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Abstract
Background We initiated this preclinical study in order to
analyze the impact of sorafenib single treatment versus
combination treatment in human colorectal cancer.
Methods The effect of increasing sorafenib doses on prolif-
eration, apoptosis, migration, and activation of signal cas-
cades was analyzed in vitro. The effect of sorafenib single
treatment versus 5-fluorouracil (5-FU) single treatment and
combination therapy on in vivo proliferation and target
cytokine receptor/ligand expression was analyzed in a hu-
man colon cancer xenograft mouse model using HT29 tu-
mor cells.
Results In vitro, SW480 and HT29 cell lines were sensitive to
sorafenib, as compared to Caco2 and SW620 cell lines, inde-
pendent of the mutation status of K-ras, Raf, PTEN, or PI3K.

The effect onmigration wasmarginal, but distinct differences in
caspases activation were seen. Combination strategies were
beneficial in some settings (sorafenib+5-FU; irinotecan) and
disadvantageous in others (sorafenib+oxaliplatin), depending
on the chemotherapeutic drug and cell line chosen. Sensitive
cell lines revealed a downregulation of AKT and had a weak
expression level of GADD45β. In resistant cell lines, pp53 and
GADD45β levels decreased upon sorafenib exposure. In vivo,
the combination treatment of sorafenib and 5-FU was equally
effective as the respective monotherapy concerning tumor pro-
liferation. Interestingly, treatment with either sorafenib or 5-FU
resulted in a significant decrease of VEGFR1 and PDGFRβ
expression intensity.
Conclusions In colorectal cancer, a sensitivity towards sor-
afenib exists, which seems similarly effective as a 5-FU
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monotherapy. A combination therapy, in contrast, does not
show any additional effect.

Keywords Colorectal cancer . TKI . Sorafenib

Introduction

Colorectal cancer ranges among the three most frequent
malignancies in Western countries [1, 2]. Survival is deter-
mined by local recurrence, lymphatic, and hematogenous
dissemination [3]. Due to improved therapeutic strategies,
the overall survival in stage IV colorectal cancer has in-
creased from 8 months to more than 2 years during the last
decade [4–6].

Besides new chemotherapeutic drugs, such as plati-
num derivates (oxaliplatin) and topoisomerase II inhib-
itors (irinotecan), the introduction of biologicals
targeting tumor neovascularization or growth signaling
significantly has improved response and prognosis
[4–6].

Specific mutations in tumor-suppressor genes (APC,
DCC, p53) and oncogenes (K-ras) occur during the
adenoma–carcinoma sequence of colorectal cancer
[7–9]. The K-ras mutation status was the first key to
personalized therapy in colorectal cancer, as anti-EGFR
strategies were shown to be effective in K-ras wild
types only [10].

Receptor tyrosine kinases (RTKs) are transmembrane
receptors containing extracellular ligand-binding domains
connected to intracellular catalytic domains [11]. The
growth factors VEGF/PDGF/EGF and their receptors
VEGFR1-3, PDGFRα/β, and EGFR are critical in the
process of (lymphatic) neo-angiogenesis and dissemina-
tion in human cancer [12–16]. Inhibition of RTKs with
sorafenib has been successful in renal and hepatocellular
cancers [17, 18]. Two phase I studies revealed a disease
stabilization in pretreated colorectal cancer patients re-
ceiving sorafenib in combination with either irinotecan or
oxaliplatin [19, 20]. However, recent phase II/III studies
testing other multi-tyrosine kinase inhibitors in human
colorectal cancer have failed to show any benefit [21].
So far only one randomized Phase III study with Regor-
afenib improved survival times after failure of all ap-
proved standard therapies [22]. Therefore, the impact of
combinational therapies (sorafenib+ chemotherapy)
remains controversial. Preclinical data as well as experi-
mental data explaining interaction mechanisms are wide-
ly missing. Thus, we initiated this study to examine
sorafenib targeted RTK expression and to analyze the
in vivo effect of sorafenib alone or in combination with
the classical chemotherapeutic backbone 5-fluorouracil
(5-FU).

Material and methods

Cell culture

The human colorectal cancer cell lines SW480 [K-ras mt, B-
Raf wt, PI3K wt, p53 mt], SW620 [K-ras mt, B-raf wt, PI3K
wt, p53 mt], and HT29 [K-ras wt, B-raf mt, PI3K wt, p53 mt]
were cultured in RPMI 1640 (Invitrogen, Germany) supple-
mented with 10 % FCS, 100 U/ml penicillin, 100 μg/ml
streptomycin (Cambrex, Germany), and 1 mM L-glutamine
(Invitrogen, Germany). The human colorectal cancer cell line
Caco2 [K-ras wt, B-Raf wt, PI3K wt, p53 mt] was cultured in
DMEM (Invitrogen, Germany) supplemented with 10% FCS,
100 U/ml penicillin, 100 μg/ml streptomycin (Cambrex,
Germany), and 1 mM L-glutamine (Invitrogen, Germany).

