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Abstract
Purpose Accurate histological diagnosis in Hirschsprung disease (HD) is challenging, due to its complexity and potential 
for errors. In this study, we present an artificial intelligence (AI)-based method designed to identify ganglionic cells and 
hypertrophic nerves in HD histology.
Methods Formalin-fixed samples were used and an expert pathologist and a surgeon annotated these slides on a web-based 
platform, identifying ganglionic cells and nerves. Images were partitioned into square sections, augmented through data 
manipulation techniques and used to develop two distinct U-net models: one for detecting ganglionic cells and normal nerves; 
the other to recognise hypertrophic nerves.
Results The study included 108 annotated samples, resulting in 19,600 images after data augmentation and manually seg-
mentation. Subsequently, 17,655 slides without target elements were excluded. The algorithm was trained using 1945 slides 
(930 for model 1 and 1015 for model 2) with 1556 slides used for training the supervised network and 389 for validation. 
The accuracy of model 1 was found to be 92.32%, while model 2 achieved an accuracy of 91.5%.
Conclusion The AI-based U-net technique demonstrates robustness in detecting ganglion cells and nerves in HD. The deep 
learning approach has the potential to standardise and streamline HD diagnosis, benefiting patients and aiding in training 
of pathologists.
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Purpose

Hirschsprung disease (HD) is a congenital disease charac-
terised by the absence of ganglion cells in the distal bowel, 
extending proximally for varying distances [1]. A variety 

of diagnostic tests including contrast enema and anorectal 
manometry may be used as diagnostic screens, but diag-
nosis ultimately lays upon histopathological examination 
of a rectal biopsy. The diagnostic histological features of 
HD include the absence of ganglion cells and an increase 
in hypertrophic cholinergic nerves [2]. The accurate assess-
ment of these histological features plays a pivotal role in 
planning a correct surgery needed to remove the non-func-
tioning bowel. However, this histological analysis is far from 
straightforward. It presents several challenges, primarily in 
the accurate differentiation of these structures and is sus-
ceptible to errors due to the potential for variations in inter-
pretation, which can significantly impact the diagnosis and 
consequently, treatment decisions. To address these chal-
lenges, artificial intelligence (AI) has emerged as a valuable 
tool in pathology [3, 4]. AI algorithms offer the promise of 
delivering consistent results, mitigating the interobserver 
variability that often can occur in manual assessment, thus 
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facilitating the comparison of cases across different medical 
institutions [3, 5]. Furthermore, especially in low-volume 
centres, AI can help offset the deficiency in specialised 
expertise, thereby enhancing the quality of care provided to 
HD patients. In this study, we introduce an AI-based method 
aimed at automating the identification and quantification of 
ganglionic cells and hypertrophic nerves in the resected 
specimens for HD.

Materials and methods

Participant and slide selections

Specimens collected from patients undergoing surgical treat-
ment for Hirschsprung’s disease (HD) between January 2010 
and January 2022 were included in this study. Slides with 
poor quality, such as those exhibiting drying effects, signifi-
cant air bubbles, or broken glass, were excluded from the 
analysis. Only formalin-fixed, paraffin-embedded tissue sam-
ples stained with haematoxylin–eosin were considered for 
the study. A high-capacity scanner was employed to capture 
images of 2048X1280 pixels at X10 magnification, thereby 
generating the dataset.

Development and training of AI system

The proposed methodology consisted in different steps:

1. Annotation: A dedicated team comprising an expert 
pathologist and a paediatric surgeon specialising in 
HD histology meticulously annotated high-resolution 
slides (2048X1280 pixels at X10 magnification) using 
the AAPER web-based platform. Their meticulous 
work involved identifying and encircling ganglionic 
cells, nerves, and hypertrophic nerves individually. The 
annotations made on each image were then exported as 
multiclass masks. This process resulted in the creation 
of a tiff file for each histological slide, ultimately yield-
ing two datasets: one for the histological images and 
another for the corresponding masks.

