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Abstract
Background In suspected myocardial infarction (MI), guidelines recommend using high-sensitivity cardiac troponin (hs-
cTn)-based approaches. These require fixed assay-specific thresholds and timepoints, without directly integrating clinical 
information. Using machine-learning techniques including hs-cTn and clinical routine variables, we aimed to build a digital 
tool to directly estimate the individual probability of MI, allowing for numerous hs-cTn assays.
Methods In 2,575 patients presenting to the emergency department with suspected MI, two ensembles of machine-learning 
models using single or serial concentrations of six different hs-cTn assays were derived to estimate the individual MI prob-
ability (ARTEMIS model). Discriminative performance of the models was assessed using area under the receiver operating 
characteristic curve (AUC) and logLoss. Model performance was validated in an external cohort with 1688 patients and 
tested for global generalizability in 13 international cohorts with 23,411 patients.
Results Eleven routinely available variables including age, sex, cardiovascular risk factors, electrocardiography, and hs-cTn 
were included in the ARTEMIS models. In the validation and generalization cohorts, excellent discriminative performance 
was confirmed, superior to hs-cTn only. For the serial hs-cTn measurement model, AUC ranged from 0.92 to 0.98. Good 
calibration was observed. Using a single hs-cTn measurement, the ARTEMIS model allowed direct rule-out of MI with very 
high and similar safety but up to tripled efficiency compared to the guideline-recommended strategy.
Conclusion We developed and validated diagnostic models to accurately estimate the individual probability of MI, which 
allow for variable hs-cTn use and flexible timing of resampling. Their digital application may provide rapid, safe and efficient 
personalized patient care.
Trial Registration numbers Data of following cohorts were used for this project: BACC  (www. clini caltr ials. 
gov; NCT02355457), stenoCardia (www. clini caltr ials. gov; NCT03227159), ADAPT-BSN (www. austr alian clini caltr ials. 
gov. au; ACTRN12611001069943), IMPACT (www. austr alian clini caltr ials. gov. au, ACTRN12611000206921), ADAPT-
RCT (www. anzctr. org. au; ANZCTR12610000766011), EDACS-RCT (www. anzctr. org. au; ANZCTR12613000745741); 
DROP-ACS  (https:// www. umin. ac. jp, UMIN000030668); High-STEACS  (www. clini caltr ials. gov; NCT01852123), 
LUND (www. clini caltr ials. gov; NCT05484544), RAPID-CPU (www. clini caltr ials. gov; NCT03111862), ROMI (www. clini 
caltr ials. gov; NCT01994577), SAMIE (https:// anzctr. org. au; ACTRN12621000053820), SEIGE and SAFETY (www. clini 
caltr ials. gov; NCT04772157), STOP-CP (www. clini caltr ials. gov; NCT02984436),
UTROPIA (www. clini caltr ials. gov; NCT02060760).
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Introduction

Symptoms suggestive of myocardial infarction (MI) are 
a major reason for presentation to the emergency depart-
ments (ED) worldwide [1]. Measurement of cardiac troponin 
is crucial to diagnose or to rule out non-ST-elevation MI 
(NSTEMI) [2, 3]. For the management of patients with sus-
pected NSTEMI, current guidelines recommend the applica-
tion of high-sensitivity cardiac troponin (hs-cTn) assay-spe-
cific thresholds such as the 99th percentile or study-derived 
cut-offs for measurements obtained directly at presentation 
and, depending on the selected diagnostic approach, during 
serial sampling after one, two or three hours. [3–7]

Application of fixed assay-specific hc-cTn thresholds 
combined with predefined time points of serial sampling 
remains challenging in busy emergency settings with glob-
ally widely differing patients’ characteristics. Besides, in the 
context of suspected NSTEMI, clinicians do not interpret hs-
cTn concentrations and thresholds in isolation, but in combi-
nation with ECG findings and clinical characteristics, such 
as chest pain onset time, cardiovascular risk factors, age, sex, 
and other comorbidities, which are largely neglected in most 
current diagnostic algorithms [8]. Thus, a diagnostic algo-
rithm, simultaneously including various variables such as 
hs-cTn concentrations, their dynamic change during flexibly 

timed resampling, ECG findings as well as most relevant 
and immediately available clinical variables, constitutes an 
unmet clinical need in patients with suspected MI, both in 
the ED and in the ambulatory care setting.

Based on prior work [9], we derived and validated a 
machine-learning model, which estimates the individual 
probability of NSTEMI in patients presenting with symp-
toms indicative of MI. This model accounts for immediately 
available confounding clinical variables, allows for flexible 
timing of potential serial sampling and can be applied using 
most established hs-cTn assays, including point-of-care 
assays. We aimed to prove its clinical application in patients 
with suspected NSTEMI and [1] defined the model’s overall 
diagnostic accuracy, [2] assessed the clinical performance 
according to MI probability thresholds in heterogeneous 
clinical conditions, and [3] finally compared the model’s 
clinical utility against currently recommended assay-specific 
thresholds. Overall, this work shall pave the way towards the 
routine clinical implementation of medical decision support 
systems to improve a rapid, efficient and safe diagnostic pro-
cess in patients with suspected MI.
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Methods

Study design and populations

In the “Artificial intelligence in suspected myocardial infarc-
tion study “ (ARTEMIS), we derived and externally vali-
dated diagnostic models by estimating the probability of 
MI using machine learning (probability machines) in adult 
patients presenting to the ED with symptoms suggestive of 
MI. We excluded patients presenting with ST-segment eleva-
tion MI. The overall study concept is displayed in Fig. 1. 
Briefly, probability machines for MI were derived in the 
BACC (Biomarkers in Acute Cardiac Care; NCT02355457) 
study, which is an ongoing prospective observational diag-
nostic study performed at the University Heart & Vascu-
lar Center Hamburg, Germany [10, 11]. The probability 
machines were then externally validated in the stenoCardia 
(Study for Evaluation of New Onset Chest Pain and Rapid 
Diagnosis of Myocardial Necrosis; NCT03227159) cohort, 
which prospectively enrolled patients with suspected acute 
coronary syndrome at the EDs of the University Medical 
Center Mainz, the Federal Armed Forces Hospital Koblenz, 
and University Hospital Hamburg-Eppendorf between 2007 
and 2009 in an observational fashion [12, 13]. To confirm 
the generalizability and global applicability of the newly 
developed and validated diagnostic models in clinically 
and geographically widely varying settings, anonymized 

individual-level data of thirteen additional cohorts from 
nine countries and four continents were transferred to the 
University Medical Center Hamburg-Eppendorf, Germany, 
to centrally apply the diagnostic models on the harmonized 
data in the global generalization dataset (see Supplementary 
Appendix for detailed description).

All studies were carried out according to the principles of 
the Declaration of Helsinki and approved by the local ethics 
committees. Participation was voluntary; each patient gave 
written informed consent. The TRIPOD checklist for this 
study is provided in Table S1 in Supplementary Appendix.

Adjudication of final diagnosis

The primary outcome of this study was the diagnosis of 
NSTEMI at time of ED presentation, which included type 1 
and type 2 MI. In the derivation and validation dataset, the 
final diagnosis of MI was adjudicated after patient discharge 
by two cardiologists independently considering all available 
clinical, imaging, electrocardiographic and hs-cTn informa-
tion. Cases in which the two initial adjudicators disagreed 
were reviewed by a third cardiologist. Detailed information 
on the adjudication process in each cohort including the 
generalization dataset may be found in the Supplementary 
Appendix.

Fig. 1  Study concept and diagnostic model development. This figure displays the overall study design including study populations, development 
of the diagnostic model, model validation and generalization, as well as comparison to the current standard of care
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Outcome data

For prognostic evaluation, we collected data on incident MI, 
excluding the index events, as well as all-cause death within 
30 days after ED presentation.

Troponin measurements

Concentrations of cardiac troponin was measured by five 
hs-cTnI assays (Architect® i2000 platform by Abbott; 
Atellica® IM platform by Siemens Healthineers; Atellica 
VTLi® point-of-care device by Siemens Healthineers; 
Access® platform by Beckman Coulter; PATHFAST® Ana-
lyser by PHC) and one hs-cTnT assay (Elecsys® Cobas e411 
platform by Roche Diagnostics) in blood samples collected 
at time of ED presentation and serially thereafter as part of 
routine clinical care or in batches of samples that had been 
stored at  – 80 °C. Targeted timing of the second blood draw 
differed between the various participating studies and ranged 
from one to three hours. Time elapsed between serial study 
blood sampling in the ED was documented. Additional infor-
mation regarding the hs-cTn assays used in all ARTEMIS 
study cohorts is provided in the Supplementary Appendix.

Clinical variables

In total, 18 patient-specific as well as hs-cTn-related vari-
ables readily available at time of ED presentation and all 
previously associated with myocardial infarction were con-
sidered for model development. The most important clinical 
variables were selected for the final model (see Supplemen-
tary Appendix).

Statistical analysis and model development

A detailed statistical description is provided in the Supple-
mentary Appendix and summarized in Figure S1. Briefly, for 
each of the six hs-cTn assays studied, we derived, validated, 
and globally applied two machine-learning diagnostic mod-
els, which estimate the individual probability of an acute MI 
in individuals presenting to the ED with suspected MI: One 
model was based on a single hs-cTn measurement obtained 
at time of ED presentation, the second model on two serial 
hs-cTn measurements. Modeling steps in the model deri-
vation phase included multiple imputation of missing co-
variables, cross-validation in all modeling and variable 
selection steps, and combination of multiple machines in 
a super learner with equal weights. Probability estimates 
of the super learner were calibrated in all validation and 
generalization studies.

