Skip to main content

Advertisement

Log in

Role of intestinal Hsp70 in barrier maintenance: contribution of milk to the induction of Hsp70.2

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

Necrotizing enterocolitis (NEC) is a gastrointestinal disease of complex etiology resulting in devastating systemic inflammation and often death in premature newborns. We previously demonstrated that formula feeding inhibits ileal expression of heat shock protein-70 (Hsp70), a critical stress protein within the intestine. Barrier function for the premature intestine is critical. We sought to determine whether reduced Hsp70 protein expression increases neonatal intestinal permeability.

Methods

Young adult mouse colon cells (YAMC) were utilized to evaluate barrier function as well as intestine from Hsp70−/− pups (KO). Sections of intestine were analyzed by Western blot, immunohistochemistry, and real time PCR. YAMC cells were sub-lethally heated or treated with expressed milk (EM) to induce Hsp70.

Results

Immunostaining demonstrates co-localized Hsp70 and tight junction protein zona occludens-1 (ZO-1), suggesting physical interaction to protect tight junction function. The permeability of YAMC monolayers increases following oxidant injury and is partially blocked by Hsp70 induction either by prior heat stress or EM. RT-PCR analysis demonstrated that the Hsp70 isoforms, 70.1 and 70.3, predominate in WT pup; however, Hsp70.2 predominates in the KO pups. While Hsp70 is present in WT milk, it is not present in KO EM. Hsp70 associates with ZO-1 to maintain epithelial barrier function.

Conclusion

Both induction of Hsp70 and exposure to EM prevent stress-induced increased permeability. Hsp70.2 is present in both WT and KO neonatal intestine, suggesting a crucial role in epithelial integrity. Induction of the Hsp70.2 isoform appears to be mediated by mother’s milk. These results suggest that mother’s milk feeding modulates Hsp70.2 expression and could attenuate injury leading to NEC.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Horbar JD, Carpenter JH, Badger GJ, Kenny MJ, Soll RF, Morrow KA, Buzas JS (2012) Mortality and neonatal morbidity among infants 501 to 1500 grams from 2000 to 2009. Pediatrics 129(6):1019–1026. https://doi.org/10.1542/peds.2011-3028

    Article  PubMed  Google Scholar 

  2. Neu J, Walker WA (2011) Necrotizing enterocolitis. N Engl J Med 364(3):255–264. https://doi.org/10.1056/NEJMra1005408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schanler RJ, Lau C, Hurst NM, Smith EO (2005) Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics 116(2):400–406. https://doi.org/10.1542/peds.2004-1974

    Article  PubMed  Google Scholar 

  4. Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawoger R, Kiechl-Kohlendorfer U, Chan GM, Blanco CL, Abrams S, Cotten CM, Laroia N, Ehrenkranz RA, Dudell G, Cristofalo EA, Meier P, Lee ML, Rechtman DJ, Lucas A (2010) An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr 156(4):562–567.e561. https://doi.org/10.1016/j.jpeds.2009.10.040

    Article  CAS  PubMed  Google Scholar 

  5. Bharwani SK, Green BF, Pezzullo JC, Bharwani SS, Bharwani SS, Dhanireddy R (2016) Systematic review and meta-analysis of human milk intake and retinopathy of prematurity: a significant update. J Perinatol Off J Calif Perinat Assoc 36(11):913–920. https://doi.org/10.1038/jp.2016.98

    Article  CAS  Google Scholar 

  6. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A (2010) Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res 67(4):357–362. https://doi.org/10.1203/PDR.0b013e3181d026da

    Article  PubMed  PubMed Central  Google Scholar 

  7. Patel AL, Johnson TJ, Engstrom JL, Fogg LF, Jegier BJ, Bigger HR, Meier PP (2013) Impact of early human milk on sepsis and health-care costs in very low birth weight infants. J Perinatol Off J Calif Perinat Assoc 33(7):514–519. https://doi.org/10.1038/jp.2013.2

    Article  CAS  Google Scholar 

  8. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Higgins RD, Langer JC, Poole WK (2007) Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics 120(4):e953-959. https://doi.org/10.1542/peds.2006-3227

    Article  Google Scholar 

  9. Afrazi A, Sodhi CP, Good M, Jia H, Siggers R, Yazji I, Ma C, Neal MD, Prindle T, Grant ZS, Branca MF, Ozolek J, Chang EB, Hackam DJ (2012) Intracellular heat shock protein-70 negatively regulates TLR4 signaling in the newborn intestinal epithelium. J Immunol (Baltimore Md 1950) 188(9):4543–4557. https://doi.org/10.4049/jimmunol.1103114