Proliferation assays and chemosensitvity

For proliferation assays, 5×103 SW480, SW620, Caco2, or
HT-29 cells were plated in 96-well plates and cultured as
described above. Twelve hours after plating sorafenib (0, 5,
and 10 μg/ml), 5-FU (0.5 mg/ml)±sorafenib (5 μg/ml), irino-
tecan (1 mg/ml)±sorafenib (5 μg/ml), or oxaliplatin (0.5 mg/
ml)±sorafenib (5 μg/ml) were added to the medium. The
amount of cells per well was determined by luminescence
assay (CellTiter-Glo Cell Viability assay, Promega, USA).
Each condition was performed in quadruplicates.

For apoptosis analyses, 2×105 cells were seeded per
6 wells, respectively. Twelve hours after plating, cells were
treated for 24 h as mentioned above. Suspended cells were
collected, and adherent cells were trypsinized prior to fixa-
tion with 100 % ethanol, staining with propidium iodide and
analyzation by FACS without gating. Each condition was
performed in quadruplicates.

Migration assay

SW480, SW620, Caco2, or HT29 cells (2×106 ) were
seeded per 6 wells, cultured for 24 h, serum-starved (2 %
FCS only) for 12 h, and exposed to sorafenib at different
concentrations (0, 5, or 10 μg/ml) for 6 h. Migration was
assayed with 24-well HTS FluoroBlock Inserts in triplet
approaches (8 μM pore size; Becton Dickinson, USA).

In brief, 4×104 cells were resuspended in RPMI1640/
DMEM medium containing 2 % FCS and 10 ng/ml
CXCL12 and added to the upper chamber. Subsequently,
RPMI1640/DMEM medium with 20 % FCS and 100 ng/ml
CXCL12 (Sigma, Germany) was added to the lower cham-
ber. Chambers were incubated for 24 h at 37 °C in a humid
atmosphere of 5 % CO2. After incubation, the amount of
migrated cells in the lower chamber was determined by
luminescence assay (CellTiter-Glo, Cell Viability assay,
Promega, USA). Each condition was performed in triplicate.
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Caspase assay

Cells were treated with placebo or sorafenib (5 and 10 μg/ml,
respectively). After incubation for 16 h, cells were lysed in
buffer containing 20mMTris/HCl pH 8.0, 5 mMEDTA, 0.5%
Triton X-100, and onefold complete protease inhibitor cocktail
(Roche, Germany). Protein concentration was determined by
Bradford assay (Sigma, Germany). Sixtymicrograms of protein
was incubated in reaction buffer (25 mM HEPES pH 7.5,
50 mM NaCl, 10 % glycerol, 0.05 % CHAPS, and 5 mM
DTT) in the presence of 50 μM fluorogenic substrate (Biomol,
Germany), which was specific for caspase 3 (DEVD-AMC);
caspase 6, 8, and 10 (Ac-IETD-AFC); or caspase 9 (Ac-LEHD-
AFC). Analyses were performed in triplicates.

Assays were performed in black micro-titer plates (Nunc,
Germany), and after 1 h incubation at 37 °C, the generation
of free AMC or AFC was measured using a fluorometer
plate reader (Appliscan, Thermo Fisher, Germany) at an
excitation wavelength of 380 nm (AMC and AFC) and an
emission wavelength of 460 nm (AMC) or 505 nm (AFC).

Western blot analysis

SW480, SW620, Caco2, or HT29 cells (2×106) were har-
vested after a 12-h-long exposition to placebo or sorafenib (5
and 10 μg/ml, respectively). Cells were washed twice with
phosphate-buffered saline (PBS; 1×) and lysed in 2× RIPA
solution. For Western blot analysis, 100 μg of protein was
loaded on 8–12 % SDS-PAGE gels, respectively. After sep-
aration, the gel was transferred to a PVDF membrane (Roth,
Karlsruhe, Germany). Proteins (AKT/pAKT, MEK/pMEK,
PI3K/pPI3K, mTOR/pmTOR, P53/pp53, FoxO3a/pFoxO3a,
GADD45β, and alpha tubulin) were detected with specific
primary antibodies (Table 1; 4 °C, overnight). The specific
secondary antibodies were exposed for 1 h at room temper-
ature (Table 1). For visualisation, the Roti Lumin systems 1
and 2 were applied (P79 and P80, Roth, Karlsruhe,
Germany). Each condition was performed in duplicates.

Subcutaneous xenograft tumor system

HT29 tumor cells (1×107) were suspended in 0.2 ml pure
RPMI1640 medium and 1× PBS (1:1) and applied by subcu-
taneous injection into the left flank of 7–8-week-old female
nod-SCID mice. Nod-SCID mice were irradiated with 1.8 Gy
1 day prior to s.c. injection of tumor cells. As soon as the
tumors reached a size of 10 mm, animals received i.p. injec-
tions of placebo (group 1; 200 μl, 5 days/week; 25 % cremo-
phor in NaCl 0,9 %), sorafenib (group 2; 200 μl; 5 days per
week; 0.12 mg/dose solved in 25 % cremophor; 30 mg/kg/
week), 5-FU (group 3; 200 μl; three times a week; 0.18 mg/
dose solved in 25% cremophor; 25mg/kg/week) or sorafenib+
5-FU (group 4; 200 μl; combination of group 2 and 3). The size

of tumors was measured manually twice weekly. Tumors grew
for 4 weeks. Thereafter, tumor nodules were excised and mea-
sured manually with a vernier micrometer.