The diagnostic performance of the models across the 
spectrum of possible MI probability thresholds was evalu-
ated in one percent increments. Diagnostic performance 

measures were obtained from random effect meta-analyses 
and included negative and positive predictive value (NPV 
and PPV), sensitivity and specificity, proportion of patients 
below or above a given MI probability threshold as well as 
corresponding 30-day incidence of MI or death. Resulting 
tables and figures could be used to identify patients at low 
risk of MI suitable for outpatient management or those at 
high risk who are suitable to inpatient or invasive strategies. 
To illustrate the clinical applicability and to contrast the per-
formance of the novel diagnostic model with the current 
state of the art approach, we compared the diagnostic perfor-
mance measures of our diagnostic model with the 0 h, 0/1 h 
and 0/2 h strategy recommended by the ESC guideline [4].

To make the algorithm readily available and applicable 
to clinicians, a mobile application is currently constructed 
based on the present models, which are easily transferable 
to other systems. In a mid-term perspective, semi-automated 
integration of the diagnostic models into the local elec-
tronic health record systems as a medical support system 
is envisioned.

All statistical analyses were performed in R version 4.2.0 
[14].

Results

Study populations

The models were developed in 2575 patients with suspected 
MI in the derivation cohort BACC and then applied in 1688 
patients of the validation cohort stenoCardia as well as in 
23,411 patients of the global generalization dataset. Baseline 
characteristics of the derivation, validation and global gen-
eralization cohorts can be found in Table 1 and Tables S2, 
S3, S4, S5. In the overall dataset, median age was 61 [50,73] 
years, 55.8% were male and 46.1% presented to the ED 
within the first three hours after symptom onset. Prevalence 
of MI ranged from 5.5 to 16.8% across the study cohorts. 
During follow-up, 643 (2.7%) incident cardiovascular death 
and 1007 Mis (4.8%) were observed.

Serial measurements of all hs-cTn assays were avail-
able in the derivation dataset, but availability of meas-
urements varied among the validation and generalization 
cohorts (Figure S1). Overall, at time of ED presentation, 
hs-cTnT Elecsys was the most widely used assay with 
measurements available in 20,001 patients followed by 
hs-cTnI Architect in 14,255, hs-cTnI Atellica in 8332, 
hs-cTnI Access in 6946, hs-cTnI Pathfast in 3246 and 
hs-cTnI Atellica VTLi in 1088 patients Fig. 2.
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Model derivation

Among 18 variables investigated, 9 variables for the sin-
gle hs-cTn measurement and 8 variables for the serial 
hs-cTn measurement were selected (Table S6, Fig. 3). 
Based on these variables, four different learning machines 
were selected and combined to a super learner into each 
diagnostic model: For the single hs-cTn diagnostic model 
multivariable logistic regression with restricted cubic 
splines, gradient boosting, multivariate adaptive regres-
sion splines and elastic net were selected. For the serial 
hs-cTn diagnostic model multivariable logistic regres-
sion with restricted cubic splines, gradient boosting, 

multivariate adaptive regression splines and random 
forest were selected. Both diagnostic models provided a 
better performance compared to models based on hs-cTn 
alone, models including information on eGFR, or the full 
models (Figures S2, S3, S4). The machine-learning-based 
super learner outperformed classical multiple logistic 
regression for both the single and serial validation mod-
els (Figure S3). Specifically, it performed better than any 
single machine for the single hs-cTn troponin measure-
ments. The diagnostic model using single or serial hs-cTn 
measurements showed high discriminative accuracies for 
each evaluated troponin assay (Figure S5).

Table 1  Baseline characteristics for derivation, validation, and generalization cohorts

Data are presented as median [Q1, Q3] or number (proportion). *VTLi measurements were performed in a separate population of patients 
recruited to the BACC study. Detailed characteristics of these patients is provided in Table S2. Abbreviations: BP  blood pressure, eGFR  esti-
mated glomerular filtration rate, CAD  coronary artery disease, ECG  electrocardiogram, MI  myocardial infarction, hs-cTn  high-sensitivity cardiac 
troponin

All patients Derivation Validation Global generalization

Sample size 27,674 2575 1688 23,411
Age (years) 61.0 [50.0, 73.0] 64.0 [51.0, 75.0] 63.0 [52.0, 72.0] 61.0 [50.0, 73.0]
Sex (male) (%) 15,451 (55.8) 1638 (63.6) 1108 (65.6) 12,705 (54.3)
Heart rate (bpm) 76.0 [66.0, 88.0] 77.0 [67.0, 88.5] 70.0 [62.0, 81.0] 76.0 [66.0, 88.0]
Systolic BP (mmHg) 143.0 [128.0, 160.0] 147.0 [131.0, 163.0] 140.0 [129.0, 160.0] 143.0 [128.0, 160.0]
eGFR (mL/min for 1.73m2) 82.9 [63.4, 96.9] 76.9 [58.5, 92.3] 84.2 [69.0, 95.2] 83.4 [63.7, 97.4]
History of CAD (%) 8203 (29.8) 872 (33.9) 606 (36.9) 6725 (28.9)
History of heart failure (%) 2588 (11.5) 394 (15.3) 120 (7.5) 2074 (11.3)
History of atrial fibrillation (%) 1859 (13.0) 395 (15.3) 162 (9.8) 1302 (12.9)
Hypertension (%) 16,127 (59.0) 1681 (65.5) 1256 (74.4) 13,190 (57.1)
Hyperlipoproteinemia (%) 12,837 (48.4) 904 (35.1) 1236 (73.2) 10,697 (48.1)
Diabetes (%) 5404 (19.8) 326 (12.8) 303 (18.2) 4775 (20.7)
Ever smoker (%) 10,796 (43.1) 1187 (46.8) 865 (52.6) 8744 (42.0)
Family history of CAD (%) 8476 (40.0) 478 (19.3) 540 (33.2) 7458 (43.7)
Ischemic signs ECG (%) 4428 (18.4) 520 (20.8) 872 (52.1) 3036 (15.3)
Symptom onset < 3 h (%) 11,122 (46.1) 713 (29.4) 631 (37.4) 9778 (48.9)
Time between serial samples (min) 80.0 [60.0, 155.0] 60.0 [60.0, 63.0] 180.0 [162.0, 190.0] 90.0 [60.0, 148.0]
Final diagnosis of NSTEMI (%) 3249 (11.7) 368 (14.3) 283 (16.8) 2598 (11.1)
Follow-up cardiovascular death (%) 643 (2.7) 74 (3.4) 38 (2.3) 531 (2.7)
Follow-up MI (%) 1007 (4.8) 24 (1.1) 47 (2.8) 936 (5.5)
Hs-cTnI Access- First measurement (ng/L) 3.5 [2.3, 8.3] 5.3 [2.9, 15.8] 5.2 [2.3, 23.1] 3.0 [2.3, 6.0]
Hs-cTnI Access—Second measurement (ng/L) 4.0 [2.3, 10.3] 5.8 [3.0, 19.7] 7.2 [3.2, 38.6] 3.0 [2.3, 6.5]
Hs-cTnI Architect- First measurement (ng/L) 4.5 [2.0, 14.0] 5.7 [2.6, 16.1] 6.9 [3.5, 28.8] 4.0 [2.0, 12.0]
Hs-cTnI Architect—Second measurement (ng/L) 5.0 [2.2, 16.3] 5.9 [2.6, 19.4] 7.8 [3.6, 35.8] 4.1 [2.0, 14.0]
Hs-cTnI Atellica—First measurement (ng/L) 5.3 [2.5, 17.4] 5.7 [2.5, 19.9] 6.4 [3.0, 31.2] 4.8 [2.5, 14.6]
Hs-cTnI Atellica- Second measurement (ng/L) 6.4 [2.9, 22.0] 6.2 [2.7, 23.9] 8.0 [3.5, 41.2] 6.0 [2.8, 18.8]
Hs-cTnI Atellica VTLi- First measurement (ng/L) 7.6 [4.1, 16.0] 6.3 [3.8, 11.5] - 7.8 [4.1, 16.8]
Hs-cTnI Atellica VTLi- Second measurement (ng/L) 7.9 [4.1, 17.2] 6.0 [3.8, 12.5] - 8.2 [4.2, 18.4]
Hs-cTnT Elecsys—First measurement (ng/L) 9.0 [5.0, 20.0] 9.0 [5.0, 21.0] 9.2 [5.0, 20.3] 8.6 [5.0, 20.0]
Hs-cTnT Elecsys—Second measurement (ng/L) 9.0 [5.0, 22.0] 9.0 [5.0, 23.0] 8.1 [4.1, 23.3] 8.8 [5.0, 22.0]
Hs-cTnI Pathfast- First measurement (ng/L) 4.0 [2.3, 12.4] 3.7 [2.3, 12.2] 4.2 [2.3, 12.8] -
Hs-cTnI Pathfast- Second measurement (ng/L) 4.3 [2.3, 15.5] 4.0 [2.3, 14.4] 5.1 [2.6, 20.3] -
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Model validation

In the validation dataset, the diagnostic model showed a bet-
ter performance, compared to models based on hs-cTn alone, 
models including information on eGFR or a model including 
all offered clinical variables (Figures S2, S3, S4). Observed 
and predicted risks of MI were for all assays in the deriva-
tion data and after calibration in the validation data (Figure 
S6). When applying the diagnostic model based on a single 
or a serial hs-cTn measurement in the validation dataset, we 
observed an increase in AUC and a decrease in logLoss and 
Brier Score (Figure S5).

