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Abstract Impaired lung development afflicts a range of

newborns cared for by paediatric surgeons. As a result the

speciality has led in the development of surgical models

that illustrate the biomechanical regulation of lung growth.

Using transgenic mutants, biologists have similarly dis-

covered much about the biochemical regulation of prenatal

lung growth. Airway smooth muscle (ASM) and its pre-

natal contractility airway peristalsis (AP) represent a novel

link between these areas: ASM progenitors produce an

essential biochemical factor for lung morphogenesis, whilst

calcium-driven biomechanical ASM activity appears to

regulate the same. In this invited paper, I take the oppor-

tunity both to review our recent findings on lung growth

and prenatal ASM, and also to discuss mechanisms by

which ASM contractility can regulate growth. Finally, I

will introduce some novel ideas for exploration: ASM

contractility could help to schedule parturition (pulmonary

parturition clock) and could even be a generic model for

smooth muscle regulation of morphogenesis in similar

organs.
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Why lung development matters to paediatric surgeons

Lung development is important to paediatric surgeons.

Lung hypoplasia and its lethal sequlae afflict a spectrum of

our patients ranging from those with congenital diaphrag-

matic hernia (CDH) or prenatal uropathies to massive

abdominal wall defects [1–4]. Similarly, congenital cyst-

adenomatoid lung malformations and bronchopulmonary

sequestrations present to paediatric surgeons as antenatally

diagnosed masses or postnatally with symptomatic chest

lesions [5, 6]. Moreover, several of our patients are born

prematurely with incomplete development that predisposes

to lung disease of prematurity [7]. Finally many of our

patients with CDH and tracheo-oesophageal fistula/

oesophageal atresia have chronic respiratory morbidity that

affects growth and may affect decisions for further sur-

geries (such as fundoplication) [8, 9] (Fig. 1).

Given this wide impact of lung development and dis-

ease on paediatric surgical practice, it is perhaps no sur-

prise that neonatal surgeons have been at the forefront of

investigation: the most notable contribution has been the

creation of in vivo fetal models of lung maldevelopment

that have allowed us to understand the regulation of

pulmonary growth and to design strategies to promote it

prenatally (e.g. surgically created models of CDH and

obstructive uropathies) [10, 11] (Fig. 2). Moreover, pae-

diatric surgeons have taken a leading role in development

of extracorporeal membrane oxygenation as a rescue

therapy for refractory respiratory failure and have col-

laborated in the evaluation and adoption of perinatology

approaches such as antenatal glucocorticoids, inhaled
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nitric oxide, permissive hypercapnoea and sildenafil for

surgical patients [12–17].

