induced arrhythmias. In the ASD group, 1 of 3 (33%) 

Table 1   Clinical parameters and electrophysiological tissue abnor-
malities

a All tachyarrhythmias occurred in the immediate post-operative 
phase; there was no manifestation of ventricular tachyarrhythmias or 
history of pre-operative tachyarrhythmias in these patients. ProBNP 
pro-brain natriuretic peptide, RV–PA right ventricle to pulmonary 
artery, SVT supraventricular tachycardia

n (%) N = 25 (100)

Pre-operative clinical parameters, n (%)
Sex
 Male 16 (64)
 Female 9 (36)

Congenital heart defect
 Tetralogy of Fallot 22 (88)
 Atrial septal defect 3 (12)

Repair status and QRS prolongation
 Unrepaired and normal QRS 19 (76)
 Repaired and prolonged QRS 6 (24)

Cyanosis
 Acyanotic 16 (64)
 Cyanotic 9 (36)

RV–PA pressure gradient
 Mild 12 (48)
 Moderate 2 (8)
 Severe 11 (44)

Beta blocker therapy
 Yes 9 (36)
 No 16 (64)

ProBNP elevation
 None or mild 13 (52)
 Severe 12 (48)

Post-operative SVT or junctional clinical arrhythmiasa

 Yes 6 (24)
 No 19 (76)

Electrophysiological tissue abnormalities, n (%)
 Tissue arrhythmias
  Yes 13 (52)
  No 12 (12)

 Impaired APD shortening
  Yes 6 (24)
  No 19 (76)

 APD alternans
  Yes 12 (48)
  No 13 (52)
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samples showed a drug-induced arrhythmia (Fig. 1, Table 1). 
There was no significant difference between tissue with 
drug-induced and tissue with spontaneous arrhythmias in 
RMP, dV/dtmax, APD20, APD50, APD90, and AUC​90 of the 
non-arrhythmic AP over all pacing frequencies assessed 
(two-sample t-test, p > 0.05 for all). APA was slightly larger 
in tissue with drug-induced arrhythmias compared to tissue 
with spontaneous arrhythmias (two-sample t-test, p = 0.023).

Three types of tissue arrhythmias were observed: (i) early 
afterdepolarisations, (ii) extrasystoles between triggered AP, 

and (iii) stimulation-independent, spontaneous depolarisa-
tions in the form of couplets (Fig. 2A). Other pro-arrhythmic 
electrophysiological tissue abnormalities included impaired 
APD shortening with increasing stimulation frequency, 
resulting in a failure to follow increased stimulation rates 
of 2, 3, and/or 4 Hz (Fig. 2B), and APD alternans (Fig. 2C), 
which were both frequently observed in TOF but not in ASD 
tissue (Fig. 1).

Fig. 1   Occurrence of pro-
arrhythmic electrophysi-
ological tissue abnormalities in 
myocardium from patients with 
tetralogy of Fallot (TOF) and 
with atrial septal defect (ASD). 
Altern. alternans, APD action 
potential duration, arr. arrhyth-
mias, imp. shorten. impaired 
APD shortening, Y years of age

Fig. 2   Pro-arrhythmic electrophysiological tissue abnormalities in 
myocardial samples and their association with action potential (AP) 
shape. A Example traces of tissue arrhythmias: early afterdepolarisa-
tions (left, indicated by yellow star), extrasystoles (middle, indicated 
by blue circle), and stimulation-independent spontaneous depolarisa-
tions (right, grey arrows indicate stimulation timing). B Example of 
impaired action potential duration (APD) shortening at stimulation 
frequency of 3 Hz (grey arrows indicate stimulation timing). C Exam-

ple APD alternans with blue arrows indicating alternating APD. aBar 
graphs indicate one data point per recording location; p-Values rep-
resent association over all frequencies for a given AP parameter and 
occurrence of electrophysiological tissue abnormality in mixed linear 
effects model. arr. arrhythmias, AUC​90 area under the curve at 90% 
repolarisation, imp. shorten. impaired APD shortening, stim. freq. 
stimulation frequency
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Association of AP shape with stimulation frequency, 
clinical parameters, and electrophysiological tissue 
abnormalities

An overview of the readouts from the mixed linear effects 
model analysis of the AP data, including estimates and 
p-values, is presented in Table 2.

Despite six patients with TOF showing impaired APD 
shortening in a subset of recording locations, the AP 
properties APA, dV/dtmax, APD, and AUC​90 decreased 
significantly with increasing stimulation frequency in the 
averages across all recording locations (Fig. 3, Table 2, 
Table S1, Table S2). There was no significant effect of 
stimulation frequency on RMP.