Global generalization

In the global generalization dataset, observed and predicted 
risks of MI were again similar for all assays after re-cali-
bration (Figure S7). The discriminative accuracy using the 
diagnostic model was high across all cohorts (Figure S5; 
Table S7). When summarizing the measures across the vali-
dation and generalization cohorts, the AUCs were similar 
for all hs-cTn assays applied (Fig. 2). In detail, the AUCs 
were 0.95 (95%CI 0.94–0.96) and 0.98 (95%CI 0.97–0.99) 
for the single and serial hs-cTn diagnostic model using the 
Access assay, and 0.92 (95%CI 0.89–0.94) and 0.96 (95%CI 
0.95–0.98), for the Architect assay, respectively. For the 
Atellica assay, the AUC was 0.93 (95%CI 0.90–0.97) and 
0.96 (95%CI 0.94–0.98), and 0.86 (95%CI 0.82–0.89) and 
0.92 (95%CI 0.90–0.95), for the Atellica VTLi point-of-care 
assay, respectively. For the Elecsys assay, the AUC was 0.89 
(95%CI 0.87–0.92) and 0.94 (95%CI 0.92–0.96) and the 

patient-near Pathfast assay revealed an AUC of 0.95 (95%CI 
0.94–0.97) and 0.98 (95%CI 0.97–0.99), respectively.

Clinical application

To illustrate the clinical usability, we calculated the diag-
nostic measures for each possible MI probability threshold. 
Across the range of thresholds, we observed a decreasing 
NPV and sensitivity with increasing MI probability, while 
PPV, specificity and 30-day mortality continuously increased 
(Figure S8, Tables S8, S9). As examples, the diagnostic 
measures to rule-out MI in individuals with a MI probability 
below 0.5%, below 1% and below 2% are depicted in Table 2 
using both diagnostic models with single and serial hs-cTn 
measurements. When using single hs-cTn measurement and 
a MI probability of less than 0.5%, we observed very high 
NPVs of 99.6% or greater. In contrast, when using serial hs-
cTn measurement and a MI probability of, e.g., less than 2%, 
we observed excellent diagnostic measures with NPV values 
of 99.5% or above and a proportion of at least 60% of the 
population. Importantly, these values were associated with 
a low risk of 30-day mortality ranging between 0.6–1.1%.

Comparison to standard of care

Comparative analyses using a single hs-cTn measurement 
approach based on the ESC algorithms versus the ARTE-
MIS pathway are depicted in Table 3. Using the ARTEMIS 
pathway and considering an MI probability threshold < 0.5% 
to identify subjects eligible for direct rule-out of MI, the 
safety, quantified by NPV and sensitivity, was very high 

Fig. 2  Discrimination measures using the diagnostic model based on 
a single and on a serial hs-cTn measurement per assay summarized 
across the validation and generalization cohorts. This figure summa-
rizes the discrimination measures AUC and LogLoss with 95% CI for 
each hs-cTn assay using the diagnostic model with single and serial 

hs-cTn measurements. The displayed measured represent the summa-
rized values from the validation and generalization cohorts. Detailed 
results from each cohort are displayed in Figure S5. Abbreviations: 
AUC   area under the curve, CI  confidence interval, hs-cTn  high-sensi-
tivity troponin



1294 Clinical Research in Cardiology (2023) 112:1288–1301

1 3

and similar when compared to the direct rule-out approach 
of the ESC algorithms. Importantly, however, the propor-
tion of patients qualifying for direct and safe rule-out based 
on a single hs-cTn measurement was increased by factor 
two–three by our machine-based model, ranging between 30 
and 49%, as compared to 14 and 15% using the direct rule-
out approach provided by the ESC algorithms. Using an MI 
probability of > 50% as a direct rule-in criteria, high accu-
racy, quantified by the PPV and specificity, was achieved. 
The accuracy and proportions of direct rule-in were similar 
to the ESC algorithms. Furthermore, the observational zone 
after a single hs-cTn measurement was reduced for all hs-
cTn assays by 10–33% when using the ARTEMIS pathway. 
For the serial hs-cTn measurement approach, a selection of 
possible ARTEMIS thresholds to define rule-out and rule-
in of MI resulted in overall comparable diagnostic perfor-
mances when directly compared to the ESC 0/1 h and 0/2 h 
algorithms (Table S10).

Exemplary clinical use cases

The general workflow and the potential clinical application 
of the ARTEMIS pathway are displayed in Fig. 3 and Sup-
plementary Appendix (Figure S10). The smart interpretation 
of cardiac troponin, which can be measured with a large 
variety of possible hs-cTn assays in ARTEMIS, in combina-
tion with other easily available clinical variables may inform 
the treating physicians in real time about the individual prob-
ability of MI in form of a mobile application or, if embed-
ded in the local electronical medical health record system, 
as a medical decision support system. Hereby, ARTEMIS 
may guide safe, efficient and immediate medical decision in 
patients presenting with suspicion of MI.

Discussion

Extending prior work [9], we derived, validated, and gen-
eralized a personalized diagnostic model to immediately, 
accurately, and safely quantify the risk probability of 
MI. From individual-level data contributed by more than 

Fig. 3  Diagnostic pathway 
in patients with suspected 
myocardial infarction—the 
machine-learning supported 
clinical application. This figure 
displays the clinical workflow 
to estimate the individual MI 
probability using the ARTEMIS 
diagnostic model. Abbre-
viations: CAD  coronary artery 
disease, ECG  electrocardio-
gram, MI  myocardial infarction, 
hs-cTn  high-sensitivity cardiac 
troponin
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Table 2  Diagnostic measures of selected MI probability thresholds to rule-out of MI

This table displays the diagnostic performance measures (NPV, proportion of individuals and 30-day mortality) using the MI probability as 
threshold. This table is based on data from the validation cohort stenocardia as well as the generalization cohorts ADAPT-BSN, ADPs-CH, 
FASTEST, LUND, RAPID-CPU, SAMIE, SEIGE & SAFETY, STOP-CP and UTROPIA. Abbreviations: MI  myocardial infarction, hs-cTn  high-
sensitivity cardiac troponin, NPV  negative predictive value, CI  confidence interval, NaN  not a number

MI probabil-
ity < 0.5%

Single hs-cTn measurement model Serial hs-cTn measurement model

Hs-cTn assay NPV (95%CI) Sensitivity 
(95%CI)

Proportion 
(95%CI)

30d mortality 
(95%)

NPV (95%CI) Sensitivity 
(95%CI)

Proportion 
(95%CI)

30d mortality 
(95%CI)

Access 99.7 (99.4, 
99.8)

98.7 (98.3, 
99.1)

44.4 (31.7, 
57.9)

0.5 (0.2, 1.5) 99.8 (99.6, 
99.9)

98.6 (98.0, 
99.1)

67.5 (63.3, 
71.4)

0.5 (0.2, 1.4)

Architect 99.6 (99.4, 
99.8)

99.2 (97.4, 
99.7)

30.0 (15.9, 
49.4)

0.1 (0.0, 0.5) 99.8 (99.6, 
99.9)

98.9 (97.6, 
99.5)

59.5 (53.6, 
65.1)

0.5 (0.3, 0.9)

Atellica 99.8 (99.6, 
99.9)

99.1 (95.4, 
99.8)

49.5 (41.5, 
57.5)

0.3 (0.1, 0.6) 99.8 (99.6, 
99.9)

98.8 (97.3, 
99.5)

52.0 (42.7, 
61.2)

0.4 (0.2, 0.7)

Atellica VTLi 99.7 (99.3, 
100.0)

98.9 (98.2, 
99.5)

32.5 (29.5, 
35.4)

0.0 (NaN, 
NaN)

100.0 (NaN, 
NaN)

100.0 (NaN, 
NaN)

41.0 (37.8, 
44.1)

0.5 (0.1, 0.9)

Elecsys 99.6 (99.2, 
99.8)

99.1 (97.9, 
99.6)

30.8 (20.8, 
42.9)

0.3 (0.1, 1.2) 99.7 (99.3, 
99.9)

99.0 (98.1, 
99.5)

46.9 (32.3, 
62.2)

0.6 (0.2, 1.6)

Pathfast 99.7 (99.4, 
100.0)

99.4 (99.0, 
99.8)

26.8 (24.3, 
29.4)

0.3 (0.0, 0.6) 99.9 (99.7, 
100.0)

99.4 (99.0, 
99.8)

63.9 (61.1, 
66.6)

0.4 (0.0, 0.8)

MI probabil-
ity < 1%

Single hs-cTn measurement model Serial hs-cTn measurement model

Hs-cTn assay NPV (95%CI) Sensitivity 
(95%CI)

Proportion 
(95%CI)

30d mortality 
(95%)

NPV (95%CI) Sensitivity 
(95%CI)

Proportion 
(95%CI)

30d mortality 
(95%CI)

Access 99.7 (99.5, 
99.8)

98.2 (97.0, 
98.9)

51.9 (38.8, 
64.8)

0.4 (0.1, 1.3) 99.8 (99.5, 
99.9)

98.3 (97.7, 
98.8)

72.1 (68.5, 
75.5)

0.7 (0.3, 1.7)

Architect 99.6 (99.3, 
99.7)

98.5 (97.4, 
99.2)

43.8 (34.4, 
53.8)

0.2 (0.1, 0.5) 99.7 (99.5, 
99.8)

98.6 (97.1, 
99.3)

66.3 (58.6, 
73.2)

0.7 (0.5, 1.0)

Atellica 99.8 (99.5, 
99.9)

98.5 (95.4, 
99.6)

54.9 (44.3, 
65.2)

