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Abstract
Sea surface temperature (SST) and sea surface air temperature (SSAT) are commonly used as proxies for investigating the
impact of climate change on oceans. These variables have been warming since pre-industrial times and are expected to
continue to warm in the future under all Shared Socioeconomic Pathways (SSPs). However, they are warming in a spatially
heterogeneous way, even with some cooling spots. In this work, we provide a general overview on the regional scaling of SST
and SSAT with global warming, based on a 26-member CMIP6 ensemble. We utilize the global warming level (GWL) as a
climate change dimension to analyze scaling patterns between sea temperature anomalies and the correspondingGWLs during
the 21st century. This analysis is conducted globally, regionally, and on grid-point basis. The results show that SST and SSAT
scale linearly with GWL at global scale, with scaling factors β = 0.71 ± 0.001 K/K and β = 0.86 ± 0.001 K/K, respectively.
These results are robust, showing only minor differences between seasons, SSPs, and horizontal model resolutions. However,
large differences emerge at regional scale, and the scaling of the two temperatures are strongly influenced by sea-ice. The
lowest values are obtained for the Southern Ocean region, β = 0.54 ± 0.005 K/K, projecting that the mean SST will increase
only half as fast as the global mean temperature. These results provide valuable insight for refining the ocean IPCC reference
regions, considering spatial homogeneity in terms of the regional response to global warming. A refinement of six ocean
reference regions has been proposed.

Keywords Sea surface temperature · Ocean warming · Climate change · CMIP6 · IPCC · Reference regions · Regional
warming sensitivity

1 Introduction

Sea surface temperature (SST) is a key ocean variable to
investigate the impacts of climate change on both atmo-
spheric and ocean processes. It represents an interface
through which the interaction between the ocean surface and
the atmosphere occurs and, as such, its variability affects
the weather and climate on all temporal and spatial scales
(Alves et al. 2018; Bulgin et al. 2020; Levine et al. 2021;
Middlemas et al. 2019; Ruela et al. 2020). For example, sea-
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sonal and interannual SST variability modulates upwelling
and downwelling, the physical processes that have major
influence on marine ecosystems (Kessler et al. 2022; Varela
et al. 2018, 2022). While natural climate fluctuations, such
as the El Niño Southern Oscillation (ENSO) phenomenon,
play a significant role in the SST variability, leading to sub-
stantial increases during specific years and seasons (Bulgin
et al. 2020; Cai et al. 2022), global SST changes as compared
to pre-industrial (PI) times is primarily driven by climate
change (Froelicher et al. 2018; Palmer et al. 2021).

The observed warming of the climate system is typi-
cally quantified by the anomalies of the global mean surface
temperature (GMST), which merges global land surface air
temperature (LSAT) and SST (Masson-Delmotte et al. 2021).
On the other hand, estimates of global warming derived from
Global Climate Model (GCM) simulations (e.g. from the
Coupled Model Intercomparison Project, CMIP), typically
use sea surface air temperature (SSAT, i.e. near-surface air
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temperature over oceans) instead of SST, and compute global
surface air temperature (GSAT) using LSAT and SSAT. Even
though the difference on the global scale between GMST
and GSAT tends to be up to 10%, the term “global mean sur-
face temperature” refers to both temperatures inmost climate
change studies (see Section 1.4.1 and Cross-Chapter Box 2.3
in IPCC, 2021).According to the latest IPCC report (Masson-
Delmotte et al. 2021), GMST for the period 2011-2020 has
increased by 1.09 ◦C since PI times (1850-1900), and it is
projected to continue to rise by 1.0 to 5.7 ◦C by the end of
the 21st century, depending on the Shared Socioeconomic
Pathway (SSP). On the other hand, global mean SST has
increased by 0.88◦C since PI times and almost 70% of that
increase (0.6 ◦C) happened in the last 40 years. This warming
is not uniformover the globe. Parts of the IndianOcean,west-
ern Equatorial Pacific Ocean (EPO, see Fig. 1), and western
boundary currents respond faster to global warming, while
the sea surface in the regions of eastern EPO, subpolar North
Atlantic Ocean (NAO) and Southern Ocean (SOO) tend to
warm at slower rates than the global average. A cooling has
been observed in the NAO subregion known as the warming
hole (Armour et al. 2016; Haumann et al. 2020; Keil et al.
2020), and in some parts of SOO (Auger et al. 2021; Xu
et al. 2022). Various studies based on observations and GCM
simulations project that the regional pattern of the future
SST change will follow the historical trends, with intensity
dependent on the SSP and the region, and some of the nega-

tive trends in SOOwill change to positive (Masson-Delmotte
et al. 2021).