    Article  CAS  Google Scholar 

  10. Israel EJ (1994) Neonatal necrotizing enterocolitis, a disease of the immature intestinal mucosal barrier. Acta Paediatr Suppl 396:27–32. https://doi.org/10.1111/j.1651-2227.1994.tb13238.x

    Article  CAS  PubMed  Google Scholar 

  11. Pácha J (2000) Development of intestinal transport function in mammals. Physiol Rev 80(4):1633–1667

    Article  PubMed  Google Scholar 

  12. Udall JN, Pang K, Fritze L, Kleinman R, Walker WA (1981) Development of gastrointestinal mucosal barrier. I. The effect of age on intestinal permeability to macromolecules. Pediatr Res 15(3):241–244

    Article  CAS  PubMed  Google Scholar 

  13. Walker WA (2002) Development of the intestinal mucosal barrier. J Pediatr Gastroenterol Nutr 34(SUPPL. 1):S33-S39. https://doi.org/10.1097/00005176-200205001-00009

    Google Scholar 

  14. Claud EC, Lu L, Anton PM, Savidge T, Walker WA, Cherayil BJ (2004) Developmentally regulated IκB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proc Natl Acad Sci USA 101(19):7404–7408. https://doi.org/10.1073/pnas.0401710101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Claud EC, Zhang X, Petrof EO, Sun J (2007) Developmentally regulated tumor necrosis factor-α induced nuclear factor-κB activation in intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 292(5):G1411-G1419. https://doi.org/10.1152/ajpgi.00557.2006

    Article  Google Scholar 

  16. Halpern MD, Dominguez JA, Dvorakova K, Holubec H, Williams CS, Meza YG, Ruth MC, Dvorak B (2003) Ileal cytokine dysregulation in experimental necrotizing enterocolitis is reduced by epidermal growth factor. J Pediatr Gastroenterol Nutr 36(1):126–133. https://doi.org/10.1097/00005176-200301000-00024

    Article  CAS  PubMed  Google Scholar 

  17. Clark JA, Doelle SM, Halpern MD, Saunders TA, Holubec H, Dvorak K, Boitano SA, Dvorak B (2006) Intestinal barrier failure during experimental necrotizing enterocolitis: protective effect of EGF treatment. Am J Physiol Gastrointest Liver Physiol 291(5):G938-G949. https://doi.org/10.1152/ajpgi.00090.2006

    Article  Google Scholar 

  18. Ismail AS, Hooper LV (2005) Epithelial cells and their neighbors. IV. Bacterial contributions to intestinal epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 289(5):G779-784. https://doi.org/10.1152/ajpgi.00203.2005

    Article  Google Scholar 

  19. Nusrat A, Turner JR, Madara JL (2000) Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 279(5):G851-857

    Article  Google Scholar 

  20. Deitch EA (1994) Role of bacterial translocation in necrotizing enterocolitis. Acta Paediatr Suppl 396:33–36

    Article  CAS  PubMed  Google Scholar 

  21. Hackam DJ, Upperman JS, Grishin A, Ford HR (2005) Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg 14(1):49–57. https://doi.org/10.1053/j.sempedsurg.2004.10.025

    Article  PubMed  Google Scholar 

  22. Eaves-Pyles T, Wong HR, Wesley Alexander J (2000) Sodium arsenite induces the stress response in the gut and decreases bacterial translocation in a burned mouse model with gut-derived sepsis. Shock 13(4):314–319

    Article  CAS  PubMed  Google Scholar 

  23. Kojima K, Musch MW, Ren H, Boone DL, Hendrickson BA, Ma A, Chang EB (2003) Enteric flora and lymphocyte-derived cytokines determine expression of heat shock proteins in mouse colonic epithelial cells. Gastroenterology 124(5):1395–1407. https://doi.org/10.1016/S0016-5085(03)00215-4

    Article  CAS  PubMed  Google Scholar 

  24. Musch MW, Sugi K, Straus D, Chang EB (1999) Heat-shock protein 72 protects against oxidant-induced injury of barrier function of human colonic epithelial Caco2/bbe cells. Gastroenterology 117(1):115–122. https://doi.org/10.1016/S0016-5085(99)70557-3