0.4 (0.1, 1.0) 99.8 (99.6, 
99.9)

98.7 (96.5, 
99.6)

59.9 (51.2, 
68.0)

0.6 (0.3, 1.0)

Atellica VTLi 99.7 (99.4, 
100.0)

98.9 (98.2, 
99.5)

35.8 (32.8, 
38.8)

0.3 (0.0, 0.6) 100.0 (NaN, 
NaN)

100.0 (NaN, 
NaN)

51.5 (48.3, 
54.7)

0.6 (0.1, 1.1)

Elecsys 99.6 (99.3, 
99.8)

98.5 (96.6, 
99.4)

41.0 (31.1, 
51.8)

0.4 (0.1, 1.8) 99.7 (99.3, 
99.9)

98.7 (97.3, 
99.4)

58.3 (46.3, 
69.4)

0.7 (0.3, 1.9)

Pathfast 99.4 (98.7, 
99.7)

97.6 (96.6, 
98.4)

33.6 (7.7, 75.6) 0.3 (0.2, 0.5) 99.7 (99.4, 
99.8)

99.2 (98.3, 
99.6)

45.5 (11.0, 
85.0)

0.5 (0.3, 0.8)

MI probabil-
ity < 2%

Single hs-cTn measurement model Serial hs-cTn measurement model

Hs-cTn assay NPV (95%CI) Sensitivity 
(95%CI)

Proportion 
(95%CI)

30d mortality 
(95%)

NPV (95%CI) Sensitivity 
(95%CI)

Proportion 
(95%CI)

30d mortality 
(95%CI)

Access 99.6 (99.3, 
99.7)

97.2 (95.3, 
98.4)

60.9 (47.9, 
72.5)

0.3 (0.1, 1.2) 99.7 (99.5, 
99.9)

98.0 (97.4, 
98.5)

76.0 (72.0, 
79.6)

1.1 (0.5, 2.2)

Architect 99.3 (99.0, 
99.5)

97.1 (96.3, 
97.8)

54.8 (45.3, 
64.0)

0.4 (0.1, 1.3) 99.6 (99.4, 
99.8)

98.3 (96.7, 
99.1)

71.3 (64.0, 
77.6)

0.7 (0.5, 1.0)

Atellica 99.6 (99.4, 
99.8)

97.5 (90.2, 
99.4)

60.7 (47.3, 
72.6)

0.4 (0.2, 0.8) 99.7 (99.5, 
99.8)

97.9 (94.6, 
99.2)

67.3 (58.6, 
74.9)

0.7 (0.5, 1.1)

Atellica VTLi 99.5 (99.0, 
99.9)

97.7 (96.8, 
98.7)

39.9 (36.8, 
43.0)

0.5 (0.1, 1.0) 99.7 (99.3, 
100.0)

97.9 (96.7, 
99.0)

59.7 (56.5, 
62.8)

0.6 (0.1, 1.1)

Elecsys 99.1 (97.7, 
99.6)

96.5 (94.6, 
97.8)

48.5 (35.1, 
62.2)

0.5 (0.2, 1.2) 99.5 (99.3, 
99.7)

97.6 (95.1, 
98.9)

65.6 (55.3, 
74.6)

0.9 (0.4, 2.2)

Pathfast 99.2 (98.8, 
99.4)

97.6 (95.0, 
98.8)

46.3 (17.0, 
78.4)

0.5 (0.3, 0.8) 99.5 (99.1, 
99.7)

98.1 (97.6, 
98.5)

61.0 (32.9, 
83.3)

0.6 (0.4, 0.9)
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27,000 patients with suspected acute MI in four continents, 
nine countries and 14 prospectively established real world 
cohorts we applied various machine-based learning tools and 
developed a super learner model resulting in two diagnostic 
models. Their clinical application allows providers to deter-
mine the probability of MI with high diagnostic accuracy. 
The personalized model (1) works irrespective of which hs-
cTn assay is used, (2) integrates the information of important 
and rapidly available clinical variables, (3) requires neither 
assay-specific cut-offs nor fixed timing of serial sampling, 
(4) can be applied after calibration in various clinical set-
tings with widely varying pre-test probabilities and (5) offers 
a selection of risk probability thresholds (e.g., 0.5%, 1% or 
2% MI probability) which allows for safe and immediate 
discharge in a very high proportion of patients.

While the application of hs-cTn assays improves visibility 
of even minor myocardial injury and allows for early detec-
tion of MI, the clinical management and decision-making 
became more challenging [4, 13, 15]. Consequently, various 
assay-specific hs-cTn algorithms have been developed and 
implemented to efficiently diagnose and triage patients with 
suspected MI [16–18]. Although these algorithms allow for 
major advances in rapid and safe clinical decision-making, 
they still rely on inflexible rules for the timing of hs-cTn 
resampling (1, 2 or 3 h) and apply assay-specific thresholds 
of mostly very low concentrations and do not account for 
clinical variables such as age, sex, risk factors, chest pain 
onset time, and others. In consequence, the assay-specific 
0/1 h and 0/2 h or 0/3 h algorithms as suggested by the 
European Society of Cardiology for example, are not fully 
implemented in global clinical routine [4].

To accelerate the advantage of hs-cTn usage in clinical 
routine and enable—in interaction with hs-cTn point-of-
care tests—a safe application also in ambulatory settings, 
we extend the concept of risk probabilities introduced 

recently [9] towards a highly accurate personalized diag-
nostic model. As the model was trained using eleven 
(selected out of an initial 18) clinical variables including 
time of chest pain onset, time between serial sampling, 
ECG, age, sex, and cardiovascular risk factors and nearly 
all hs-cTn tests currently available, it provides the highest 
possible diagnostic accuracy and allows for rapid and safe 
decision-making. Both, single and serial sampling models 
achieve excellent diagnostic accuracy and offer the oppor-
tunity to select rule-out thresholds which allow rapid and 
safe discharge in a high proportion of patients. To achieve 
the best balance between high safety and high efficacy, 
a low MI probability threshold (e.g., 0.5%, 1% or 2%) is 
recommended for rule-out after single or serial testing, 
respectively. Compared with previous data on the perfor-
mance of the ESC 0/1 h algorithm reporting a rule-out pro-
portion of 44–57%, the rule-out proportions achieved by 
the application of the thresholds of the diagnostic models 
are larger and range, e.g., for a serial rule-out cut-off < 2%, 
between 60 and 76% [18, 19]. This improvement is most 
apparent for a single measurement approach, which allows 
direct rule-out of MI in 30–49% of the overall population 
compared to 13–15% using the ESC algorithm [18–22].

As the model is based on heterogenous global data, it is 
calibrated for European, Australian, New Zealand, North-
ern American, and Japanese conditions and, therefore, can 
be generally applied. The model also integrates two point-
of-care hs-cTn assays (Pathfast and Atellica VTLi). When 
hs-cTn point-of-care assays are used, the ARTEMIS model 
can be applied in outpatient settings and, therefore, might 
improve diagnostic accuracy and speed in outpatient care 
and could reduce the number of hospital admissions.

In general, machine-based learning diagnostic and pre-
diction models need to fulfill high methodological, clinical 
and regulatory standards before being used by healthcare 

Table 3  Diagnostic performance comparison of the direct rule-out or rule-in approach based on a single hs-cTn measurement of the ESC 0/1 h 
algorithms and the ARTEMIS diagnostic model

ESC 0h thresholds ARTEMIS single hs-cTn measurement diagnostic model 
Rule-out Observe Rule-in Rule-out Observe Rule-in

NPV Sensitivity Proportion Proportion PPV Specificity Proportion NPV Sensitivity Proportion Proportion PPV Specificity Proportion

Hs-cTnI
Access 99.60% 98.80% 14.30% 74.00% 80.90% 98.40% 7.90% 99.70% 98.80% 44.20% 46.00% 78.40% 98.10% 8.10%

Hs-cTnI
Architect 99.30% 98.80% 14.20% 73.90% 75.80% 97.50% 9.3% 99.70% 99.30% 30.50% 59.00% 74.50% 97.80% 7.70%

Hs-cTnI 
Atellica 99.90% 99.50% 13.70% 77.00% 66.60% 97.30% 7.7% 99.80% 99.10% 48.70% 43.70% 70.60% 98.20% 5.50%

Hs-cTnT
Elecsys 99.20% 99.20% 13.70% 76.70% 76.60% 97.70% 8.80% 99.60% 99.00% 30.80% 66.50% 73.90% 97.20% 9.00%

Hs-cTnI
Pathfast 100% 100% 15.40% 72.30% 71.10% 96.00% 12.30% 99.70% 99.40% 29.90% 59.10% 76.50% 96.10% 14.10%

Hs-cTnI 
Atellica 
VTLi

100% 100% 14.50% 81.90% No thresholds available 99.70% 98.90% 33.30% 63.60% 58.10% 98.50% 3.20%

This table compares the diagnostic performance to directly rule-out or to rule-in MI using a single hs-cTn measurement with the ESC 0/1 h algo-
rithms and the ARTEMIS diagnostic model. Global and cohort specific imputation of the necessary variables for ARTEMIS, with the exclusion 
of troponin measurements, was performed. Due to the meta-analytic background of the analyses, the proportions of rule-out, observe and rule-in 
zone due not sum up to 100%. Using the ARTEMIS model an MI probability < 0.5% to rule-out MI and MI probability > 50% to rule-in MI was 
used. Abbreviations: MI  myocardial infarction, hs-cTn  high-sensitivity cardiac troponin, NPV  negative predictive value, PPV  positive predictive 
value



1297Clinical Research in Cardiology (2023) 112:1288–1301 

1 3

professionals in clinical practice [23]. A recent report 
raises 12 critical questions, all of which have been posi-
tively addressed by the current algorithm [23]. In particu-
lar, the sample size is appropriate, validation has been 
extensively performed, and the outcome variable is labeled 
reliable, replicable, and independent.