2. Data augmentation: To bolster the training process and 
mitigate the risk of overfitting, we applied data augmen-
tation techniques. These techniques encompassed ran-
dom flipping, rotation, and colour normalisation.

3. Dataset subdivision: The entire dataset underwent divi-
sion into two subsets. The first subset, constituting 
80% of the entire dataset, served as the training set for 
algorithm and model development. Simultaneously, the 
second subset, encompassing 20% of the dataset, was 
reserved for subsequent analysis and validation pur-
poses.

4. Manual segmentation: each entire slide was partitioned 
into 40 squared patches, each measuring 256 × 256 pix-
els. This division not only enhanced the overall output 
quality but also further increased the volume of data 
available for analysis.

5. Train supervised U convolutional neural network: This 
extensive dataset served as the foundation for training 
neural networks. To create various neural network mod-
els, we curated subsets of the dataset, each with specific 
image characteristics. One dataset exclusively contained 
images of ganglion cells and normal nerves, while 
another comprised solely hypertrophic nerves. To ensure 
comprehensive learning, we also introduced images 
characterised solely by background into both datasets. 
This approach enabled the network to not only recognise 
the target areas for classification but also understand the 
broader context of the images, where normal cells and 
nerves would never appear, unlike hypertrophic nerves. 
In summary, the datasets we generated encompassed 
images with the following characteristics:

Dataset 1—model 1: Ganglionic cells and normal nerves
Dataset 2—model 2: Hypertrophic nerves:
The expected segmentations when applying model 1 are 

as follows
For images within the ganglionic zone: Segmentation of 

normal nerves and ganglionic cells
For images within the transition zone: Segmentation of 

ganglionic cells
For images within the aganglionic zone: No segmentation
For images containing only background: No segmentation
When applying model 2, the anticipated segmentations 

are:
For images within the ganglionic zone: No segmentation
For images within the transition zone: Segmentation of 

hypertrophic nerves.
For images within the aganglionic zone: Segmentation of 

hypertrophic nerves.
For images containing only background: No 

segmentation.
Consequently, there are images segmented by both model 

1 and model 2, all of which belong to the transition zone and 
require additional scrutiny by the pathologist (Fig. 1).

6. Testing convolutional neural network: Some slides were 
used to test the proposed model. In this context, each 
whole image of 2048X1280 pixels was divided into 40 
patches with a size of 256 × 256 pixels. The predict func-
tion was then applied to each patch, and subsequently, 
the patches were reassembled using the un-patchify 
function to generate the original-sized mask. The manu-
ally segmented masks served as a verification control.
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Analysis

At the conclusion of the training process, the evaluation 
function was applied to the model, yielding a metric value. 
In our study, we assessed accuracy, which provides insight 
into the proximity of predicted values to their true counter-
parts. This metric was determined by dividing the number of 
correct predictions by the total number of predictions made 
(Accuracy = correct prediction/all prediction). Achieving 
a high accuracy, typically exceeding 90%, is indicative of 
strong model performance. In addition to evaluating the 
model's ability to perform automatic segmentation, a pre-
diction function was employed for each input sample, using 
this mathematical function: y_pred = model.predict(x_test). 
In our case, the input consists of the X test dataset, compris-
ing images from the validation set representing 20% of the 
original dataset. This dataset was also used to assess the 
model’s accuracy at the end of each epoch.