Evaluating the association of clinical parameters with 
AP shape demonstrated a statistically significant positive 
association of the disease type TOF with larger AUC​90, of 
repaired status with faster dV/dtmax and longer APD20, of 
severe proBNP elevation with longer APD20, APD50, and 
larger AUC​90, and of beta blocker treatment with larger 
APA, faster dV/dtmax, longer APD50, and larger AUC​90 
(Fig. 4A–D, Table 2). In contrast, there was a statistically 
significant negative association of cyanosis with APA, dV/
dtmax, APD50, and APD90 (Fig. 4E, Table 2), and of clini-
cal arrhythmias with APD20, APD50, APD90, and AUC​90. 
The different grades of RV–PA pressure gradient elevation 
showed differential effects, with significantly larger APA 
and faster dV/dtmax in moderate RV–PA gradient eleva-
tion compared to mild and severe RV–PA gradient eleva-
tion, and significantly shorter APD20 and smaller AUC​90 

in moderate RV–PA gradient elevation compared to mild 
RV–PA gradient elevation (Fig. 4F, Table 2). Finally, age 
was significantly associated with dV/dtmax, APD20, APD50, 
and AUC​90; however, when taking into account the small 
estimates (Table 2) and the graphical presentation in Fig. 
S2, interpretation and biological relevance appear limited.

Evaluating the association of pro-arrhythmic tissue 
abnormalities with AP parameters demonstrated a significant 
association of tissue arrhythmias with larger APA, longer 
APD20, APD50, and APD90, and larger AUC​90, of impaired 
APD shortening with slower dV/dtmax, longer APD20, APD50, 
and APD90, and larger AUC​90, and of APD alternans with 
longer APD20 (Fig. 2, Table 2).

No other results from the above mixed linear effects anal-
ysis showed statistical significance. As revealed by adjusted 
R2, the variability covered by the model was 5% for RMP, 
47% for APA, 28% for dV/dtmax, 64% for APD20, 67% for 
APD50, 77% for APD90, and 66% for AUC​90.

Binomial logistic regression demonstrated a significant 
positive interaction of repaired status/QRS prolongation with 
tissue arrhythmias (t =  − 2.0, p = 0.045), while there was no 
significant association of clinical arrhythmias with any clini-
cal parameters or electrophysiological tissue abnormalities.

Relation of myocardial fibrosis to clinical 
parameters and tissue electrophysiology

Mean percent-fibrosis for all patients, patients with TOF, 
and patients with ASD was 15.9 ± 1.2%, 15.9 ± 1.3%, and 
15.4 ± 1.6%, respectively. An example histological stain 

Fig. 3   Frequency response of action potential (AP) properties. A 
Representative AP traces of a sample from a 5-month-old unrepaired 
tetralogy of Fallot patient showing decreasing AP duration (APD) 
with increasing stimulation frequency. B AP parameters at different 
stimulation frequencies averaged across patients (excluding patients 

with impaired APD shortening). ap-Values shown for association 
of given AP parameter with stimulation frequency in mixed linear 
effects model. APA action potential amplitude, AUC​ area under the 
curve, dV/dtmax maximum upstroke velocity, RMP resting membrane 
potential
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is depicted in Fig. 5A, and individual patient values for 
percent-fibrosis are shown in Table S3. Evaluation of the 
association of clinical parameters, electrophysiological tis-
sue abnormalities, and AP shape properties with fibrosis 
revealed a positive association of repaired TOF status/QRS 
prolongation, tissue arrhythmias, and larger AUC​90 with 
increased percent-fibrosis (estimate [est.] 20.4%, p = 0.044; 
est. − 7.0%, p = 0.046; and est. 11.1%, p = 0.024, respec-
tively) (Fig. 5B–D). Age, RMP, and APA were also signifi-
cantly associated with percent-fibrosis, but only with small 
estimates of − 0.7% (p = 0.010), 0.6% (p = 0.023), and − 1.6% 
(p = 0.030), respectively, suggesting little to no biological 
relevance (Fig. S2). No other results from this analysis were 
statistically significant. Notably, there was no significant 
association between cyanosis or RV–PA pressure gradient 
and percent-fibrosis (est. − 6.9%, p = 0.056 for cyanosis; est. 
9.2%, p = 0.206 for moderate RV–PA gradient; est. 6.4%, 
p = 0.221 for severe RV–PA gradient).