Immunohistochemistry

Excised tumors obtained from the experimental animals were
paraffin-embedded. After obtaining adequate slides, the tissue
samples were screened for Ki-67, PDGFA, VEGFA,
VEGFR1, VEGFR2, PDFGRα, and PDGFRβ protein expres-
sion by immunohistochemistry. To that purpose, the tissues
were deparaffinized, rehydrated, and subsequently incubated
with the respective primary antibodies [anti-PDGFRα (sc-
338); 1:200, 2 h, Santa Cruz Biotechnology, CA, USA; anti-
PDGFRβ (3169), 1:40, 2 h, Cell Signaling Technology, MA,
USA; PDGFA (NBP1-19781), 1:100, 2 h, Novus Biologicals,
Cambridge, UK; VEGFA (ab46154), 1:200, 2 h, Abcam plc,
Cambridge UK; VEGFR1 (RB-9049-R7), 1:50, 2 h, Thermo
Fisher Scientific GmbH Neomarkers, Germany; VEGFR2
(RB-9239-R7), 1:50, 2 h, Thermo Fisher Scientific GmbH
Neomarkers, Germany; VEGFR3 (sc-321), 1:200, 2 h, Santa
Cruz Biotechnology, Germany; Ki-67 (mib1), 1:100, 2 h,
Dako, Germany; Envision flex plusTM, Autostainer, Dako,
Germany]. The secondary antibody (anti-rabbit-mouse-goat
antibody) was incubated for 15 min at room temperature,
followed by incubation with streptavidin-POD (Dako, Ger-
many) for 15 min. Antibody binding was visualized using
AEC solution (Dako, Germany). Afterwards, the tissues were
counterstained by haemalaun solution (Dako, Germany). The
expression of the respective tyrosine kinase was evaluated
using a scoring system. Expression strength of PDGFA,
VEGFA, VEGFR1, VEGFR2, VEGFR3, PDFGRα, and
PDGFRβ was classified as negative (0), low (1), medium,
(2) and high (3). All slides were independently evaluated by
three investigators. The Ki-67 expression was measured as
percentage of Ki-67 expressing cells.

Statistics

In order to assess dependence of growth factor and Ki-67
expression on treatment with 5-FU and sorafenib, the mini-
mum, the maximum, the median, and the quartiles in sub-
groups were calculated. For Ki-67 analyses, the mean and
standard deviations were calculated and displayed in box plots.
Ki-67 was measured three times for each specimen; averages
were analyzed using two-way analysis of variance. To compare
growth factor expression between treatment groups the Krus-
kal–Wallis tests was used, followed by pairwise Wilcoxon test
if the Kruskal–Wallis test gave a p value ≤0.05.

All tests were performed with exploratory intention, asso-
ciations with p values ≤0.05 might warrant further consid-
eration. Statistical analysis was performed using SAS 9.3
2002–2010 by SAS Institute Inc., Cary, NC, USA.
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Results

Proliferation assay

Inhibition of tumor growth through low dose sorafenib was
seen in all cell lines, except for Caco2 (Table 2; Fig. 1a).
High-dose sorafenib eradicated SW480 and HT29 cells
significantly and SW620 cell less effectively, whereas
Caco2 cells revealed a decelerated tumor cell growth only.
Mutation status of K-ras, B-Raf, PI3K, or p53 did not
correlate with resistance.

Migration assay

The treatment with low-dose sorafenib (5 μg/ml) signifi-
cantly inhibited migration only in SW480 and Caco2 cells
(Table 2). High-dose (10 μg/ml) sorafenib nonsignificantly
inhibited migration in HT29 and SW620 cells.

Caspases assays

Caspases 6, 8, and 10 Treatment with sorafenib significant-
ly induced caspases 6, 8, and 10 activity in SW480 but not
in HT29 cells (Table 2). In contrast, exposure to sorafenib
significantly decreased caspases 6, 8, and 10 activity in
Caco2 and SW620 cells

Caspase 9 Treatment with sorafenib significantly induced
caspase 9 activity in SW480 but did not impact on HT29,
Caco2, or SW620 cells.

Caspase 3 Treatment with sorafenib did not modify caspase 3
activity in SW480, HT29, or SW620 cells. However, caspase
3 activity was significantly decreased in Caco2 cells.

Chemosensitivity assay (apoptosis and proliferation)

5-Fluorouracil Combining 5-FU and sorafenib revealed ad-
ditive effects (proliferation and apoptosis) in SW480 and
HT 29 cells but not in SW620 or Caco2 cells (Fig. 1b;
Table 3). In contrast, the combination even increased pro-
liferation of Caco2 cells.

Irinotecan Combining 5-FU and irinotecan demonstrated
clear additive effects in SW480, HT29 (proliferation and
apoptosis), and SW620 (proliferation only) cells and even
slightly increased apoptosis of Caco2 cells (Fig. 1c). How-
ever, no effect was seen in SW620 cells.

Oxaliplatin Combining oxalipaltin and sorafenib revealed
an additive effect (proliferation and apoptosis) in HT29 cells
only but not in SW480, SW620, or Caco2 cells (Fig. 1d). In
contrast, the combination increased proliferation of SW480,
Caco2, and SW620 cells and inhibited apoptosis of SW480
and SW620 cells.