Results

During the study period, we identified a total of 31 eligi-
ble patients diagnosed with Hirschsprung’s disease (HD). 
From these patients, we collected a comprehensive set of 
108 tissue samples representing various regions, including 
the ganglionic zone, transition zone, and aganglionic zone. 
All these samples were preserved, paraffin-embedded, and 
formalin-fixed, and they were stored in the archive of the 
Institute of Pathology at a single specialised referral cen-
tre. Ganglionic cells, nerves, and hypertrophic nerves were 
annotated using a web-based platform (AAPER). The anno-
tations were then used to generate masks, which would serve 
as essential inputs for the neural network. Following this, 
we took steps to augment the dataset to obtain 540 slides. 
Out of these, 50 were excluded from the training process as 
they were reserved for testing the U-NET model. Consider-
ing 490 slides, manual segmentation was applied to yield 
an extensive dataset consisting of 19,600 images. However, 
during the data processing phase, we excluded 17,655 slides 
that did not contain the specific target elements we were 
interested in. Subsequently, the AI algorithm was trained 

using the remaining 1,945 slides (930 for model 1 and 1015 
for model 2), setting the stage for our comprehensive analy-
sis and evaluation.

Model 1: Ganglionic cells and normal nerves

Three classes were considered for this segmentation: gangli-
onic cells, normal nerves, and background. The initial data-
set comprised 930 images, divided as follows: 744 images 
for the training set and 186 images for the validation set. The 
training involved 120 epochs, and as demonstrated in Fig. 2, 
this training was deemed sufficient as a plateau was reached 
starting from the 100 epochs (green curve). Applying this 
scheme, the diagnostic accuracy reached 92.3% (Fig. 2—red 
curve). Figure 3 describes the prediction model related to 
the model 1.

Model 2: hypertrophic nerves

For training this model, we focussed on just two classes: 
hypertrophic nerves and background. The initial data-
set comprised 1015 images, with the following distri-
bution (812 images for the training set; 203 images for 

Fig. 1  Description of AI models

Fig. 2  Training and validation accuracy graph of model 1
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the validation set). Training involved 120 epochs, and as 
depicted in Fig. 4, the training accuracy reached a pla-
teau starting from the 98th epoch, indicating a sufficient 

number of epochs for effective training. The calculated 
accuracy value of this model was 91.50% (Fig. 4). As for 

Fig. 3  Model 1: “Testing images” are the images belonging to the 
validation set; “Testing label” refers to the corresponding manually 
segmented masks provided by the pathologist, and “prediction on test 

image” pertains to the predictions generated by the model. Red = gan-
glionic cells. Green = normal nerves. Blue = background
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prediction, Fig. 5 demonstrates the model’s proficiency in 
accurately identifying the presence of both classes.

Test set evaluation

During this phase, we employed the 50 slides that were 
excluded from the training set and applied both models 1 
and 2, which had undergone validation in previous stages. 
When model 1, designed to identify ganglionic cells and 
normal nerves, was applied to images from the ganglionic 
zone, it detected a higher number of ganglionic cells than 
were actually present (Supplementary Fig. 1). In the case 
of images from the aganglionic zone, when model 1 was 
employed, only 4 out of 40 patches were incorrectly seg-
mented (Supplementary Fig. 2). On the other hand, apply-
ing model 2, specifically trained to recognise hypertrophic 
nerves, to ganglionic region images resulted in only 3 out 
of 40 patches being misclassified (Supplementary Fig. 3). 
When model 2 was applied to ganglionic regions, the system 
accurately segmented them (Supplementary Fig. 4).

Discussion

Artificial intelligence (AI) and machine learning are emerg-
ing technologies that can be used to create algorithms capa-
ble of decision making [6]. The whole medical scientific 
community has been fascinated by this new opportunity. 
Researchers and clinicians dedicated to rare conditions 
are foreseeing tools which would overcome the scarcity of 
numerosity of existing series to reach robust and supported 
diagnostic and therapeutic processes. Furthermore, the spe-
cific field of diagnosis through images both from radiology 
exams and pathology specimens would clearly receive huge 