Discussion

Our data confirms pronounced arrhythmogenic potential in 
myocardium from patients with TOF that is already present 
at a young age. In addition, tissue arrhythmias were associ-
ated with repair status, QRS duration, and fibrosis. Cyanotic 
patients had shorter APD and smaller APA, while more 
severely diseased, acyanotic patients with a heart-failure-
like phenotype, and those with increased myocardial fibrosis 
and tissue arrhythmias demonstrated longer APD and larger 
AUC and/or larger APA (see Central Illustration/Graphical 
Abstract).

The detection of pro-arrhythmic changes in tissue elec-
trophysiology not only in RV myocardium of adult patients 
with repaired TOF and prolonged QRS duration, but also in 
young patients before repair operation, unequivocally indi-
cates an early, subclinical onset of pro-arrhythmic remod-
elling regardless of surgical intervention. Therefore, we 
confirmed that arrhythmogenesis in TOF is not limited to 
patients with surgical scars in the myocardium after myot-
omy in the RVOT with or without a ventriculotomy and 

Fig. 4   Association of clinical parameters with action potential (AP) 
properties. A–F Example graphs showing association of clinical 
parameters with AP parameters. aBar graphs indicate one data point 
per recording location; p-values shown for given association over all 
frequencies in mixed linear effects model. bp-Values for given AP 

parameter in moderate versus mild right-ventricle-to-pulmonary-
artery (RV–PA) pressure gradient elevation over all frequencies. APA 
action potential amplitude, APD action potential duration, AUC​ area 
under the curve, β-bl. beta blocker
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insertion of a transannular patch, but may also be caused 
by other myocardial remodelling in the RVOT unrelated 
to surgery, thereby supporting and extending the findings 
of a previous small-scale study describing early afterdepo-
larisations in isolated cardiomyocytes from children with 
unrepaired TOF [10]. Nevertheless, tissue arrhythmias were 
more likely to occur in the repaired group, which reflects 
the well-known risk of clinical arrhythmia affecting patients 
with repaired TOF and prolonged QRS duration [29, 30]. 
Our results call for closer investigation of the underlying 
pro-arrhythmic mechanisms in the myocardium and high-
light the importance of clinically monitoring not just adult 
patients, but younger patients too.

More severely diseased, acyanotic patients with a heart-/
RV-failure-like phenotype and clinically longer-standing dis-
ease (i.e. repaired TOF, acyanosis, severe proBNP elevation, 
necessity of beta blocker treatment, moderate RV-PA gradi-
ent) and more extensively remodelled tissue (i.e. more tissue 
electrophysiological abnormalities, fibrosis) showed longer 
APD and/or larger AUC. As the clinical background of these 
patients includes, above all, an enhanced RV load that may 
be accompanied by (subclinical) RV functional impairment 
or failure, patients with TOF may demonstrate electrophysi-
ological remodelling similar to adult patients without con-
genital heart disease, who have shown longer APD and QTc 

in right and left heart failure [31–35]. Clinically, it is also 
well known that heart failure in general, and RV dilation 
and failure in repaired TOF in particular, are risk factors for 
ventricular arrhythmias and sudden cardiac death [36–39]. 
Moreover, (inducible) ventricular tachycardia in the RVOT 
has been associated with prolonged APD in animal models 
[40]. Our results bring together these clinical and experi-
mental findings, as the occurrence of tissue arrhythmias in 
patients with TOF was greater in myocardial samples with 
longer APD and larger AUC. Thus, our data raise the ques-
tion of whether electrophysiological changes in patients with 
congenital heart disease are an inherent result of the disease 
itself, or whether they may be attributed to secondary events 
such as haemodynamic abnormalities of different origins but 
with similar effects on the myocardium. Further investiga-
tion of the patient population with congenital heart defects 
is urgently needed to answer this question.

In contrast to this heart-failure-associated, pro-arrhythmic 
AP phenotype, cyanotic patients demonstrated smaller APA 
and shorter APD. This is consistent with animal models 
investigating the effect of short-term hypoxia on AP shape 
[41], but contrasts with a mouse model of cyanotic disease 
exhibiting slower conduction velocity, longer QTc, and gene 
expression alterations of cardiac ion channels in chronic pre- 
and post-natal hypoxia [42]. Cyanosis, therefore, appears to 

Fig. 5   Association of tissue fibrosis with clinical parameters and 
action potential (AP) properties. A Example image of a right ventric-
ular sample section of a repaired tetralogy of Fallot patient, stained 
with picrosirius red (red: collagen, yellow: myocardium) (left); the 
corresponding segmentation into collagen (red) and myocardium 
(green) (middle); and the area analysed for percent-fibrosis (orange) 
after exclusion of background and tissue gaps (white), thickened 

endocardium/other non-myocardial collagen-containing structures 
(dark red) (analysis script reported in [16]). B–C Association of 
fibrosis with repair status and tissue arrhythmia (arr.). D Association 
of area under the curve at 90% repolarisation (AUC​90) with fibrosis; 
each data point indicates one patient sample. ap-Values shown for 
given association in mixed linear effects model
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alter the electrophysiology differently than other indicators 
of disease severity in TOF, highlighting that structural and 
haemodynamic differences within a common underlying 
congenital heart defect may lead to distinct electrophysi-
ological remodelling, possibly with different arrhythmic risk 
profiles.