Prior work already introduced machine-learning con-
cepts to provide an individualized and objective assess-
ment of the likelihood of myocardial infarction [24]. It 
for the first time presented the concept of machine-based 
learning to improve the diagnostic accuracy of MI diag-
nosis and rule-out. Although this work paved the way 
towards modern diagnostic approaches and performs 
well in routine clinical practice [25], it relies on only two 
predefined clinical variables age and sex beyond hs-cTn, 
and it is restricted to one specific hs-cTnI assay. It further 
highlights the need for model calibration prior to applica-
tion in the population, which was limited in this the first 
concept [25]. The ARTEMIS model had been calibrated 
for the heterogeneous clinical conditions globally but 
requires further calibration of the super learner for each 
clinical setting, in which it will be directly applied. In 
consequence, the concept and construction of the ARTE-
MIS model will enable both, the inclusion of any hs-cTn 
assay entering the market and local calibration to settings 
in which it will be clinically applied.

The integration of the selected, easily available variables 
including whatever hs-cTn test available, supports an app- or 
middleware-guided safe, efficient and immediate medical 
decision. Whereas the ARTEMIS pathway might be suit-
able for embedded middleware approaches, which enable the 
integration into the hospital-based electronic health record 
system, app-based solutions might be more suitable for 
ambulatory care or independent emergency settings.

Some limitations should be considered when interpret-
ing the findings. First, the outcome diagnoses of MI were 
adjudicated in each cohort separately and were not based 
on a harmonized standard operating procedure. Second, 
our models were validated to estimate the individual risk 
of MI in patients with clinically suspected MI. This does 
not include other acute conditions, that may lead to acute 
chest pain, such as pulmonary embolism or aortic dissec-
tion. Therefore, the estimated MI probabilities must always 
be considered in the clinical context and should not be used 
as only basis for decision-making. Finally, our diagnostic 
models were derived, validated, and generalized using data 
from multiple prospective, diagnostic studies, but have not 
been prospectively tested in clinical routine. Therefore, to 
assess real-world performance not only in the ED but also 
in other clinical settings (e.g., in ambulatory care or in the 
preclinical setting in ambulances), prospective clinical tri-
als directly applying the ARTEMIS diagnostic model and 
comparing against standard of care is of importance.

In conclusion, we developed, validated, and globally 
applied the easily applicable diagnostic ARTEMIS model 
considering immediately available variables to estimate the 
individual risk of MI in patients with suspected MI. The 
model can be used with most hs-cTn assays currently avail-
able and allows for rapid and safe discharge of a very high 
proportion of patients. Its digital application might improve 
routine clinical practice globally and enable a personalized 
diagnostic evaluation of suspected MI.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00392- 023- 02206-3.

Acknowledgements The ARTEMIS study group: Emily Brown-
lee: Royal Brisbane and Women’s Hospital, Metro North Hospital 
and Health Service, Brisbane, Queensland, Australia, Kai M. Egg-
ers: Department of Medical Sciences, Uppsala University, Uppsala, 
Sweden, Gavin Fincher: The Prince Charles Hospital, Metro North 
Hospital and Health Service, Brisbane, Queensland, Australia, Nor-
bert Frey: Department of Cardiology, Heidelberg University Hospital, 
Heidelberg, Germany, Niranjan Gaikwad: The Prince Charles Hospi-
tal, Metro North Hospital and Health Service, Brisbane, Queensland 
and School of Clinical Medicine, University of Queensland, Australia, 
Vinay Gangathimmaiah: Emergency Department, The Townsville 
Hospital, Townsville, QLD, Australia and School of Medicine, James 
Cook University, Australia, Emma Hall: Department of Emergency 
Medicine, Gold Coast University Hospital, Gold Coast, QLD, Aus-
tralia, Paul M. Haller: Department of Cardiology, University Heart 
and Vascular Center Hamburg, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany, Christian Hamilton-Craig: The 
Prince Charles Hospital, Metro North Hospital and Health Service, 
Brisbane, Queensland, Faculty of Medicine, University of Queensland 
and School of Medicine, Griffith University, Sunshine Coast, QLD, 
Australia, Rebecca Hancock: Emergency Department, The Towns-
ville Hospital, Townsville, QLD, Australia, Andrew Hobbins-King: 
The Sunshine Coast Hospital, Caloundra, Queensland and School of 
Medicine, Griffith University, Gold Coast, QLD, Australia, Gerben 
Keijzers: Department of Emergency Medicine, Gold Coast University 
Hospital, Gold Coast, QLD, Australia, School of Medicine, Griffith 
University, Gold Coast, QLD, Australia and Faculty of Health Sci-
ences and Medicine, Bond University, Gold Coast, QLD, Australia, 
Maryam Khorramshahi Bayat: The Prince Charles Hospital, Metro 
North Hospital and Health Service, Brisbane, Queensland and School 
of Clinical Medicine, University of Queensland, Australia, Georgios 
Koliopanos: Cardio-CARE, Medizincampus Davos, Davos, Switzer-
land, Jonas Lehmacher: Department of Cardiology, University Heart 
and Vascular Center Hamburg, University Medical Center Hamburg-
Eppendorf, Hamburg, Germany, Lina Ljung: Department of Clinical 
Science and Education, Södersjukhuset, Karolinska Institutet, Stock-
holm, Sweden, Troy Madsen: Department of Emergency Medicine, 
University of Utah, Ehsan Mahmoodi: The Prince Charles Hospital, 
Metro North Hospital and Health Service, Brisbane, Queensland, 
School of Clinical Medicine, University of Queensland and Faculty 
of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 
Australia, Ellyse McCormick: Royal Brisbane and Women’s Hospital, 
Metro North Hospital and Health Service, Brisbane, Queensland, Aus-
tralia, Bryn Mumma: Department of Emergency Medicine, University 
of California-Davis, Richard Nowak: Department of Emergency Medi-
cine, Henry Ford Health, Siegfried Perez: Logan Hospital, Metro South 
Hospital and Health Service, Brisbane, Queensland, Australia, Vazhma 
Qaderi: Department of Cardiology, University Heart and Vascular 
Center Hamburg, University Medical Center Hamburg-Eppendorf, 
Hamburg, Germany, Isuru Ranasinghe: The Prince Charles Hospital, 
Metro North Hospital and Health Service, Brisbane, Queensland and 

https://doi.org/10.1007/s00392-023-02206-3


1298 Clinical Research in Cardiology (2023) 112:1288–1301

1 3

School of Clinical Medicine, University of Queensland, Australia, 
Alina Schock: Department of Cardiology, University Heart and Vascu-
lar Center Hamburg, University Medical Center Hamburg-Eppendorf, 
Hamburg, Germany, Nils A. Sörensen: Department of Cardiology, 
University Heart and Vascular Center Hamburg, University Medical 
Center Hamburg-Eppendorf, Hamburg, Germany, Andrew Staib: Prin-
cess Alexandra Hospital, Metro South Hospital and Health Service, 
Brisbane, Queensland and School of Clinical Medicine, University of 
Queensland, Australia, Laura Stephensen: Royal Brisbane and Wom-
en’s Hospital, Metro North Hospital and Health Service, Brisbane, 
Queensland and School of Public Health and Social Work, Queens-
land University of Technology, Michael Weaver: University of Florida 
College of Nursing, R. Gentry Wilkerson: Department of Emergency 
Medicine, University of Maryland School of Medicine, and Anna Zour-
nazi: Pathology Queensland, Australia.

Funding Open Access funding enabled and organized by Projekt 
DEAL. The hs-cTn assays were partly donated by Abbott, PHC, Roche 
and Siemens. The companies did not have any role in the design of the 
study, the analysis of the data, the preparation of the manuscript or the 
decision to submit the manuscript for publication.

Data availability Due to study-specific regulations of each cohort 
dataset, individual level data may not be shared. Qualified researchers 
may contact the corresponding author to discuss potential options. For 
the derivation and validation cohorts, de-identified data may be made 
available upon request.