Signal cascade inhibition

In order to investigate the relevance of sorafenib in the
inhibition of signal cascades, we analyzed diverse pathways
(Fig. 2a). Upon exposure with increasing sorafenib doses,
we observed an inhibition of the Ras–Raf pathway (pMEK)
in SW620 but an induction in Caco2 cell lines. This path-
way remained unchanged in SW480 and HT29 cells.

The AKT pathway was specifically altered in sensitive
cell lines: SW480 and HT29 cells revealed only weak–
absent pAKT, but AKT expression was significantly sup-
pressed upon exposure with increasing sorafenib doses. In
contrast, the resistant cell line Caco2 did not show any AKT

Table 1 Antibodies used for Western blotting

Antibody Manufacturer Order number Secondary antibody Size (kDa) Dilution

Rabbit-anti-human pPI3K Cell Signaling 4228 Goat-anti-rabbit IgG 85/60 1:1,000

Rabbit-anti-human PI3K Cell Signaling 4257 Goat-anti-rabbit IgG 85 1:1,000

Rabbit-anti-human pAKT Cell Signaling 9267 Goat-anti-rabbit IgG 60 1:1,000

Rabbit-anti-human AKT Cell Signaling 4685 Goat-anti-rabbit IgG 60 1:1,000

Rabbit-anti-human pmTOR Cell Signaling 2971 Goat-anti-rabbit IgG 289 1:1,000

Rabbit-anti-human mTOR Cell Signaling 2983 Goat-anti-rabbit IgG 289 1:1,000

Rabbit-anti-human pMEK Cell Signaling 9121 Goat-anti-rabbit IgG 45 1:1,000

Rabbit-anti-human MEK Cell Signaling 9122 Goat-anti-rabbit IgG 45 1:1,000

Goat-anti-human GADD45β Santa Cruz Biotechnology sc-8776 Donkey-anti-goat IgG 18 1:500

Mouse-anti-human α-Tubulin Sigma Aldrich t5168 Goat-anti-mouse IgG 48,5 1:2,000

Goat-anti-mouse IgG Santa Cruz Biotechnology sc-2031 – – 1:10,000

Goat-anti-rabbit IgG Santa Cruz Biotechnology sc-2030 – – 1:10,000

Donkey-anti-goat IgG Santa Cruz Biotechnology sc-2033 – – 1:10,000
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Fig. 1 Effect of sorafenib monotherapy and combining sorafenib with
standard chemotherapeutics 5-FU, oxalipaltin, or irinotecan. a While
SW480 and HT29 cells were almost eradicated by high dose sorafenib
treatment, low doses resulted in a significantly reduced growth as com-
pared to placebo treatment. In contrast, Caco2 and SW620 cells were
resistant to low-dose sorafenib while high-dose sorafenib stabilized tumor
cell load of SW620 and Caco2. b 5-Fluorouracil. Combining 5-FU and
sorafenib revealed additive effects (proliferation and apoptosis) in SW480
and HT 29 cells but not in SW620 or Caco2 cells. In contrast, the

combination even increased proliferation of Caco2 cells. c Irinotecan.
Combining 5-FU and irinotecan demonstrated clear additive effects in
SW480, HT29 (proliferation and apoptosis), and SW620 (proliferation
only) cells and even slightly increased apoptosis of Caco2 cells. However,
no effect was seen in SW620 cells. d Oxaliplatin. Combining oxalipaltin
and sorafenib revealed an additive effect (proliferation and apoptosis) in
HT29 cells only but not in SW480, SW620, or Caco2 cells. In contrast,
the combination increased proliferation of SW480, Caco2, and SW620
cells and inhibited apoptosis of SW480 and SW620 cells
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suppressive behavior. An inhibition of pPI3K and pAKTwas
seen in Caco2 but not in SW620.

These results raise the question of whether a suppression of
AKTexpression correlateswith responsiveness to sorafenib. As
it has been previously reported that GADD45ß takes control
when AKT is absent, we analyzed GADD 45-associated genes.

Potential resistance indicators

We observed that sorafenib-sensitive cell lines revealed
almost absent pAKT, weak GADD45β, and medium–strong

FoxO3a expression levels (Fig. 2b). In contrast, resistant
cell lines showed medium pAKT, intensive GADD45β, and
weak–medium FoxO3a expression levels. GADD45β ex-
pression levels discriminated best between sensitive and
resistant cell lines.