Unexpectedly, the extent of fibrosis was not significantly 
different between TOF and ASD samples, despite ASD 
being a much less severe disease, at least in early child-
hood. This fibrosis could possibly be attributed to the extent 
of RV volume overload, which was not insignificant in the 
ASD patients with large defect size included here, and would 
suggest that ASD may also already affect RV myocardium 
at a young age, contrary to the current clinical perception.

We found increased fibrosis in repaired patients when 
compared to unrepaired patients, which is consistent with 
progressive fibrotic remodelling due to pulmonary insuf-
ficiency and concomitant volume overload in the RV, as 
shown previously [11, 17, 43]. In addition, our results dem-
onstrating increased myocardial fibrosis both in repaired 
patients and in tissue with arrhythmias are in line with clini-
cal findings that have related ventricular arrhythmogenesis 
to diffuse and focal fibrosis in cardiac magnetic resonance 
imaging of patients with repaired TOF [22]. Possibly, if both 
the pro-arrhythmic electrical abnormalities and the previ-
ously described effects of surgical scars in repaired TOF 
were dependent on fibrosis, these two arrhythmia mecha-
nisms may be interrelated and therefore enhance the risk 
of ventricular arrhythmias in patients with repaired TOF. 
However, the question of whether there is a causal link 
between fibrosis and AP remodelling in patients with con-
genital heart disease, via electromechanical interactions for 
example, cannot be determined from our data and warrants 
further investigation.

Study limitations

The interpretability of some of our results was limited by the 
high inter-individual variability of patients with congenital 
heart disease. An additional limitation was the small num-
ber of patients in the comparator group (i.e. patients with 
ASD). Despite the significant association of age with AP 
shape properties and the extent of fibrosis, for example, the 
small estimates of < 1.6 ms for APD20 and APD50 and of 
0.16 mV*s for AUC​90 serve as a reminder that ‘significance’ 
is not synonymous with ‘relevance’ (Table 2, Fig. S2). Clini-
cally, there is a well-known effect of age on arrhythmogen-
esis in repaired TOF [44]; unfortunately, however, the influ-
ence of age on AP remodelling remains unclear in this study.

The absence of pre- and peri-operative clinical ventricular 
arrhythmias in our patient group only allows for indirect 
assumptions regarding the links between ex situ tissue find-
ings and the risk of clinically relevant rhythm disturbances. 

In the study population, clinical tachyarrhythmias were of 
either supraventricular or junctional origin, manifesting 
exclusively during the immediate post-operative phase. 
Therefore, they are presumably caused by other factors 
(such as cardiopulmonary bypass, electrolyte imbalances, 
or catecholamine infusion) rather than the underlying con-
genital heart disease and associated electrophysiological 
remodelling.

Conclusions and outlook

Frequent pro-arrhythmic activity that already occurs at a 
young age in TOF RVOT myocardium may indicate early 
electrophysiological remodelling or an underlying arrhyth-
mic predisposition, thereby confirming the presence of 
arrhythmogenic mechanisms unrelated to and in addi-
tion to the pro-arrhythmic effects of previously induced 
surgical scars. We identified two different forms of AP 
remodelling, highlighting differential electrophysiological 
responses in the study cohort despite common underlying 
congenital heart defects. As all phases of the AP were 
affected to some extent, it may be illuminating to exam-
ine ion currents in cardiomyocytes, as well as electrical 
conduction in these patients in future work. Finally, our 
results highlight the potential diagnostic value of moni-
toring myocardial fibrosis, once the causal links to elec-
trophysiological function have been investigated further.

Clinical perspectives

As we confirmed a potential link between fibrotic remodel-
ling and pro-arrhythmic propensity in TOF myocardium, 
the rapidly improving clinical-imaging-based detection 
of structural alterations could aid the prediction of pro-
arrhythmic risk in these patients once larger-scale studies 
have identified underlying mechanisms and their relation 
to clinical outcomes. In addition, long-term follow-up 
of the study patients for arrhythmias and heart failure 
symptoms, and linking these to myocardial findings, may 
provide additional information that is useful for clinical 
identification of higher-risk patients.
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