An overview of lung development reveals points

of clinical importance

Anatomically the mammalian lung develops as a diver-

ticulum from the primitive foregut [18]. Through iterated

epithelial branching (branching morphogenesis), the air-

ways take form [18, 19]. Early direct vascular supply

from the aorta to the lung normally dwindles: abnormal

persistence is observed in sequestrations [20, 21]. Pul-

monary vascular development was previously held to

follow airway morphogenesis. However recent studies

indicate that vascularisation may be an important pro-

moter of airway growth and terminal differentiation [22,

23]. Temporally, the pulmonary diverticulum emerges at

around 4 weeks of gestation; failure of the diverticulum to

separate normally is thought to explain tracheo-oesopha-

geal fistulae [18, 24]; most airway branching occurs be-

tween 6 and 16 weeks [25, 26]; vascular connectivity to

establish the respiratory surface for gas exchange emerges

around 22 weeks onward (hence the putative limit to

survival of preterm birth) [27]; human alveolarisation is in

progress by birth and commonly reported to continue

through early childhood [25]. Physiologically, the lung

undergoes dramatic changes between fetal and neonatal

life. Prenatally, the lung is fluid filled and respiratory gas

exchange is undertaken instead via the placenta (providing

the rationale for the EXIT procedure for, e.g. congenital

airway obstructions) [28, 29]. Primitive endodermal cells

differentiate into several lineages of which the most

studied are the types 1 and 2 pneumocyte and which may

also include pulmonary stem cells [30, 31]. Pulmonary

epithelium is responsible for lung liquid production (via

chloride-secretion): this results in prenatal lung having a

small positive intraluminal pressure relative to the tho-

racic cavity [32]. Abnormal persistence of this lung fluid

after birth is held responsible for transient tachypnoea of

Fig. 1 Problems of lung

development and function are

not confined to CDH: a Contrast

swallow (lateral view) after

delayed primary repair of

oesophageal atresia (OA)

without distal fistula. Such

children may face major

respiratory problems

(tracheomalacia and aspiration

+/– reflux) that can present as,

e.g. life-threatening episodes or

later with reactive airways

disease; b Giant gastroschisis

with major liver herniation:

such newborns face significant

respiratory difficulties requiring,

in this case, long-term

ventilation after eventual

abdominal closure. Both images

used with parental consent and

courtesy of the author

Fig. 2 Surgical models elucidate the biomechanical regulation of

lung growth: the gravid ovine uterus has been delivered at

laparotomy. Sonography is being used to determine placental and

fetal positions prior to hysterotomy. These methods of manipulating

the ovine fetus have allowed several models to be created (CDH,

obstructive uropathy, gastroschisis and myelomeningocele). Of

course, forms of lung hypoplasia generated this way may differ

importantly from both teratogenic/transgenic models and indeed

humans. Image courtesy of the author
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the newborn [33]. Surfactant production by type 2 pneu-

mocytes is a further adaptation that assists in lung infla-

tion at birth and resists airspace collapse. Surfactant

deficiency is associated with respiratory distress syndrome

in premature newborns and may occur in other disorders

such as CDH [34, 35]. Estimation of lung maturity has

been attempted by assaying surfactant-related metabolites

in amniotic fluid [36–38]. Whilst the epithelium has ab-

sorbed much scientific interest for conferring tissue spe-

cialisation (liquid production, surfactant manufacture), the

pulmonary mesenchyme is essential to lung development

[39]. Stripping embryonic lung buds of mesenchyme halts

their branching; replacing tracheal mesenchyme with that

from end-buds restarts epithelial branching at the trachea

[40]. Moreover, murine mutants lacking specific mesen-

chymal gene expression exhibit both lung lesions and

diaphragmatic defects with some phenotypic similarities

to human CDH [41–43]. These observations illustrate the

importance of pulmonary mesenchyme and also support

the concept that an early mesenchymal lesion in CDH can

generate both lung hypoplasia and diaphragmatic defect

[44–46] (Fig. 3). As we shall see, the latest evidence

suggests that pulmonary mesenchyme and its derivatives

have both biochemical and biomechanical roles in the

regulation of lung development.

Understanding of lung development derives

from a variety of sources

Our understanding of how the lung develops has been

aided by comparative biology, transgenic and teratogenic

mutants, surgically created models of in vivo physiology

and human ‘experiments of nature’. Comparative biology

has enabled us to appreciate that much of lung devel-

opment (epithelial branching morphogenesis, vasculo-

genesis and angiogenesis) is conserved through evolution

[47, 48]. This in turn has enabled the similarities with

comparable processes in other mammalian organs (pan-

creas, salivary gland and kidney) to be exploited [49,

50]. Transgenic mutant gene knockout animals have been

particularly helpful in establishing the biochemical reg-

ulation of airway development by demonstrating the

necessary roles of certain growth and transcription fac-

tors [51, 52]. In contrast, surgical models of modified

lung development have permitted the biomechanical

regulation of lung development to be elucidated [10, 11,

53]. Furthermore, human cases have provided vivid

illustrations of the biomechanical regulators of lung

growth (congenital laryngeal atresia, Potter’s syndrome)

[54, 55]. Despite the wealth of knowledge generated by

these separate approaches, a unifying model that brings

together biochemical and biomechanical regulation of

lung growth is still being sought [56–58]. We have been

addressing this by studying potential links between bio-

mechanical and biochemical stimuli; in so doing we and

others are appreciating new roles for pulmonary mesen-

chyme in lung organogenesis.