Many of the studies on SST concentrate on past and cur-
rent climate over limited areas. For example, multiple studies
are centered on the SOO region, which show significantly
slower ocean warming than the rest of the world (Adusumilli
et al. 2020; Anderson and Mackintosh 2012; Armitage et al.
2018; Armour et al. 2016; Haumann et al. 2020), with sea-ice
melting at a much slower pace than in other sea-ice regions
(Rackow et al. 2022). On the other hand, the Arctic warms
much faster, with a rate up to 4 times higher than the global
average (Rantanen et al. 2022). This increase also affects SST
in this region, especially in the warm seasons when sea-ice
is melting and the SST increase is not limited by the sea-ice
layer (Carton et al. 2015). Climate change effects on SST
were explored by Froelicher et al. (2018), who focused on
marine heatwaves (MHW) using CMIP5 simulations. Their
results suggest that MHWs will become more frequent and
intense due to global warming, with the Arctic and western
EPO being affected the most. Ruela et al. (2020) inves-
tigated regional variability over eight non-sea-ice regions
using CMIP5 simulations forced by twoRepresentative Con-
centration Pathways (RCPs). They showed a higher SST
response to climate change in the Northern Hemisphere
(NH) than in the Southern Hemisphere (SH), especially in
the Subtropical region. Garcia-Soto et al. (2021) provide an
overview on the global SST projections as one of the few

Fig. 1 Set of regions for
regional aggregation of SSAT
and SST used to analyze
regional response to global
warming: (top) IPCC reference
regions and (bottom) ocean
biomes (Gutiérrez et al. 2021)
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ocean climate change indicators based on the recent CMIP6
simulations.

As an alternative to the use of fixed future periods across
scenarios, the latest IPCC reports, Special Report on warm-
ing of 1.5◦C (SR1.5, Masson-Delmotte et al. 2018) and
the Sixth Assessment Report (AR6, Masson-Delmotte et al.
2021), have extensively used global warming levels (GWLs,
representing GSAT anomalies relative to the PI period;
Cross-Chapter-Box 11.1 in Masson-Delmotte et al. 2018)
as a new climate dimension for a better understanding and
communication of what the future will look like, depending
on the choices we make today. In this work, we provide a
general overview on how global and regional SST and SSAT
scale with global warming, based on a 26-member CMIP6
ensemble.

We specifically focus on the regional sensitivity of SST
and SSAT to global warming across the IPCCAR6 reference
regions (Iturbide et al. 2020) and ocean biomes, the two sets
of regions applied in the latest IPCC AR6 report (Gutiérrez
et al. 2021;Masson-Delmotte et al. 2021). Namely, we aim to
investigate (1) how SST and SSAT scale with global warm-
ing on both global and regional scales, and (2) whether the
results are robust to the SSP and the horizontal model resolu-
tion. Unlike for other atmospheric variables, such as extreme
air temperature and precipitation (Seneviratne and Hauser
2020), sea temperatures appear to lack such comprehensive
studies on regional scale.

Overall, this analysis provides information to assess the
homogeneity of two different sets of regions in terms of
regional response to global warming. This is relevant for a
potential refinement of IPCC AR6 ocean reference regions,
taking into account the spatial homogeneity in terms of
regional response to global warming.

2 Data andmethodology

2.1 CMIP6 GCM data and regionalizationmaps

We consider global monthly mean SSAT and SST from 26
CMIP6GCMs (as listed in Table 1 in the Appendix) included
in the IPCCworkinggroup1 (WGI) InteractiveAtlas (Gutiér-
rez et al. 2021). The selection of these GCMs was based
on the availability of both SSAT and SST data for the his-
torical experiment and four scenarios (SSP1-2.6, SSP2-4.5,
SSP3-7.0 and SSP5-8.5) in the IPCC-WGI Atlas repository
(Iturbide et al. 2020, 2021) or the Earth System Grid Fed-
eration (ESGF) at the time of the analysis. All data were
interpolated from the original model grid to a common reg-
ular grid at a 1-degree horizontal resolution using first order
conservative remapping (Jones 1999). To investigate the sen-
sitivity of the results to the horizontal model resolution, we
selected from the 26-member ensemble a GCM that pro-

vided versions with high and standard resolution over the
ocean.TheCNRM-CM6-1-HRand the lower resolution (LR)
CNRM-CM6-1 (hereafter referred to as CNRM-CM6-1-LR,
for clarity) models fulfilled the requirements. Their ocean
fine and coarse nominal horizontal resolutions are 25 km
and 100 km, respectively. For this sensitivity analysis, the
datasets were interpolated to a common 0.25-degree regular
grid.