Declarations 

Conflict of interest SB receives fundings from Abbott Diagnostics, 
Bayer, SIEMENS, Amgen and NOVARTIS as well as honoraria for 
lectures and/or chairs from Abbott, Abbott Diagnostics,, AMGEN, As-
tra Zeneca, Bayer, Boehringer Ingelheim, BMS (Bristol Meyer Squib), 
Daiichi Sankyo, LumiraDx, NOVARTIS and Thermo Fisher. SB is a 
member of advisory boards and consultant of Thermo Fisher. JTN, RT, 
FO, TZ, AZ and SB are  co-founders and shareholders of the ART-
EMIS Hamburg GmbH, which holds an international patent appli-
cation on the use of a computing device to estimate the probability 
of myocardial infarction (Publication Numbers WO2022043229A1, 
TW202219980A). JTN reports speaker honoraria/consulting honoraria 
from PHC, Roche and Siemens. RT reports research support from the 
Kühne Foundation, the Swiss National Science Foundation (Grant No 
P300PB_167803), the Swiss Heart Foundation, the Swiss Society of 
Cardiology and speaker honoraria/consulting honoraria from Abbott, 
Amgen, Astra Zeneca, Roche, Siemens, and Singulex. BRA receives 
research funding/support from Roche Diagnostics, Siemens, and Beck-
man Coulter. BRA is a consultant for Roche Diagnostics. FSA is a 
consultant for HyTest Ltd and an associate Editor for Clinical Chem-
istry. FSA is part of the advisory boards of Werfen, Siemens Health-
ineers, Qorvo and AWE Medical Group. FSA receives honorarium for 
speaking at industry conferences of Siemens Healthineers and Beck-
man Coulter. FSA is PI on Industry Funded Grants (non-salaried) on 
cardiac biomarkers through Hennepin Healthcare Research Institute for 
Abbott Diagnostics, Abbott POC, BD, Beckman Coulter, Ortho-Clin-
ical Diagnostics, Roche Diagnostics, Siemens Healthcare, ET Health-
care and Qorvo. RHC is a consultant for and receives funding/support 
from Roche Diagnostics, Siemens Healthineers, Beckman Coulter 
Diagnostics, Becton Dickinson and Co, Quidel Corp, and Sphingotec 
GMBH. LC reports research funding from Siemens, Abbott, and Beck-
man. EG reports personal fees from Bayer Vital, personal fees from 
Astra Zeneca, personal fees from Roche Diagnostics, personal fees 
from Brahms Germany, personal fees from Daiichi Sankyo, personal 
fees from Lilly Deutschland, outside the submitted work. EG reports 
participation on a Data Safety. Monitoring Board or Advisory Board 

at Boehringer Ingelheim and Roche Diagnostics. JG receives grants 
from Siemen´s Point of Care and Beckman Coulter. KI receives grants 
from Japanese KAKENHI (grant number JP18K09554). KI reported 
payment for honoraria for lectures, presentations, speakers bureaus, 
manuscript writing or educational events from Roche Diagnostics to 
Fujirebio Inc. PK reports support for this manuscript to his institution 
from Canadian Institutes of Health Research, Abbott Diagnostics and 
Roche Diagnostics. PK reports grants for his institution from Abbott 
Diagnostics, Roche Diagnostics, Randox laboratories, Beckman Coul-
ter, Ortho Clinical Diagnostics and Siemens Healthcare Diagnostics. 
PK receives consulting fees from Abbott, Beckman Coulter, Roche Di-
agnostics, Quidel and Siemens Healthcare. PK receives reports hono-
raria for lectures, presentations, speakers bureaus, manuscript writing 
or educational events from Beckman Coulter, Roche Diagnostics, Sie-
mens Healthcare and Thermo Fisher Scientific. PK receives support for 
attending meetings and/or travel from Randox Laboratories ans Roche 
Diagnostics. McMaster University has filed a patent with PK listed as 
an inventor in the acute cardiovascular biomarker field, in particular, 
a patent has been awarded in Europe (EP 3 341 723 B1) on a Method 
of determining risk of an adverse cardiac event. McMaster University 
has also filed patents with PK listed as an inventor on Quality Con-
trol Materials for Cardiac Troponin Testing and Identifying pregnant 
women at increased risk for hypertension and future cardiovascular 
disease. PK reports participation on a Data Safety Monitoring Board or 
Advisory Board for Roche Diagnostics, Siemens Healthcare Diagnos-
tics, Beckman Coulter and Quidel. BL is a member (unpaid) of Study 
Group on Biomarkers of the ESC Association for Acute CardioVascu-
lar Care. SAM receives research funding/support from Roche Diagnos-
tics, Abbott Laboratories, Ortho Clinical Diagnostics, Creavo Medical 
Technologies, Siemens, Pathfast, Grifols, Rigel Pharmaceuticals, the 
Agency for Healthcare Research and Quality, the Patient-Centered 
Outcomes Research Institute, the National Heart, Lung, and Blood In-
stitute (1 R01 HL118263-01), and the Health Resources and Services 
Administration (1 H2ARH399760100). Dr Mahler is a consultant for 
Roche Diagnostics and Amgen and is the chief medical officer for Im-
pathiq Inc. NLM reported grants from British Heart Foundation to his 
institution (CH/F/21/90010, RG/20/10/34966, RE/18/5/34216). NLM 
has received honoraria or consultancy from Abbott Diagnostics, Roche 
Diagnostics, Siemens Healthineers, and LumiraDx. NLM reports 
participation on an Advisory Board of LumiraDx, Roche Diagnos-
tics and Siemens Healthineers. NLM is supported by a Chair Award, 
Programme Grant, Research Excellence Award (CH/F/21/90010, 
RG/20/10/34966, RE/18/5/34216) from the British Heart Foundation. 
JWP has received non-directed funds from Abbott Diagnostics, Roche, 
Siemens within the last 5 years and consulted for Abbott. CJP receives 
Project grants from the Health Research Council of New Zealand and 
from the Heart Foundation of New Zealand. He is PI on grants hosted 
by University of Otago. CJP received project grant from the Ministry of 
Business, Innovation and Employment, New Zealand. CJP is inventor 
on patents (granted and filed) for the diagnosis of acute coronary syn-
dromes. CJP is CSO at Upstream Medical Technologies. CJP reported 
research support from Upstream Medical Technologies and from Bio-
vendor R&D. AMR reports speaker honoraria/advisory board fees and 
research grants in kind and/or cash funding from Roche Diagnostics, 
Astra Zeneca, Abbott Laboratories, Novartis, NovoNordisk, Thermo 
Fisher, Critical Diagnostics, Sphingotec, Medtronic and Boston Scien-
tific. AMR reports grants from National Medical Council of Singapore 
and NovoNordisk research grants. He has received publicly contesta-
ble funding from the New Zealand Health Research Council, NZ Heart 
Foundation and the National Medical research Council of Singapore. 
AMR reports personal fees from Roche Diagnostics, Novartis and 
Roche Diagnostics. AMR reports participation on a Data Safety Moni-
toring Board or Advisory Board in the Pontiac 2 trial and STAREE 
Trial. YS has previously served on Advisory Boards for Roche Diag-
nostics and Abbott Diagnostics. YS has also been a speaker for Ab-
bott Diagnostics. WP reported research grants and consulting fees to 



1299Clinical Research in Cardiology (2023) 112:1288–1301 

1 3

his institution from Siemens Healthineers. MPT received Funding for 
clinical research from Abbott, Alere, Beckman, Radiometer and Roche 
(to his institution). MPT received payment for speaking from Abbott, 
Alere, and Roche as well as Consulting fees from Abbott, Roche and 
Siemens. MPT received payment for participation in advisory boards 
from Abbott, Radiometer, Roche and Siemens as well as funding for 
education from Abbott, Alere and Beckman (to his institution). BT re-
ceives a project-related grant from German Heart foundation and from 
the Ernst und Berta Grimmke-Stiftung. RWT received payments to 
his institution from Health Research Council of NZ, Heart Foundation 
of NZ, American Regent, Merck and Bayer. RWT receives consulting 
fees from American Regent, Merck, Bayer and Roche Diagnostics.AW 
is having a patent on the Clinical Chemistry Score. TZ is supported by 
the German Centre for Cardiovascular Research (DZHK e.V.) grant 
numbers 81Z1710101 and 81Z0710102.TZ is supported by EU Hori-
zon 2020 programme and EU ERANet and ERAPreMed Programmes.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Nawar EW, Niska RW, Xu J (2007) National hospital ambulatory 
medical care survey: 2005 Emergency department summary. Adv 
Data 386:1–32

 2. Westermann D, Neumann JT, Sorensen NA, Blankenberg S (2017) 
High-sensitivity assays for troponin in patients with cardiac dis-
ease. Nat Rev Cardiol 14(8):472–483. https:// doi. org/ 10. 1038/ 
nrcar dio. 2017. 48

 3. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow 
DA, White HD, Executive Group on behalf of the Joint European 
Society of Cardiology /American College of Cardiology /Ameri-
can Heart Association /World Heart Federation Task Force for 
the Universal Definition of Myocardial I (2018) Fourth universal 
definition of myocardial infarction. J Am Coll Cardiol. https:// doi. 
org/ 10. 1016/j. jacc. 2018. 08. 1038

 4. Collet JP, Thiele H, Barbato E, Barthelemy O, Bauersachs J, Bhatt 
DL, Dendale P, Dorobantu M, Edvardsen T, Folliguet T, Gale 
CP, Gilard M, Jobs A, Juni P, Lambrinou E, Lewis BS, Mehilli 
J, Meliga E, Merkely B, Mueller C, Roffi M, Rutten FH, Sibbing 
D, Siontis GCM, Group ESCSD (2021) 2020 ESC Guidelines 
for the management of acute coronary syndromes in patients 
presenting without persistent ST-segment elevation. Eur Heart J 
42(14):1289–1367. https:// doi. org/ 10. 1093/ eurhe artj/ ehaa5 75

 5. Writing Committee M, Gulati M, Levy PD, Mukherjee D, Amster-
dam E, Bhatt DL, Birtcher KK, Blankstein R, Boyd J, Bullock-
Palmer RP, Conejo T, Diercks DB, Gentile F, Greenwood JP, 
Hess EP, Hollenberg SM, Jaber WA, Jneid H, Joglar JA, Morrow 
DA, O’Connor RE, Ross MA, Shaw LJ (2021) 2021 AHA/ACC/
ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation 
and diagnosis of chest pain: a report of the american college of 
cardiology/american heart association joint committee on clinical 

practice guidelines. J Am Coll Cardiol 78(22):e187–e285. https:// 
doi. org/ 10. 1016/j. jacc. 2021. 07. 053