The biochemical regulation of lung development

A key biochemical interaction that underpins lung

development is that of fibroblast growth factor-10

(FGF10) and its cognate receptor FGFR2IIIb. Both ligand

and receptor have been conserved through evolution and

Fig. 3 Non-surgical models of abnormal lung growth are also

valuable: teratogenic and transgenic models illustrate that some

clinical problems of lung function may have their roots much earlier

in development than appreciated from surgical models alone. This

shows photomicrographs of whole lung primordia in organ culture.

Shown on the left of the figure is the longitudinal development of a

normal lung rudiment. For comparison the development of a nitrofen-

exposed lung rudiment is shown on the right at the same timepoints.

All specimens are at the same magnification (scale bar 400l m) and

the trachea lies superiorly in each case. Nitrofen-exposed lung

primordia are growth-impaired prior to the visceral hernia superven-

ing. Image courtesy of the author

Pediatr Surg Int (2007) 23:827–836 829

123



are homologous with the branchless and breathless genes

that are essential for airway branching in Drosophila [48].

In a parallel manner, both FGF10 and FGFR2IIIb have

been shown to be necessary for lung development in

transgenic knockout mice [59–62]. Functional loss of ei-

ther leads to lung agenesis in the offspring. In vitro lung

culture studies have shown that FGF10 induces epithelial

branching and can in fact largely substitute in this regard

for pulmonary mesenchyme: FGF10 stimulates branching

of epithelial only cultures in Matrigel [63]. Abnormalities

of FGFs and related heparan sulphate signalling have been

demonstrated in experimental lung hypoplasia [64–68].

Several other biochemical regulators of lung morphogen-

esis are arrayed around the FGF10–FGFR2IIIb interaction

(and extensively reviewed elsewhere) [51, 52]. However

for the purposes of this review, a focus on this central

pathway is sufficient. As we shall see, this archetypal

biochemical effector of lung growth may in fact also have

a role to play in the biomechanical regulation that we will

now survey.

The biomechanical regulation of lung development

Fetal breathing movements, lung liquid production and

maintenance of fetal thoracic and amniotic volumes are

necessary for normal lung development [55]. Ablation of

fetal breathing movements either by phrenic nerve abla-

tion or generation of amyogenic transgenic murine mu-

tants is associated with forms of lung hypoplasia [69, 70].

Excessive lung liquid loss induced by fetal tracheostomy

similarly impairs lung growth [71]. Compromise of tho-

racic volume by visceral herniation in CDH models or due

to external fetal compression from oligohydramnios in

prenatal uropathies are both associated with forms of lung

hypoplasia [11, 72]. Finally, and more difficult to explain,

massive abdominal wall defects with extensive liver her-

niation are also associated with clinically significant lung

impairment and often a narrowed thorax [4]. Speculating,

it may be that gross reduction in abdominal domain re-

sults in commensurate limitation of thoracic growth.

Others have suggested that liver herniation draws the

diaphragm down leading to major airways becoming

kinked across the pulmonary vessels with resulting bron-

chomalacia [73]. Finally, it is difficult to separate out the

deleterious effects of barotrauma resulting from the pro-

longed ventilation that such babies often require. Having

considered the substantial effects that biomechanical

stimuli can have on lung development, we can now turn

to the focus of our recent work on a biomechanical pul-

monary phenomenon that has been long described but

largely overlooked.

Airway smooth muscle: ‘appendix

of the lung’ or regulator of growth?