support from AI-based assessments [7, 8]. Digital pathology, 
coupled with advanced digital slide scanning technology, 
has opened numerous possibilities for identifying various 
tissue types and specific target elements [9, 10]. Through 
the application of machine and deep learning techniques, it 
is now feasible to train a “computer pathologist” to recog-
nise diverse structures, depending on their unique charac-
teristics. However, one current limitation of fully automated 
pathology lies in the need for pathologist-guided delinea-
tion of specific regions within digitised slides. To achieve 
a diagnostically conclusive result, it has become increas-
ingly important to blend both manual-adapted detection and 
automated cellular analysis through deep learning methods. 
Wang et al. have highlighted the advantages of combining 
these approaches to mitigate issues arising from the vast 
amount of data or a lack of inherent understanding of his-
tological structures [12]. Deep learning relies on extensive 
datasets to train neural network algorithms [11]. As the 
number of slides/images increases, the algorithm's capabil-
ity for unsupervised cellular analysis improves, enabling it 
to recognise disease-specific features and patterns through 
learned associations [12]. Until recently, AI and machine 
learning technologies were predominantly applied in the 
field of oncology [13–15]. However, more recently, these 
systems have been introduced into the diagnostic process 
of rare paediatric diseases, holding great promise [16–19]. 
Hirschsprung disease is a rare condition, belonging to the 
anomalies of the enteric nervous system. The condition is 
diffused all over the world with an incidence of 1 out 5000 
newborns [20]. Although several aspects of the disease have 
been deeply studied, aetiology as well as variability in the 
phenotype and prognosis are still challenging the specialists 
who treat it. Guidelines for diagnosing and treating these 
cases are emerging from the editorial effort of medical socie-
ties and supranational institutions with methodology condi-
tioned by poor level of evidence [21, 22]. In Hirschsprung’s 
disease and allied disorders, the expert’s involvement in 
crucial phases is rewarded as the possible guarantee of a 
correct approach. However, expertise definition is currently 
vague and volume of treated cases seems the only reliable 
parameter.

In this study, we have described the development and 
technical validation of a novel, supervised AI model for the 
evaluation of histopathologic features in the spectrum of 
Hirschsprung diagnosis. The primary goal of this study was 
to establish a “proof-of-principle” model in the setting of 
HD-AI system, showing its potential as a semi-automated 
tool in the field of anatomic pathology, providing accurate, 
reproducible, quantitative assessment of various microscopic 
features of interest (identifying ganglionic cells, hyper-
trophic nerves, normal nerves), increasing both efficiency 
and reporting standardisation in this specific context. Con-
sidering the rare nature of Hirschsprung's disease, there have 

Fig. 4  Training and validation accuracy graph of model 2
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been limited attempts to harness AI for its diagnosis. Schil-
ling et al. made an endeavour in this direction, utilising AI 
to diagnose HD with the aid of histological slides stained for 
calretinin, microtubule-associated protein 2, Glucose trans-
porter isoform 1, and S100. Their study involved 93 tissue 
blocks from 31 specimens of 27 patients. In their training 

set, they reported a sensitivity of 87.5% and specificity of 
80%, while in the development set, they achieved 95% sensi-
tivity and 90.4% specificity [18]. Our study diverges in both 
objectives and methodologies. First, mirroring a recent study 
by Greenberg et al., we exclusively employed H&E-stained 
slides, abstaining from the use of immunohistochemistry 

Fig. 5  Model 2: “Testing images” are the images belonging to the 
validation set; “Testing label” refers to the corresponding manually 
segmented masks provided by the pathologist, and “prediction on 

test image” pertains to the predictions generated by the model. Bor-
deaux = hypertrophic nerves. Blue = background
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[23]. Second, through the diligent application of data aug-
mentation and segmentation techniques, our dataset sur-
passed 1000 slides in volume, distinguishing it in terms of 
scale and potential.