Analyzing the impact of sorafenib on protein expression,
we observed that the sensitive cell line SW480 reacts with a
pp53 and a GADD45β upregulation upon increasing sora-
fenib doses. In contrast, resistant cell lines revealed primar-
ily intense (Caco2, SW620) and, upon sorafenib exposure,
decreasing (Caco2) GADD45β expression levels. Similarly,

Table 2 Functional effects of sorafenib in distinct colorectal cancer cell lines

placebo sorafenib 
5 µg/ml

P-value sorafnib 
10 µg/ml 

P-value 

Proliferation 

SW480
935.8% +/- 

30.4%  
176.3% +/- 

26.2% <0.0001 28.1% +/- 
4.4% 

<0.0001

HT29
584.0% +/- 

33.2% 
227.1% +/- 

32.3% <0.0001 3.8% +/- 2.6% <0.0001

Caco2 385.3% +/- 
54.7% 

412.0% +/- 
43.2% 

n.s. 139.6% +/- 
8.6% 

<0.0001

SW620 406.3% +/- 
51.1% 

267.7% +/- 
16.8% 

<0.0001 61.1% +/- 
2.0% 

<0.0001

Migration 

SW480
39.2% +/- 

5.2% 
28.5% +/- 

2.9% 0.05 29.8% +/- 
2.6% n.s.; 0.07 

HT29 24.4% +/- 
1.8% 

23.7% +/- 
4.6% 

n.s. 16.5% +/- 
4.7% 

n.s. 0.09

Caco2 29.8% +/- 
3.3% 

21.4% +/- 
4.5% 

0.027 22.0% +/- 
4.2% 

n.s.; 0.06 

SW620
24.0% +/- 

4.0% 
25.8% +/- 

4.8% n.s. 
17.3% +/- 

2.8% n.s. 0.08

caspases 
6,8,10 [IE] 

SW480 1246 +/- 24.8 1398 +/- 31 0.003 1881 +/- 37 <0.001

HT29 1465 +/- 91 1323 +/- 29 n.s. 1319 +/- 37 n.s. 

Caco2 2339 +/- 105 1797 +/- 66 0.03 1865 +/- 10 0.015 

SW620 1927 +/- 26 1724 +/- 19 <0.001 1512 +/- 29 <0.001

caspase  
9 [IE] 

SW480 773 +/- 21 839 +/- 19 0.017 969 +/- 40 0.005 

HT29 418 +/- 43 436 +/- 10 n.s. 385 +/- 13 n.s. 

Caco2 500 +/- 75 577 +/- 11 n.s. 421 +/- 5 n.s. 

SW620 439 +/- 16 421 +/- 64 n.s. 416 +/- 5 n.s. 

caspase  
3 [IE] 

SW480 785 +/- 20 770 +/- 25 n.s. 796 +/- 31 n.s. 

HT29 375 +/- 37 368 +/- 25 n.s. 350 +/- 28 n.s. 

Caco2 618 +/- 41 632 +/- 38 n.s. 496 +/- 35 0.017 

SW620 425 +/- 38 539 +/- 44 n.s. 387 +/- 40 n.s. 
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both resistant cell lines decreased pp53 levels upon expo-
sure to increasing sorafenib doses.

In vivo xenograft model

Ex vivo analyses of tumor size indicated that—compared to
placebo control—only a sorafenib monotherapy significantly
decreased tumor size (220±3.06 % versus 95.8±4.34 %; P0
<0.0001), while a 5-FU monotherapy inhibited tumor growth
nonsignificantly (220±3.06 % versus 124±20.8 %; P00.097)
(Fig. 3). The 5-FU plus sorafenib combination therapy was
equipotent to 5-FU monotherapy (220±3.06 % versus 146±
24.89 %; P00.085), but inferior compared to sorafenib mono-
therapy (P00.068), in this explorative analysis.

Therapeutic effect on Ki-67 proliferation index Analysis of
the proliferation index showed that sorafenib monotherapy
and 5-FU monotherapy were equally effective in reducing
the proliferation index as compared to placebo. However,
the combination therapy of sorafenib and 5-FU did not
result in further reduction of proliferation rates.

For Ki-67, analysis of variance demonstrated a signifi-
cant effect for sorafenib (p00.0101), and for 5-FU+sorafe-
nib interaction (p00.0049), the 5-FU main effect was
borderline significant (p00.0537) as compared to the con-
trol group. On average, treatment with 5-FU lowered Ki-67
expression by 4.9 %, treatment with sorafenib on average
lowered Ki-67 by 6.8 %. However, the effect was not
additive: animals treated with both substances had higher
Ki-67 values than animals treated with only one substance.
The means for each treatment group are given in Fig. 4.

Therapeutic effect on cytokine expression Specimens (N0

21) resected from 20 animals were included in the analysis.
Each treatment group consisted of five animals, with six
specimens available in the group treated with combined 5-
FU and sorafenib (due to two tumors in one animal). The
distribution of growth factor expression is given in Table 4.
A summary of the Ki-67 measurements is given in Table 5.

There were substantial differences in the expression of
PDGFRβ (p00.002) and VEGFR1 (p00.0002) between the
control group and the different treatment groups. There was
also a tendency for different expression of PDGFA (p0
0.0799) between different groups (Fig. 5a). Representative
tissue examples are shown in Fig. 5b.

The highest expression levels of VEGFR1 were seen in the
untreated control group and differed in relation to the group
treated with 5-FU (p00.0079), sorafenib (p00.0079), and 5-
FU+sorafenib (p00.0022). The difference among treatment
groups remained within random variation.

A similar result was seen for PDGFRβ expression.
The untreated control group showed the highest expres-
sion level differing from all treatment groups (p00.0079
when compared with 5-FU or sorafenib, p00.0043 when
compared to 5-FU+sorafenib).

The tentative differences in PDGFA expression resulted
from higher values in the untreated control group as com-
pared to lower values in the treated groups.