We analyze regionally-aggregated results over the IPCC
AR6 reference regions covering ocean areas, which include
12 oceanic and 3mixed oceanic/terrestrial regions (Fig. 1, top
panel). South-East Asia (SEA), the Caribbean (CAR), and
theMediterranean (MED) are thosemixed regions, which are
highly sensitive to climate change, MED particularly (Giorgi
2006). It is worth noting that the previous IPCC report (AR5)
featured only three reference regions over oceans (Masson-
Delmotte et al. 2013).

The regionalization in AR6 is mostly based on the ocean
salinity trend analysis (Durack 2015), with additional regions
covering the Southern Ocean (SOO) in the south and Arc-
tic Ocean (ARO) in the North. Additionally, the equatorial
regions are defined to capture the influence of specific phe-
nomena, such as the El Niño or Indian Ocean Dipole effect.
These new regions exclude coastal zones to a large extent.
For that reason, we also include the regional analysis over
ocean biomes (Fig. 1, bottom panel), which take coastal areas
into account, allowing us to investigate how near-coastal pro-
cesses, such as downwelling and upwelling, may affect the
regional results. Both sets of regions are included in the Inter-
active Atlas (Gutiérrez et al. 2021) and the corresponding
masks at different resolutions are available in the IPCC-WGI
Atlas repository https://github.com/IPCC-WG1/Atlas/tree/
main/reference-regions.

In addition to the regional assessment of the data, we
analyze the grid-box by grid-box results. A comparison of
grid-box to regionally aggregated data allows us to assess
suitability of the two regionalizations for climate change
analysis.

2.2 Scaling and GWL plots

We calculate decadal mean SSAT, SST, andGSAT anomalies
relative to the 1850-1900 PI period. The mean anomalies are
calculated independently for each of the 26 GCMs and 9
decades, from 2010 to 2100. Then we apply linear regression
analysis using SciPy tool (Virtanen et al. 2020) to obtain the
slope β of the linear fit of the mean decadal SST and SSAT
anomalies to the corresponding GSAT anomalies (i.e GWL).
β is calculated following the expression:

β = N
∑

xy − ∑
x

∑
y

N
∑

x2 − (
∑

x)2
, (1)
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where x refers to data representing the mean SST or SSAT
anomalies, and y corresponds to the dataset representing
GWL. N = 234 represents number of individual data (26
GCMs×9 decades) per grid.

We examine the slope β of regional average anomalies
in relation to GWL, serving as an indicator of the regional
response of SST and SSAT to global warming. The results
are presented in the form of a GWL plot, an extended ver-
sion of the regional climate sensitivity plots (Seneviratne
and Hauser 2020), as applied in the IPCC Interactive Atlas
(Gutiérrez et al. 2021, http://interactive-atlas.ipcc.ch). The
GWL plot is a scatter plot in which each point represents
non-overlapping decadal mean anomalies of a target vari-
able (SST and SSAT in this work) over a region of interest
vs the corresponding GWL, over the same period relative to
the reference PI period, calculated for each GCM. The GWL
plot also includes the linear fit as applied in Diez-Sierra et al.
(2023). Confidence limits for β are obtained by applying the
commonly used two-sided Wald test with a 99% confidence
(i.e. p-value below 0.01). Goodness of the fit is assessed by
means of the coefficient of determination R2. Additionally,
to identify cases in some regions where the scaling may be
non-linear, we extend theGWLplot by including the curve of
a fit to an exponential function (y = Aebx ) using non-linear
least squares.

2.3 Spatial plots

We also investigate the spatial distribution of the scaling fac-
tor by representing the regional scaling slopes on a map. The
results are shown over the two sets of regions used in IPCC
AR6 (Fig. 1). Furthermore, we calculated the β values for
each grid cell to analyze the spatial consistency of the scal-
ing at a finer scale. To distinguish the areas affected by sea-ice
dynamics, on the gridded maps we also include information
on sea-ice concentrations based on monthly mean sea-ice
data available from the CMIP6 GCM simulations. We cal-
culate the ensemble mean of the sea-ice concentration, and
all areas where concentration is above 1% are considered as
affected by the sea-ice dynamics and hatched on the gridded
figures. The sensitivity of the slope β to horizontal resolution
was calculated for each grid cell using the data from CNRM-
CM6-1-HR andCNRM-CM6-1-LRGCMs. The information
on sea-ice is included in the same manner as in the ensem-
ble representation, but using just these 2 models instead of
the full 26 model ensemble. We use the Pearson correla-
tion coefficient to quantify the spatial similarity between the
low- and high-resolution scaling patterns over different ocean
biomes.