The algorithm developed in this study demonstrates an 
accuracy rate of 92.3% for detecting ganglionic cells and 
91.5% for identifying hypertrophic nerves, respectively. In 
the realm of Hirschsprung’s disease diagnosis, a common 
trend in the literature is the consistently high reported speci-
ficity, typically exceeding 90%, which translates to a rarity 
of false-positive results. However, the incidence of false-
negative results displays a wider spectrum, ranging from 
0 to 40% [24]. In this context, the potential incorporation 
of immunohistochemistry could further enhance diagnostic 
accuracy. Nevertheless, it is noteworthy that at our centre, 
our experienced pathologist achieved a 100% detection rate 
for pathological markers (including hypertrophic nerves 
and the absence of ganglionic cells) exclusively through the 
examination of H&E-stained slides, without any instances 
of false positives. Consequently, the utilisation of this algo-
rithm may simplify the diagnostic process and empower 
less-experienced pathologists to perform effectively. To the 
best of our knowledge, this study represents the pioneering 
effort to employ two AI models for the histological diagnosis 
of Hirschsprung’s disease, encompassing both ganglionic 
cells and hypertrophic nerves. This innovation is signifi-
cant because the combined use of these models enables the 
AI system to identify the transition zone, the area situated 
between the aganglionic and ganglionic zones. Notably, our 
research group has previously demonstrated that the length 
of this transitional area serves as a predictive factor for 
post-HAEC development (these findings are yet to be pub-
lished). One of the most significant challenges encountered 
in this model is the accurate detection of ganglion cells. The 
machine learning algorithm may occasionally misclassify 
immature ganglion cells as mature ganglion cells, especially 
when they are not in proximity to the expected context. It is 
essential to note that ganglion cells are exclusively located 
within the submucosa or muscularis propria layers. Any 
cell or finding identified in any other layer, regardless of 
how similar it may appear, is highly unlikely to represent 
a genuine ganglion cell. However, in the absence of this 
contextual information, some findings can mimic gan-
glion cells, particularly immature ones, leading to potential 
misclassification.

To address this issue, our future applications of the algo-
rithm will include tracking the origin of each image within 
its respective slide. This additional contextual information 
will significantly enhance the algorithm’s ability to provide 
a more accurate assessment by considering the specific his-
tological layer in which the cells are located.

This study has several limitations which merit mention. 
As stated, the available dataset was limited and significantly 

smaller than that of similar studies on the use of AI in 
pathology [25, 26]. Large data sets are considered necessary 
to properly represent the wide variability present in clinical 
samples. Smaller datasets therefore suffer both from a sta-
tistical standpoint and from excessive uniformity. Our use 
of data augmentation techniques somewhat circumvents this 
problem. Nevertheless, additional data, including data gener-
ated by other institutions, considering the rarity of the dis-
ease would allow for further validation which could improve 
upon the algorithm. Furthermore, from a technical point of 
view, there are various challenges that will have to be over-
come. For instance, artefacts can be mistaken as ganglionic 
cells if many tissue layers overlap and create a “brown-like 
colouration”. In addition, in a machine learning approach for 
histological purposes, the hierarchical analysis of specific 
structures such as nerves and ganglion cells within the tissue 
slide is a fundamental aspect that significantly contributes to 
the accuracy and effectiveness of the AI system.

Conclusion

The results demonstrate the robustness of the AI- based 
U-net technique in accurately detecting ganglion cells and 
nerves in HD histology. Furthermore, the streamlined nature 
of AI-based diagnosis can significantly benefit patients. 
Timely and accurate diagnoses are crucial in HD, as they 
directly impact the planning post-operative care. By reduc-
ing the time required for histological analysis, we can expe-
dite faster treatment decisions and improve patient out-
comes. The increase in data transfer speed associated with 
may predict scenarios where an AI-based pathology assistant 
may indicate if and where to transfer the case for a definitive 
diagnosis made by an human expert. Moreover, the integra-
tion of AI can also play a role in the training of pathologists. 
The technology serves as a valuable educational tool, allow-
ing pathologists with special interest towards rare condi-
tions, to learn from a vast dataset of annotated cases.
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