The other growth factors did not show any differences
beyond random variation(p>0.1). The p values in the Krus-
kal–Wallis test were: PDGFRα, p00.8355; VEGFR2, p0
0.1020; VEGFR 3, p00.5058; cytoplasmic VEGF A, p0
0.2701; and nuclear VEGFA, p00.3397.

Table 3 Effect of combining sorafenib with classical chemotherapeutic drugs

SW480 (%) p value HT29 (%) p value Caco2 (%) p value SW620 (%) p value

Proliferation

5-FU + Placebo 150.3±16.0 0.061 262.3±25.9 0.004 337.2±25.3 <0.001 97.2±8.5 0.186

Sorafenib 127.7±11.9 218.5±20.2 468.2±29.1 104.1±8.5

Irinotecan + Placebo 59.0±7.0 0.002 217.7±23.8 <0.001 585.1±51.9 0.66 120.6±9.7 <0.001

Sorafenib 39.1±2.6 116.2±13.1 570.4±78.6 75.1±8.1

Oxaliplatin + Placebo 56.6±3.5 0.1 204.7±36.1 <0.001 308.4±33.2 <0.001 10.2±0.8 <0.001

Sorafenib 61.7±6.6 114.8±28.6 450.1±20.0 13.7±1.7

Apoptosis

5−FU 17.23±2.67 0.002 5.28±0.07 0.047 14.38±1.15 0.32 5.84±2.45 0.15

5−FU+sorafenib 42.27±0.74 20.55±1.62 16.98±3.38 10.98±1.73

Sorafenib 16.43±1.45 <0.001 11.78±1.56 0.031 17.12±0.37 0.95 9.07±4.65 0.66

Irinotecan 41.62±4.12 0.004 24.08±2.82 <0.001 12.38±2.79 0.041 39.07±3.01 0.238

Irinotecan+sorafenib 71.57±1.25 56.23±1.1 19.74±3.2 26.44±7.96

Sorafenib 16.43±1.45 <0.001 11.78±1.56 0.002 17.12±0.37 0.29 9.07±4.65 0.146

Oxaliplatin 39.26±1.23 <0.001 24.93±1.87 <0.001 38.52±3.12 0.6 40.71±1.31 0.058

Oxaliplatin+sorafenib 31.47±1.15 46.92±1.21 36.84±2.13 30.62±0.04

Sorafenib 16.43±1.45 <0.001 11.78±1.56 % <0.001 17.12±0.37 <0.001 9.07±4.65 <0.001
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Discussion

The approach of inhibiting RTKs with sorafenib has been
successful in renal and hepatocellular cancers [17, 18]. A
phase I study revealed disease stabilization in pretreated colo-
rectal cancer patients [20]. Except of one recent study with

Regorafenib, recent phase II/III studies testing other multi-
tyrosine kinase inhibitors in colorectal cancer failed to show
any benefit [21, 22]. So far, no molecular markers have been
identified which are helpful in stratifying the patients.

We performed defined functional in vitro analyses in
order to identify sorafenib-sensitive and sorafenib-resistant
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Fig. 2 a Upon exposure with augmenting sorafenib doses, we ob-
served an inhibition of the Ras–Raf pathway (pMEK) in Sw620 cell
lines, only. In contrast, this pathway was activated in Caco2 cells. The
AKT pathway was particularly altered in sensitive cell lines. SW480
and HT29 cells revealed only a hint–absent pAKT expression, but AKT
expression was clearly suppressed upon exposure to increasing sorafe-
nib doses. In contrast, the resistant cell line Caco2 did not show such
AKT inhibitory behavior. An inhibition of pPI3K and pAKTwas seen in
Caco2 but not in SW620. b Analyses of the signaling pathways
showed that sorafenib-sensitive cell lines reveal almost absent pAKT,

absent–weak GADD45β, and medium–strong FoxO3a expression lev-
els. In contrast, resistant cell lines showed a medium pAKT, very strong
GADD45β, and weak–medium FoxO3a expression levels. GADD45β
expression levels discriminated best between sensitive and resistant
cell lines. When analyzing the impact of sorafenib, we observed that
the sensitive cell line SW480 revealed a pp53 and a GADD45ß upre-
gulation upon exposure to increasing sorafenib doses. In contrast,
resistant cell lines showed initially high (Caco2, SW620) and, upon
drug exposure, decreasing GADD45β (Caco2) and decreasing pp53
(Caco2, SW620) expression levels
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cell lines. While HT29 and SW480 were found to be sor-
afenib sensible, Caco2 was resistant and SW620 showed
features of resistance. However, the mutation status of K-
ras, B-Raf, PI3K, or p53 did not correlate with resistance.

Combining sorafenib with chemotherapeutic drugs
used in colorectal cancer revealed an additive effect in
growth inhibition and apoptosis induction in SW480
(except for oxaliplatin) and HT29 cells, whereas in
Caco2 cells, apoptosis was not increased and prolifera-
tion even stimulated (5-FU or oxaliplatin). These data
are in line with previous reports describing a reduced
cellular uptake of oxaliplatin and generation of DNA
adducts in specific colorectal cancer cells through sor-
afenib [23]. Thus, combination with oxaliplatin seems
disadvantageous in specific settings. The effect of sor-
afenib on migration was marginal and of no significant
importance.