 6. Sandoval Y, Apple FS, Mahler SA, Body R, Collinson PO, Jaffe 
AS, International Federation of Clinical C, Laboratory Medi-
cine Committee on the Clinical Application of Cardiac B (2022) 
High-Sensitivity cardiac Troponin and the 2021 AHA/ACC/ASE/
CHEST/SAEM/SCCT/SCMR guidelines for the evaluation and 
diagnosis of acute chest pain. Circulation 146(7):569–581. https:// 
doi. org/ 10. 1161/ CIRCU LATIO NAHA. 122. 059678

 7. Writing C, Kontos MC, de Lemos JA, Deitelzweig SB, Diercks 
DB, Gore MO, Hess EP, McCarthy CP, McCord JK, Musey PI Jr, 
Villines TC, Wright LJ (2022) 2022 ACC expert consensus deci-
sion pathway on the evaluation and disposition of acute chest pain 
in the emergency department: a report of the American college of 
cardiology solution set oversight committee. J Am Coll Cardiol. 
https:// doi. org/ 10. 1016/j. jacc. 2022. 08. 750

 8. Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blanken-
berg S, Huber K, Plebani M, Biasucci LM, Tubaro M, Collinson 
P, Venge P, Hasin Y, Galvani M, Koenig W, Hamm C, Alpert 
JS, Katus H, Jaffe AS, Study Group on Biomarkers in Cardiol-
ogy of ESCWGoACC (2012) How to use high-sensitivity cardiac 
troponins in acute cardiac care. Eur Heart J 33(18):2252–2257. 
https:// doi. org/ 10. 1093/ eurhe artj/ ehs154

 9. Neumann JT, Twerenbold R, Ojeda F, Sorensen NA, Chapman 
AR, Shah ASV, Anand A, Boeddinghaus J, Nestelberger T, Bad-
ertscher P, Mokhtari A, Pickering JW, Troughton RW, Greenslade 
J, Parsonage W, Mueller-Hennessen M, Gori T, Jernberg T, Mor-
ris N, Liebetrau C, Hamm C, Katus HA, Munzel T, Landmesser 
U, Salomaa V, Iacoviello L, Ferrario MM, Giampaoli S, Kee F, 
Thorand B, Peters A, Borchini R, Jorgensen T, Soderberg S, Sans 
S, Tunstall-Pedoe H, Kuulasmaa K, Renne T, Lackner KJ, Worster 
A, Body R, Ekelund U, Kavsak PA, Keller T, Lindahl B, Wild P, 
Giannitsis E, Than M, Cullen LA, Mills NL, Mueller C, Zeller 
T, Westermann D, Blankenberg S (2019) Application of high-
sensitivity troponin in suspected myocardial infarction. N Engl J 
Med 380(26):2529–2540. https:// doi. org/ 10. 1056/ NEJMo a1803 
377

 10. Neumann JT, Sörensen NA, Schwemer T, Ojeda F, Bourry R, 
Sciacca V, Schaefer S, Waldeyer C, Sinning C, Renné T, Than M, 
Parsonage W, Wildi K, Makarova N, Schnabel RB, Landmesser U, 
Mueller C, Cullen L, Greenslade J, Zeller T, Blankenberg S, Kara-
kas M, Westermann D (2016) Diagnosis of myocardial infarction 
using a high-sensitivity troponin I 1-hour algorithm. JAMA Car-
diol 1(4):397–404. https:// doi. org/ 10. 1001/ jamac ardio. 2016. 0695

 11. Neumann JT, Sörensen NA, Ojeda F, Schwemer T, Lehmacher J, 
Gönner S, Jarsetz N, Keller T, Schaefer S, Renné T, Landmesser 
U, Clemmensen P, Makarova N, Schnabel RB, Zeller T, Karakas 
M, Pickering JW, Than M, Parsonage W, Greenslade J, Cullen 
L, Westermann D, Blankenberg S (2017) Immediate rule-out of 
acute myocardial infarction using electrocardiogram and baseline 
high-sensitivity troponin I. Clin Chem 63(1):394–402. https:// doi. 
org/ 10. 1373/ clinc hem. 2016. 262659

 12. Keller T, Zeller T, Ojeda F, Tzikas S, Lillpopp L, Sinning C, Wild 
P, Genth-Zotz S, Warnholtz A, Giannitsis E, Möckel M, Bickel C, 
Peetz D, Lackner K, Baldus S, Münzel T, Blankenberg S (2011) 
Serial changes in highly sensitive troponin I assay and early diag-
nosis of myocardial infarction. JAMA 306(24):2684–2693. https:// 
doi. org/ 10. 1001/ jama. 2011. 1896

 13. Keller T, Zeller T, Peetz D, Tzikas S, Roth A, Czyz E, Bickel C, 
Baldus S, Warnholtz A, Frohlich M, Sinning CR, Eleftheriadis 
MS, Wild PS, Schnabel RB, Lubos E, Jachmann N, Genth-Zotz 
S, Post F, Nicaud V, Tiret L, Lackner KJ, Munzel TF, Blankenberg 
S (2009) Sensitive troponin I assay in early diagnosis of acute 
myocardial infarction. N Engl J Med 361(9):868–877

 14. R-Core-Team (2013) R: A language and environment for statistical 
computing. Foundation for Statistical Computing, Vienna, Austria

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nrcardio.2017.48
https://doi.org/10.1038/nrcardio.2017.48
https://doi.org/10.1016/j.jacc.2018.08.1038
https://doi.org/10.1016/j.jacc.2018.08.1038
https://doi.org/10.1093/eurheartj/ehaa575
https://doi.org/10.1016/j.jacc.2021.07.053
https://doi.org/10.1016/j.jacc.2021.07.053
https://doi.org/10.1161/CIRCULATIONAHA.122.059678
https://doi.org/10.1161/CIRCULATIONAHA.122.059678
https://doi.org/10.1016/j.jacc.2022.08.750
https://doi.org/10.1093/eurheartj/ehs154
https://doi.org/10.1056/NEJMoa1803377
https://doi.org/10.1056/NEJMoa1803377
https://doi.org/10.1001/jamacardio.2016.0695
https://doi.org/10.1373/clinchem.2016.262659
https://doi.org/10.1373/clinchem.2016.262659
https://doi.org/10.1001/jama.2011.1896
https://doi.org/10.1001/jama.2011.1896


1300 Clinical Research in Cardiology (2023) 112:1288–1301

1 3

 15. Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, 
Hartwiger S, Biedert S, Schaub N, Buerge C, Potocki M, Noveanu 
M, Breidthardt T, Twerenbold R, Winkler K, Bingisser R, Mueller 
C (2009) Early diagnosis of myocardial infarction with sensitive 
cardiac troponin assays. N Engl J Med 361:858–867. https:// doi. 
org/ 10. 1056/ NEJMo a0900 428

 16. Mokhtari A, Borna C, Gilje P, Tydén P, Lindahl B, Nilsson H-J, 
Khoshnood A, Björk J, Ekelund U (2016) A 1-h combination 
algorithm allows fast rule-out and rule-in of major adverse cardiac 
events. J Am Coll Cardiol 67(13):1531–1540. https:// doi. org/ 10. 
1016/j. jacc. 2016. 01. 059

 17. Shah ASV, Anand A, Strachan FE, Ferry AV, Lee KK, Chap-
man AR, Sandeman D, Stables CL, Adamson PD, Andrews JPM, 
Anwar MS, Hung J, Moss AJ, O’Brien R, Berry C, Findlay I, 
Walker S, Cruickshank A, Reid A, Gray A, Collinson PO, Apple 
FS, McAllister DA, Maguire D, Fox KAA, Newby DE, Tuck C, 
Harkess R, Parker RA, Keerie C, Weir CJ, Mills NL, High SI 
(2018) High-sensitivity troponin in the evaluation of patients with 
suspected acute coronary syndrome: a stepped-wedge, cluster-
randomised controlled trial. Lancet 392(10151):919–928. https:// 
doi. org/ 10. 1016/ S0140- 6736(18) 31923-8

 18. Twerenbold R, Neumann JT, Sorensen NA, Ojeda F, Karakas M, 
Boeddinghaus J, Nestelberger T, Badertscher P, Rubini Gime-
nez M, Puelacher C, Wildi K, Kozhuharov N, Breitenbuecher 
D, Biskup E, du Fay de Lavallaz J, Flores D, Wussler D, Miro 
O, Martin Sanchez FJ, Morawiec B, Parenica J, Geigy N, Keller 
DI, Zeller T, Reichlin T, Blankenberg S, Westermann D, Mueller 
C (2018) Prospective validation of the 0/1-h algorithm for early 
diagnosis of myocardial infarction. J Am Coll Cardiol 72 (6):620-
632. https:// doi. org/ 10. 1016/j. jacc. 2018. 05. 040

 19. Chiang CH, Chiang CH, Pickering JW, Stoyanov KM, Chew DP, 
Neumann JT, Ojeda F, Sorensen NA, Su KY, Kavsak P, Worster 
A, Inoue K, Johannessen TR, Atar D, Amann M, Hochholzer W, 
Mokhtari A, Ekelund U, Twerenbold R, Mueller C, Bahrmann P, 
Buttinger N, Dooley M, Ruangsomboon O, Nowak RM, DeFilippi 
CR, Peacock WF, Neilan TG, Liu MA, Hsu WT, Lee GH, Tang 
PU, Ma KS, Westermann D, Blankenberg S, Giannitsis E, Than 
MP, Lee CC (2022) Performance of the european society of car-
diology 0/1-hour, 0/2-hour, and 0/3-hour algorithms for rapid tri-
age of acute myocardial infarction : an international collaborative 
meta-analysis. Ann Intern Med 175(1):101–113. https:// doi. org/ 
10. 7326/ M21- 1499