From the earliest stages of lung development and

throughout subsequent prenatal life the developing lung

is itself vigorously mechanically active [74–77]. Peri-

staltic waves of airway smooth muscle (ASM) rhythmi-

cally propagate throughout the airway tree with resulting

propulsion of all important lung liquid (Fig. 4). As a

result the growing end buds of the lung (where ASM

elaboration is at a minimum) experience phasic disten-

sion and relaxation [74, 75]. This curious activity has

been observed in airway explants from avian, rodent and

human species and they appear to increase in frequency

as gestation progresses [74–77]. Why the developing

lung should expend so much effort in the synthesis of

contractile apparatus and its mechanical activity has re-

mained a mystery. Certainly, rhythmic stretch-relaxation

modulates growth and gene expression in a range of cell

types including pulmonary epithelium and appears quite

distinct from the effects of static stretch [78, 79]. How-

ever, why this vibrant peristaltic contractility should

suddenly disappear at birth and how it relates to post-

natal ASM function and dysfunction are also unknown.

Given these uncertainties, we have explored prenatal

ASM activity, its regulation and its potential purposes.

Most fascinating has been emerging evidence that in

ASM peristalsis, we may have an important bridge be-

tween biomechanical and biochemical stimuli to lung

growth. Finally, the insights gained from our studies hold

the promise that strategies to treat prenatal lung hypo-

plasia and postnatal reactive airway disease can be

modified to achieve greater efficacy.

Prenatal ASM peristalsis appears coupled

to lung growth

We began with the seemingly simple task of determining

where and when in development ASM peristalsis emerges.

Our data showed that even embryonic rodent explants

equivalent to roughly 5 weeks of human gestation would

exhibit powerful peristaltic contractility in vitro [75].

Contrary to expectation, these waves did not arise simply

from the trachea and propagate distally. In fact it appears

that ASM contraction can arise throughout the proximal

airways at this stage but with a clear predilection for the

proximal right lung (‘pulmonary pacemaker‘‘) [75].

Moreover this area of the developing lung seems to

dominate and be autonomous of the remainder of the

lung: isolation of other areas of the lung from the influ-

ence of the right led to more frequent contractility in the
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isolated segment; in contrast, isolation of the right lung

did not alter peristaltic frequency therein [75]. To ascer-

tain what was driving this activity, we used calcium

imaging and c-kit immunoreactivity to show that ASM

peristalsis was underpinned by spontaneous propagating

calcium waves that arise in the apparent absence of Cajal-

type pacemaker cells [75, 80] (Fig. 5a). To explore the

purpose of such contractility we alternately stimulated or

inhibited either peristalsis or lung growth. In normal

embryonic lung we discovered that growth and peristalsis

were coupled: modulation of one was reliably accompa-

nied by parallel alteration in the other [75]. In particular,

we had an indication of a link between a typical bio-

chemical regulator of lung growth (FGF10) and a bio-

mechanical one (ASM peristalsis): FGF10-stimulated lung

growth was associated with significant increase in peri-

stalsis frequency [75]. Hence, these studies showed a

degree of coupling between ASM peristalsis and FGF10-

driven lung growth and supported the concept that one

may regulate the other. Furthermore, given that ASM

peristalsis depends on propagating calcium waves, these

data indicate that such calcium waves may in turn regu-

late lung growth [80].

Ca2+: biochemical mechanism for ASM regulation

of lung development?

In preliminary studies to explore, how calcium may regu-

late lung growth we have identified some interesting phe-

nomena. L-type calcium channel blockade with nifedipine

reduces intracellular calcium, halts airway peristalsis (AP)

(inducing a flaccid paresis) and stunts lung size but without

significantly diminishing branching [75, 81]. In contrast,

blocking sarcoplasmic calcium reuptake with cyclopiaz-

onic acid raises intracellular calcium leading to a tetanic

paresis (and halt of airway contractility) and is associated

with a remarkable and complete abolition of branching

morphogenesis [82, 83] (Fig. 5b). Moreover this latter ef-

fect is associated with loss of smooth muscle actin

expression (SMA: an early marker of ASM lineage) [83].

Removal of cyclopiazonic acid leads to resumption of

apparently normal branching and SMA expression [83].