Induction of apoptosis might explain the different
observations made upon sorafenib exposure: While ac-
tivity of caspases 6, 8, and 10 was induced in sensitive
SW480 cells, it was decreased in the resistant cell lines.
Furthermore, SW480 reacted with an increased activity
of caspase 9. In contrast, activity of caspase 3 was
decreased in Caco2 cells upon exposure to sorafenib.
An induction of caspase 3 activity, as seen in prostate
cancer cells, was not observed in colorectal cancer cells
[24]. Our data reveal that resistance to sorafenib is
associated with inhibition of specific pro-apoptotic path-
ways. However, sorafenib is also known to induce
caspase-independent apoptosis, mediated through nuclear
translocation of AIF [25].

We observed an inhibition of the Ras–Raf pathway
(pMEK) in SW620 cell lines only, matching sorafenib’s

function as a Raf inhibitor [25]. While sensitive cell
lines revealed only a weak–absent pAKT expression,
AKT expression was clearly suppressed upon exposure
with increasing sorafenib doses. In contrast, the resistant
cell line Caco2 did not show such AKT suppressive
behavior. These observations match a previous report
that a constitutively active AKT protects cells against
sorafenib/bortezomib-induced apoptosis [26, 27].

Sorafenib-sensitive cells lines were defined by almost
absent pAKT, medium–strong FoxO3a, and hint GADD45β
levels. The tumor suppressor FoxO3 belongs to a subclass
of the forkhead transcription factors, being inhibited by
activation of the PI3K pathway. Downregulation of FoxO3
is thus considered a consequence of pAKT activity.

In contrast, resistant cell lines showed medium pAKT,
weak FoxO3a, and very intense GADD45β levels.
GADD45β expression levels discriminated best between
sensitive and resistant cell lines. GADD45 is a stress
sensor modulating the response of cells to genotoxic or
oxidative stress [28–30]. In specific colon cancer cells,
GADD45β over-expression was linked to protection from
platin induced death, matching our observations [31].
Being an apoptosis modulator, activation of GADD45β
prevents the propagation of damaged cells, causing an
arrest in cell growth and apoptosis after exposure to
toxins [32]. This regulation seems intact in SW480 cells
but reversed in resistant cells; GADD45ß was downregu-
lated in Caco2 upon sorafenib treatment, going along with
a sorafenib-mediated inhibition of caspases 6, 8, and 10.
As a downstream effector of p53, GADD45β was con-
firmed to be specifically downregulated in HCC, which
was associated to the extent of p53 mutation [33]. We
observed a pp53 and a GADD45β upregulation in some
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Fig. 3 In vivo, only sorafenib
monotherapy inhibited tumor
growth significantly as
compred to the control group.
5-FU treatment or the combi-
nation demonstrated only a
nonsignificant inhibition. When
all treatment groups were com-
pared, no significant differences
were observed
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sensitive cell line (SW480) upon exposure to sorafenib. In
contrast, resistant cell lines showed primarily high
(Caco2, SW620) and, upon sorafenib exposure, decreasing
(Caco2) GADD45β and pp53 levels. These data are in line
with observations in HCC, in which GADD45β induction by
sorafenib occurred only in sensitive hepatocellular carcinoma
cell lines, independent of the Raf/MEK/ERK signaling path-
way [34].These findings confirm our definition of sensitive
cell lines, in which sorafenib induces apoptosis and inhibits
proliferation.

In vivo, Wilhelm and colleagues described a potent
growth inhibition of HT29 xenografts at sorafenib doses of
7.5 mg/kg. We studied four different groups in vivo: place-
bo, 5-FU, sorafenib, and 5-FU+sorafenib. 5-FU was

chosen, being the backbone of most chemotherapeutic pro-
tocols in colorectal cancer. Sorafenib was applied at 5 mg/
kg, matching 400 mg/day as used in combination therapies
[19, 20].

Interestingly, we observed that a sorafenib monotherapy
was at least equally effective as the 5-FU monotherapy or as
the combination therapy and even tended to inhibit in vivo
tumor growth somewhat better than the combination
therapy.

The proliferation index was significantly reduced in
all treatment groups as compared to the control group
but displayed similar results for mono-agent therapy and
the combination therapy. Since only small numbers were
analyzed, a possibility exists that larger treatment

Fig. 4 a Analysis of Ki-67
proliferation index in three dif-
ferent treated animal groups
(sorafenib monotherapy versus
5-FU monotherapy versus
combination therapy) show a
significant reduction of prolif-
eration in all treatment groups
but no superior therapeutic ef-
fect of the combination therapy
group. b Interaction plot for Ki-
67 depicts no additive effect of
combination therapy with 5-FU
and sorafenib. Analysis of the
expression intensity of PDGFA,
PDGFRβ, and VEGFR1 in the
control group and under treat-
ment with sorafenib monother-
apy, 5-FU monotherapy, and
combination therapy. PDGFRβ
and VEGFR1 expression inten-
sities were significantly reduced
by 5-FU and sorafenib,
respectively
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groups might demonstrate even more distinct differen-
ces. However, we clearly demonstrate that combination
of sorafenib and chemotherapy did not result in any

additive effects. In contrast, it seems that treatment
effects are partially cancelled when 5-FU and sorafenib
are applied simultaneously.