 20. Boeddinghaus J, Twerenbold R, Nestelberger T, Badertscher 
P, Wildi K, Puelacher C, du Fay de Lavallaz J, Keser E, Rubini 
Gimenez M, Wussler D, Kozhuharov N, Rentsch K, Miro O, 
Martin-Sanchez FJ, Morawiec B, Stefanelli S, Geigy N, Keller 
DI, Reichlin T, Mueller C, Investigators A (2018) Clinical valida-
tion of a novel high-sensitivity cardiac Troponin I assay for early 
diagnosis of acute myocardial infarction. Clin Chem 64 (9):1347-
1360. https:// doi. org/ 10. 1373/ clinc hem. 2018. 286906

 21. Boeddinghaus J, Nestelberger T, Twerenbold R, Koechlin L, Meier 
M, Troester V, Wussler D, Badertscher P, Wildi K, Puelacher C, 
du Fay de Lavallaz J, Rubini Gimenez M, Zimmermann T, Hafner 
B, Potlukova E, Miro O, Martin-Sanchez FJ, Keller DI, Reich-
lin T, Mueller C, investigators A (2019) High-sensitivity cardiac 
Troponin I assay for early diagnosis of acute myocardial infarc-
tion. Clin Chem 65 (7):893-904. https:// doi. org/ 10. 1373/ clinc hem. 
2018. 300061

 22. Sorensen NA, Neumann JT, Ojeda F, Giannitsis E, Spanuth E, 
Blankenberg S, Westermann D, Zeller T (2019) diagnostic evalu-
ation of a high-sensitivity troponin I point-of-care assay. Clin 
Chem 65(12):1592–1601. https:// doi. org/ 10. 1373/ clinc hem. 2019. 
307405

 23. van Smeden M, Heinze G, Van Calster B, Asselbergs FW, Var-
das PE, Bruining N, de Jaegere P, Moore JH, Denaxas S, Bou-
lesteix AL, Moons KGM (2022) Critical appraisal of artificial 
intelligence-based prediction models for cardiovascular disease. 
Eur Heart J 43(31):2921–2930. https:// doi. org/ 10. 1093/ eurhe artj/ 
ehac2 38

 24. Than MP, Pickering JW, Sandoval Y, Shah ASV, Tsanas A, Apple 
FS, Blankenberg S, Cullen L, Mueller C, Neumann JT, Tweren-
bold R, Westermann D, Beshiri A, Mills NL, collaborative MI 
(2019) Machine learning to predict the likelihood of acute myo-
cardial infarction. Circulation 140:899-909. https:// doi. org/ 10. 
1161/ CIRCU LATIO NAHA. 119. 041980

 25. Doudesis D, Lee KK, Yang J, Wereski R, Shah ASV, Tsanas A, 
Anand A, Pickering JW, Than MP, Mills NL, High SI (2022) Vali-
dation of the myocardial-ischaemic-injury-index machine learn-
ing algorithm to guide the diagnosis of myocardial infarction in 
a heterogenous population: a prespecified exploratory analysis. 
Lancet Digit Health 4(5):e300–e308. https:// doi. org/ 10. 1016/ 
S2589- 7500(22) 00025-5

Authors and Affiliations

Johannes Tobias Neumann1,2,3,4  · Raphael Twerenbold1,2,3,5  · Francisco Ojeda1,3 · Sally J. Aldous6 · 
Brandon R. Allen7 · Fred S. Apple8 · Hugo Babel9 · Robert H. Christenson10 · Louise Cullen11 · Eleonora Di Carluccio9 · 
Dimitrios Doudesis12 · Ulf Ekelund13 · Evangelos Giannitsis14 · Jaimi Greenslade11 · Kenji Inoue15 · Tomas Jernberg16 · 
Peter Kavsak17 · Till Keller18 · Kuan Ken Lee12 · Bertil Lindahl19 · Thiess Lorenz1,2,3 · Simon A. Mahler20 · 
Nicholas L. Mills12 · Arash Mokhtari21 · William Parsonage22 · John W. Pickering23 · Christopher J. Pemberton24 · 
Christoph Reich14 · A. Mark Richards23 · Yader Sandoval25 · Martin P. Than23 · Betül Toprak1,2,3,5 · 
Richard W. Troughton24 · Andrew Worster26 · Tanja Zeller1,2,3,5 · Andreas Ziegler9,27 · Stefan Blankenberg1,2,3 · the 
ARTEMIS study group

 * Stefan Blankenberg 
 s.blankenberg@uke.de

1 Department of Cardiology, University Heart and Vascular 
Center, University Medical Center Hamburg-Eppendorf, 
Martinistraße 52, 20246 Hamburg, Germany

2 German Center for Cardiovascular Research (DZHK), 
Partner SiteHamburg/Kiel/Lübeck, Hamburg, Germany

3 Population Health Research Department, University Heart 
and Vascular Center Hamburg, University Medical Center 
Hamburg-Eppendorf, Hamburg, Germany

https://doi.org/10.1056/NEJMoa0900428
https://doi.org/10.1056/NEJMoa0900428
https://doi.org/10.1016/j.jacc.2016.01.059
https://doi.org/10.1016/j.jacc.2016.01.059
https://doi.org/10.1016/S0140-6736(18)31923-8
https://doi.org/10.1016/S0140-6736(18)31923-8
https://doi.org/10.1016/j.jacc.2018.05.040
https://doi.org/10.7326/M21-1499
https://doi.org/10.7326/M21-1499
https://doi.org/10.1373/clinchem.2018.286906
https://doi.org/10.1373/clinchem.2018.300061
https://doi.org/10.1373/clinchem.2018.300061
https://doi.org/10.1373/clinchem.2019.307405
https://doi.org/10.1373/clinchem.2019.307405
https://doi.org/10.1093/eurheartj/ehac238
https://doi.org/10.1093/eurheartj/ehac238
https://doi.org/10.1161/CIRCULATIONAHA.119.041980
https://doi.org/10.1161/CIRCULATIONAHA.119.041980
https://doi.org/10.1016/S2589-7500(22)00025-5
https://doi.org/10.1016/S2589-7500(22)00025-5
http://orcid.org/0000-0002-9478-2757
http://orcid.org/0000-0003-3814-6542


1301Clinical Research in Cardiology (2023) 112:1288–1301 

1 3

4 Department of Epidemiology and Preventive Medicine, 
School of Public Health and Preventive Medicine, Monash 
University, Melbourne, Australia

5 University Center of Cardiovascular Science, University 
Heart and Vascular Center Hamburg, University Medical 
Center Hamburg-Eppendorf, Hamburg, Germany

6 Department of Cardiology, Christchurch Hospital, 
Christchurch, New Zealand

7 Department of Emergency Medicine, College of Medicine, 
University of Florida, Gainesville, FL, USA

8 Departments of Laboratory Medicine and Pathology, 
Hennepin Healthcare/HCMC and University of Minnesota, 
Minneapolis, MN, USA

9 Cardio-CARE, Medizincampus Davos, Davos, Switzerland
10 Department of Pathology, University of Maryland School 

of Medicine, Baltimore, MD, USA
11 Department of Emergency Medicine, Royal Brisbane 

and Women’s Hospital, Herston, QLD, Australia
12 BHF Centre for Cardiovascular Science, University 

of Edinburgh, Edinburgh, UK
13 Department of Internal and Emergency Medicine, Lund 

University, Skåne University Hospital, Lund, Sweden
14 Department of Cardiology, Heidelberg University Hospital, 

Heidelberg, Germany
15 Juntendo University Nerima Hospital, Tokyo, Japan
16 Department of Clinical Sciences, Danderyd University 

Hospital, Karolinska Institutet, Stockholm, Sweden

17 Department of Pathology and Molecular Medicine, 
McMaster University, Hamilton, ON, Canada

18 Department of Cardiology, Kerckhoff Heart and Thorax 
Center, Bad Nauheim, Germany

19 Department of Medical Sciences and Uppsala Clinical 
Research Center, Uppsala University, Uppsala, Sweden

20 Department of Emergency Medicine, Wake Forest School 
of Medicine, Winston-Salem, NC, USA

21 Department of Internal Medicine and Emergency Medicine 
and Department of Cardiology, Lund University, Skåne 
University Hospital, Lund, Sweden

22 Australian Centre for Health Service Innovation, Queensland 
University of Technology, Kelvin Grove, Australia

23 Department of Medicine, Christchurch and Emergency 
Department, University of Otago, Christchurch Hospital, 
Christchurch, New Zealand

24 Department of Medicine, Christchurch Heart Institute, 
University of Otago, Christchurch, New Zealand

25 Minneapolis Heart Institute, Abbott Northwestern Hospital, 
and Minneapolis Heart Institute Foundation, Minneapolis, 
MN, USA

26 Division of Emergency Medicine, McMaster University, 
Hamilton, ON, Canada

27 School of Mathematics, Statistics and Computer Science, 
University of KwaZulu-Natal, Pietermaritzburg, South Africa


	Personalized diagnosis in suspected myocardial infarction
	Abstract
	Background 
	Methods 
	Results 
	Conclusion 
	Trial Registration numbers 
	Graphical Abstract

	Introduction
	Methods
	Study design and populations
	Adjudication of final diagnosis
	Outcome data
	Troponin measurements
	Clinical variables
	Statistical analysis and model development

	Results
	Study populations
	Model derivation
	Model validation
	Global generalization
	Clinical application
	Comparison to standard of care
	Exemplary clinical use cases

	Discussion
	Anchor 26
	Acknowledgements 
	References