Given that ASM progenitors specifically furnish the FGF10

required for airway branching [84], we therefore hypoth-

esise that cyclopiazonic acid may be acting on ASM pro-

genitors to halt both commitment (loss of SMA expression)

and also FGF10 production (loss of branching). Supporting

Fig. 4 Airway peristalsis—a

novel regulator of lung growth?

Left hand panels: fluid flux

within the epithelial lumen

(dark) of cultured lung can be

visualised due to the peristaltic

propulsion of cellular debris

(leading edge arrowed) seen

here on rapid sequence

photography of whole lung.

Right hand panels: airway

contraction (boxed) during a

wave of airway peristalsis. A

video of airway peristalsis from

our work is viewable on the

web. http://

ajrcmb.atsjournals.org/

content/vol32/issue2/images/

data/118/DC1/

Jesudason_Supplement_001.avi
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the idea that sarcoplasmic calcium regulates both FGF10-

driven branching morphogenesis and ASM elaboration,

one of the first described human genopathies relating to

loss of sarcoplasmic calcium reuptake is associated with

dysregulated proliferation an epithelium that, like the air-

way, is FGFR2IIIb-bearing and FGF10-responsive [85].

A biomechanical mechanism for ASM regulation

of lung development?

We have also argued that coupled elaboration of FGF10

and ASM could operate as a biological feedback mecha-

nism to maintain intraluminal pressures in the growing

lung (loss of such pressure is associated with lung hypo-

plasia) [46]. As the lung lumen increases in volume due to

FGF10 mediated growth, maintenance of intraluminal

pressure would require increased lung liquid production

and/or increased wall tension. The latter (and perhaps even

the former—vide infra) could be supplied by increased

ASM elaboration and activity: as more ASM progenitors

produce FGF10 and growth, more differentiated ASM

develops to influence airway wall tension and maintain

luminal pressure. Moreover, early work suggests that ASM

peristalsis is associated not only with propagating calcium

waves but potentially with chloride efflux from ASM. We

hypothesise that this chloride could be taken up at the

adjacent basolateral epithelial surface to drive epithelial
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Fig. 5 Ca2+ waves underpin

airway peristalsis and hence

potentially growth: a Stacks of

pseudo-colour confocal images

of Fluo-4–loaded embryonic

airways showing propagating

Ca2+ waves with the initiation

site (marked by an asterisk) in

the trachea (top row) and right

lung rudiment (bottom row);

b blockade of sarcoplasmic

calcium reuptake with

cyclopiazonic acid (CPA) leads

to raised intracellular Ca2+

(y-axis) and rapid abolition of

Ca2+ oscillations over time (x-

axis). As described in the text,

this is associated with

replacement of peristalsis by

sustained airway contraction,

halting of branching and loss of

SMA expression (not shown);

c superimposed ASM Ca2+

transients measured from

normal and nitrofen lung (as

labelled) showing altered

morphology in lung hypoplasia
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chloride-secretion led production of lung liquid. Hence

ASM peristalsis may regulate growth-related intraluminal

pressures not only via its influence on wall tension but also

through modulation of all important lung liquid production.

What then are the implications for abnormal lung

development? Lung hypoplasia is associated with abnor-

malities of prenatal ASM-related signalling and postnatal

function in human CDH and in experimental CDH lung [8,

86, 87]. We have now shown that the coupling between

peristalsis and growth, the underpinning calcium waves

and the stereotypical maturation of peristaltic activity are

all abnormal in teratogen-induced lung hypoplasia [88, 89]

(Fig. 5c). Prenatal ASM may also play key roles in other

heterogenous forms of experimental lung hypoplasia:

myogenic knockout mice where intercostal musculature

+/– diaphragmatic muscularisation are ablated appear to

have normal ASM elaboration up to and beyond the point

at which fetal breathing supervenes [70]. In only those

mutants lacking both intercostal and diaphragmatic mus-

cularisation, SMA expression then appears to diminish in

late gestation [70]. Although the impact on SMA expres-

sion in other thoracic organs (e.g. oesophagus) was not

described, it could be that fetal breathing is important for

the maintenance of ASM. Assuming the degree of lung

hypoplasia manifest in amyogenic mutants is worse than

those lacking intercostals alone, the late loss of ASM

peristalsis (when it should be most active and widespread)

may contribute to this.