    Article  CAS  PubMed  Google Scholar 

  25. Liedel JL, Guo Y, Yu Y, Shiou SR, Chen S, Petrof EO, Hu S, Musch MW, Claud EC (2011) Mother’s milk-induced Hsp70 expression preserves intestinal epithelial barrier function in an immature rat pup model. Pediatr Res 69(5 Pt 1):395–400. https://doi.org/10.1203/PDR.0b013e3182114ec9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282. https://doi.org/10.1146/annurev.physiol.61.1.243

    Article  CAS  PubMed  Google Scholar 

  27. Kim EK, Lee KY, Lee HJ, Lee JA, Choi CW, Kim HS, Kim BI, Choi JH (2013) Heat shock pretreatment reduces intestinal injury in a neonatal rat model of early necrotizing enterocolitis. Neonatology 103(1):1–6. https://doi.org/10.1159/000339179

    Article  PubMed  Google Scholar 

  28. David JC, Grongnet JF, Lalles JP (2002) Weaning affects the expression of heat shock proteins in different regions of the gastrointestinal tract of piglets. J Nutr 132(9):2551–2561

    Article  CAS  PubMed  Google Scholar 

  29. Tao Y, Hart J, Lichtenstein L, Joseph LJ, Ciancio MJ, Hu S, Chang EB, Bissonnette M (2009) Inducible heat shock protein 70 prevents multifocal flat dysplastic lesions and invasive tumors in an inflammatory model of colon cancer. Carcinogenesis 30(1):175–182. https://doi.org/10.1093/carcin/bgn256

    Article  CAS  PubMed  Google Scholar 

  30. Whitehead RH, Robinson PS (2009) Establishment of conditionally immortalized epithelial cell lines from the intestinal tissue of adult normal and transgenic mice. Am J Physiol Gastrointest Liver Physiol 296(3):G455-460. https://doi.org/10.1152/ajpgi.90381.2008

    Article  Google Scholar 

  31. Liedel JL, Guo Y, Yu Y, Shiou SR, Chen S, Petrof EO, Hu S, Musch MW, Claud EC (2011) Mother’s milk induced Hsp70 expression preserves intestinal epithelial barrier function in an immature rat pup model. Pediatr Res. https://doi.org/10.1203/PDR.0b013e3182114ec9

    PubMed  PubMed Central  Google Scholar 

  32. Shoji H, Shimizu T (2008) Antioxidative properties of human milk and spermine are not related to expression of Hsp 70. Acta Paediatr (Oslo Norway 1992) 97 (1):81–84. https://doi.org/10.1111/j.1651-2227.2007.00594.x

    Article  CAS  Google Scholar 

  33. Rentea RM, Welak SR, Fredrich K, Donohoe D, Pritchard KA, Oldham KT, Gourlay DM, Liedel JL (2012) Early enteral stressors in newborns increase inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model. Eur J Pediatr Surg. https://doi.org/10.1055/s-0032-1329704

    PubMed  PubMed Central  Google Scholar 

  34. Rentea RM, Liedel JL, Welak SR, Cassidy LD, Mayer AN, Pritchard KA Jr, Oldham KT, Gourlay DM (2012) Intestinal alkaline phosphatase administration in newborns is protective of gut barrier function in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg 47(6):1135–1142. https://doi.org/10.1016/j.jpedsurg.2012.03.018

    Article  PubMed  Google Scholar 

  35. Son WY, Hwang SH, Han CT, Lee JH, Kim S, Kim YC (1999) Specific expression of heat shock protein HspA2 in human male germ cells. Mol Hum Reprod 5(12):1122–1126

    Article  CAS  PubMed  Google Scholar 

  36. Feng HL, Sandlow JI, Sparks AE (2001) Decreased expression of the heat shock protein hsp70-2 is associated with the pathogenesis of male infertility. Fertil Steril 76(6):1136–1139

    Article  CAS  PubMed  Google Scholar 

  37. Ryhanen T, Hyttinen JM, Kopitz J, Rilla K, Kuusisto E, Mannermaa E, Viiri J, Holmberg CI, Immonen I, Meri S, Parkkinen J, Eskelinen EL, Uusitalo H, Salminen A, Kaarniranta K (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 13(9b):3616–3631. https://doi.org/10.1111/j.1582-4934.2008.00577.x

    Article  PubMed  Google Scholar 

  38. Tahara T, Shibata T, Okubo M (2014) Heat-shock protein 70-2 BB genotype is associated with reduced risks of the steroid-dependent and refractory phenotypes of ulcerative colitis. Biomed Rep 2:555–558