Table 4 Summary measures for growth factor expression in treatment groups

Treated with 5-
FU

Treated with
sorafenib

Label N Minimum Lower
quartile

Median Upper
quartile

Maximum

No No VEGFR 1 5 2 2 2.5 2.5 2.5

VEGFR 2 2 2 2 2 2 2

VEGFR 3 5 1.5 2 2.5 3 3

PDGFR alpha 5 0 0.5 0.5 1 1.5

PDGFR beta 5 2 2 2 2 2

VEGF A in
cytoplasm

5 0.5 2 2.5 3 3

VEGF A in nucleus 3 2 2 2 2 2

PDGF A 5 0 1 1.5 1.5 2

Yes VEGFR 1 5 0.5 0.5 1 1 1

VEGFR 2 5 0 0 0.5 1 1.5

VEGFR 3 5 1.5 1.5 2 2.5 3

PDGFR alpha 5 0 0.5 0.5 0.5 1.5

PDGFR beta 5 0 0.5 0.5 0.5 1

VEGF A in
cytoplasm

5 1 1 1 1 2

VEGF A in nucleus 5 0 0 0 1 2

PDGF A 5 0 0 0 1 1.5

Yes No VEGFR 1 5 0.5 0.5 1 1 1.5

VEGFR 2 5 0 0 0 0.5 1

VEGFR 3 5 1 1.5 1.5 2 3

PDGFR alpha 5 0 0 0.5 1.5 1.5

PDGFR beta 5 0 0 0 1 1.5

VEGF A in
cytoplasm

5 0.5 1 1 2 2.5

VEGF A in nucleus 5 0 0 1 2 3

PDGF A 5 0 0 0 0 0.5

Yes VEGFR 1 6 1 1 1.3 1.5 1.5

VEGFR 2 4 0 0 0.3 1 1.5

VEGFR 3 6 1.5 2 2.3 2.5 3

PDGFR alpha 6 0.5 0.5 1 1 1

PDGFR beta 6 0 0 0.5 0.8 1

VEGF A in
cytoplasm

6 1 1 1 1 1.5

VEGF A in nucleus 6 0 0 1 2 2

PDGF A 6 0 0 0 1 1

Table 5 Summary of Ki-67 measurements

Treated with 5-FU Treated with sorafenib N Mean Standard
deviation

Minimum Lower quartile Median Upper quartile Maximum

No No 5 48.9 3.3 44.3 47 49.7 51.7 52

Yes 5 34.5 4.8 28 33 33.7 37.3 40.7

Yes No 5 36.5 5.3 29.7 34.3 35 40 43.3

Yes 6 37.3 7 28.5 34 36.7 38 49.7
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Expression rates of receptor tyrosine kinases VEGFR1 and
PDGFRβ as well as of the ligand PDGFAwere decreased by
all treatment regimens used. However, no significant differ-
ences were detected between treatment groups.

Inhibition of receptor tyrosine kinases through sora-
fenib could potentially lead to a selection of low target
expressing tumor cells. Combination regimens of sora-
fenib and 5-FU might reduce sorafenib target expression
leading to a similar proliferation effect as under 5-FU
monotherapy. However, the adverse events in humans
might rather be additive. Our results indicate that there
is no additive effect in combination of these two treat-
ment mechanisms and that combination might only add
adverse events. Therefore, in future studies preferentially
sorafenib monotherapy versus sequential treatment

regimens (inductiontherapy via chemotherapy–mainte-
nance via sorafenib) should be explored.

Conclusion

Diverse tyrosine kinase inhibitors have failed in colorectal
cancer. However, sorafenib still seems promising in distinct
settings, if applied as monotherapy. In our human colon
cancer xenograft model, it seems that treatment effects are
partially cancelled when 5-FU and sorafenib are applied
simultaneously. However, monotherapy with sorafenib
seems to be sufficient for tumor control in our human colon
cancer xenograft model, especially considering the applica-
tion advantage and toxicity profile.

A

B
no expression = grade 0 weak expression = grade 1

moderate expression = grade 2 strong expression = grade 3

Fig. 5 a Analysis of the
expression intensity of PDGFA,
PDGFRβ, and VEGFR1 in the
control group and under
treatment with sorafenib
monotherapy, 5-FU monother-
apy, and combination therapy.
PDGFRβ and VEGFR1 ex-
pression intensities were signif-
icantly reduced by 5-FU and
sorafenib, respectively. b
Immunostaining was evaluated
by three authors independently.
The immunohistochemical
staining was analyzed accord-
ing to a scoring method as pre-
viously validated and described
by Laverdiere et al. The tumors
were classified into four groups
based on the homogeneous
staining intensity: 0, no expres-
sion; 1, weak expression; 2,
moderate expression; and 3,
strong expression. In the case of
heterogeneous staining within
the same sample, the respective
higher score was chosen if more
than 50 % of cells revealed a
higher staining intensity. If
evaluations did not agree,
specimens were re-evaluated
and reclassified according to the
assessment given most fre-
quently by the observers
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