Therefore, contrary to the view that ASM is ‘the

appendix of the lung’ with no useful function [90–93], it

appears that ASM is critical to aspects of prenatal lung

growth: it provides FGF10 (from progenitors), mechanical

stretch-relaxation and even perhaps lung liquid production.

Encouraged by our discoveries, we began to explore the

role of smooth muscle contractility in the development of

other hollow organs using gut organ culture and calcium

fluorophores. Our idea has been eagerly taken over by

colleagues who continue to look at prenatal gut contrac-

tility using these techniques.

Future directions and potential clinical applications

Having considered the biological roles of prenatal ASM

(and some of the mechanisms by which it may perform

them), we can now consider potential clinical applications.

In translating prenatal ASM biology from bench to bedside,

technological development may have a significant part to

play. Improved imaging +/– remote telemetry could allow

us to visualise AP and/or measure resulting luminal pres-

sure changes in utero [94, 95]. Given the observed rela-

tionship between peristaltic frequency and gestation [76],

such measures might be used to provide a readily repeat-

able, non-biochemical estimate of lung maturity. This

would be of great benefit in selecting cases for prenatal

intervention or expeditious early delivery. Moreover, lung

development following, e.g. tracheal occlusion might be

monitored in real time by looking at peristalsis frequency.

Following evidence that cyclical tracheal occlusion may be

superior to static devices [96], there is also potential for

devices that allow balloon pump occlusion of the trachea to

optimise resulting lung development (‘preventilation‘‘/dy-

namicPLUG) [46]. Imaging prenatal ASM contractility

could even perhaps allow us to identify asthma-predispos-

tions prenatally and discover new drug targets to combat

ASM hypertrophy and airway remodelling in asthma (the

commonest chronic disease in the developed world) [97].

Finally, the increasing frequency of ASM peristalsis

through gestation and the unexplained switch from peri-

stalsis to tonic contractility around birth could be important

in the timing of parturition. Teleologically, it would be

advantageous for some aspect(s) of fetal lung development

to signal readiness for parturition. Could ASM peristalsis

play a role in scheduling the changes in uterine contrac-

tility that herald labour? If ASM peristalsis is part of a

pulmonary parturition clock, could we identify pregnancies

at risk of preterm labour from airway contractility patterns

long before uterine contractility supervenes [98]? More-

over, could such understanding lead us to appreciate that

some lung disease associated with prematurity is cause

rather than simply effect?

Closing remarks

We already know that ASM can transform lung morphol-

ogy postnatally. In asthma, transient ASM constriction

contributes to reversible lung hyperinflation; chronic ASM-

related airway remodelling then participates in irreversible

hyper-expansion supervening [99]. Lung hyperinflation

that follows tracheal occlusion [100, 101] could even be

seen as mimicking hyperinflation due to ASM-mediated

small airway occlusions in asthma. Promisingly, pharma-

cological suppression of ASM hyperreactivity may pre-

vent, halt or even reverse many of these changes in

postnatal lung morphology [93, 99]. Given such dramatic

pulmonary sequelae of postnatal ASM activity and the

effects of ASM-targeted therapy, it is rational to explore

the roles of ASM in prenatal lung morphogenesis (and the

potential of ASM-related therapy). Our clinical experience

reminds us of the toll that abnormalities of lung growth

(prematurity, hypoplasia, CCAM, etc.) take on our patients.

Therefore by understanding the role(s) of prenatal ASM,

paediatric surgeons can make a further contribution to

knowledge and therapy of the lung pathologies that we

encounter in daily practice.
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