    Article  PubMed  PubMed Central  Google Scholar 

  39. Partanen J, Milner C, Campbell RD, Mäki M, Lipsanen V, Koskimies S (1993) HLA-linked heat-shock protein 70 (HSP70-2) gene polymorphism and celiac disease. Tissue Antigens 41(1):15–19. https://doi.org/10.1111/j.1399-0039.1993.tb01971.x

    Article  CAS  PubMed  Google Scholar 

  40. Ramos-Arroyo MA, Feijoó E, Sánchez-Valverde F, Aranburu E, Irisarri N, Olivera JE, Valiente A (2001) Heat-shock protein 70-1 and HLA class II gene polymorphisms associated with celiac disease susceptibility in Navarra (Spain). Hum Immunol 62(8):821–825. https://doi.org/10.1016/S0198-8859(01)00277-4

    Article  CAS  PubMed  Google Scholar 

  41. Waterer GW, ElBahlawan L, Quasney MW, Zhang Q, Kessler LA, Wunderink RG (2003) Heat shock protein 70-2+ 1267 AA homozygotes have an increased risk of septic shock in adults with community-acquired pneumonia. Crit Care Med 31(5):1367–1372. https://doi.org/10.1097/01.ccm.0000063088.86079.03

    Article  CAS  PubMed  Google Scholar 

  42. Jagadish N, Agarwal S, Gupta N, Fatima R, Devi S, Kumar V, Suri V, Kumar R, Suri V, Sadasukhi TC, Gupta A, Ansari AS, Lohiya NK, Suri A (2016) Heat shock protein 70-2 (HSP70-2) overexpression in breast cancer. J Exp Clin Cancer Res CR 35(1):150. https://doi.org/10.1186/s13046-016-0425-9

    Article  PubMed  Google Scholar 

  43. Jagadish N, Parashar D, Gupta N, Agarwal S, Suri V, Kumar R, Suri V, Sadasukhi TC, Gupta A, Ansari AS, Lohiya NK, Suri A (2016) Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth. BMC Cancer 16:561. https://doi.org/10.1186/s12885-016-2592-7

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shibata T, Arisawa T, Tahara T, Yoshioka D, Maruyama N, Fujita H, Kamiya Y, Nakamura M, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I, Nakano H (2009) Protective role of genetic polymorphism of heat shock protein 70-2 for gastric cancer risk. Dig Dis Sci 54(1):70–74. https://doi.org/10.1007/s10620-008-0313-z

    Article  CAS  PubMed  Google Scholar 

  45. Singh S, Suri A (2014) Targeting the testis-specific heat-shock protein 70-2 (HSP70-2) reduces cellular growth, migration, and invasion in renal cell carcinoma cells. Tumour Biol J Int Soc Oncodev Biol Med 35(12):12695–12706. https://doi.org/10.1007/s13277-014-2594-5

    Article  CAS  Google Scholar 

  46. Rentea RM, Welak SR, Fredrich K, Donohoe D, Pritchard KA, Oldham KT, Gourlay DM, Liedel JL (2013) Early enteral stressors in newborns increase inflammatory cytokine expression in a neonatal necrotizing enterocolitis rat model. Eur J Pediatr Surg 23(1):39–47. https://doi.org/10.1055/s-0032-1329704

    PubMed  Google Scholar 

  47. Lonnerdal B (2016) Bioactive proteins in human milk: health, nutrition, and implications for infant formulas. J Pediatr 173(Suppl):S4–S9. https://doi.org/10.1016/j.jpeds.2016.02.070

    Article  CAS  PubMed  Google Scholar 

  48. Malhotra V, Wong HR (2002) Interactions between the heat shock response and the nuclear factor-kappa B signaling pathway. Crit Care Med 30(1 Suppl):S89-95

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors report no proprietary or commercial interest in any product mentioned or concept discussed in this article.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: JLL, MWM, and EBC Acquisition of data: JLL, YG, MWM, RMR, and XZ. Analysis and interpretation of data: RMR, DMG, and JLJ. Drafting of manuscript: RMR and JLJ. Critical revision of manuscript: JLJ, RMR, and DMG.

Corresponding author

Correspondence to Jennifer L. Liedel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rentea, R.M., Guo, Y., Zhu, X. et al. Role of intestinal Hsp70 in barrier maintenance: contribution of milk to the induction of Hsp70.2. Pediatr Surg Int 34, 323–330 (2018). https://doi.org/10.1007/s00383-017-4211-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-017-4211-3

Keywords

Navigation