3 Results

3.1 GWL plots

Figure 2 shows an example of global and regional responses
of SST and SSAT to global warming based on data from the
SSP5-8.5 scenario, which provide the largest range of global
warming during the 21st century.

BothSSTandSSATscale linearlywithGWLon the global
scale (Fig. 2ab).As expected, their scaling factor is lower than
1,meaning that both temperatures scalewith globalwarming,
but at a lower pace. SSAT scales with a factor of 0.86 K/K,
so e.g. SSAT over oceans responds with +3.4 K to a +4 K
GWL. For SST the slope is 0.71 K/K, i.e. a +2.84 K response
to the +4 K GWL.

On the regional scale over the IPCC regions, SST scales
linearly with a scaling factor β ranging between 0.7 and 0.85
K/K for most of the regions (see Fig. 10 in the Appendix).
Lower β values are obtained over most SH regions (i.e. SAO,
SOO, SPO), with the lowest value of 0.54 over SOO. The lat-
ter is related to the presence of sea-ice in the area, since most
of the energy is spent in the phase change between sea-ice and
sea-water instead of heating (Armour et al. 2016; Haumann
et al. 2020). Sea-ice is projected to start to decline in the sec-
ondhalf of the 21st century (Rackowet al. 2022),which is one
of the main reasons for SST in the area to rise significantly
slower than in the rest of the IPCC regions. However, a dif-
ferent behavior can be observed in the Arctic Ocean (ARO).
ARO exhibits the highest β for SST among all the IPCC
regions (Fig. 10 in the Appendix). However, it also displays
the highest inter-model spread (Fig. 2c), resulting in very
similar R2 values for both the linear (0.70) and exponential
(0.71) fits. This behavior, in contrast to SH, is attributed to the
fastermelting of sea-ice inNH (Masson-Delmotte et al. 2021;
Rantanen et al. 2022). Once sea-ice has melted, SST rises
more rapidly with GWL due to changes in albedo and sea-
atmosphere feedback. Discrepancies in the representation of
sea-ice melting contribute to a higher inter-model spread in
the results, particularly at higher GWLs. This difference is
also evident in the standard error, which is at least twice
the value of those obtained in the other IPCC regions (i.e.
0.013 K/K, Fig. 10 in the Appendix). The coupling between
SST and SSAT in this region strongly depends on the way
the behavior of sea-ice is parametrized in the model, and
the CMIP6 models use different sea-ice parameterization
schemes to represent sea-ice sub-grid scale processes (see
Table 1 in the Appendix), leading to a higher spread in sea-
ice extent (Long et al. 2021). These differences in sea-ice
extent affect the spread of β between SST and GWL in this
region (Fig. 2c). In the neighbouring North Atlantic Ocean
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Fig. 2 Global Warming Level (GWL) plots showing the responses of
global (a) SST and (b) SSAT to global warming, as well as two exam-
ples of regional responses of SST to global warming over two IPCC
regions: (c) Arctic Ocean (ARO), and (d) North Atlantic Ocean (NAO).
Filled dots represent mean decadal anomaly for each of 26 GCMs since
during the 21st century with respect to the baseline PI period (1850-

1900). In the upper left corner statistical information on the slope β with
asterisks indicating the significance level based on the p value (∗∗ for
p ≤ 0.01), the coefficient of determination R2

lin of the linear fit (black
solid line), and R2

exp of the exponential fit (black dashed curves). Red
squares represent the decadal ensemble mean values

(NAO) region, which is sea-ice free, SST scales linearly with
GWL (Fig. 2d), showing a good linear fit (R2

lin=0.90), and
much smaller spread.

The scaling of SSAT with GWL over the IPCC regions
(Fig. 11 in the Appendix) shows that only AROwarms faster
than mean GSAT, and MED is almost as fast. SSAT over
MED scales with, β = 0.95 ± 0.005 K/K, while over ARO
SSAT has a tendency to rise almost three times faster than the
global average (β = 2.98 ± 0.020 K/K). The latter is lower
than the four times faster increase reported by Rantanen et al.
(2022). The reduced rate we obtained is attributed to our
analysis procedure, which incorporates regions covered by
sea-ice. Over these areas the SSAT increase is limited by the
sea-ice layer. Results are robust on both global and regional
scales for all analyzed IPCC reference regions (red squares
representing the ensemble mean on Fig. 2, as well as Figs. 10
and 11 in the Appendix).

To test the sensitivity of the scaling factors to the emission
scenario, we computed annual and seasonal scaling factors
β of SST with GWL, on both regional and global scales for
all SSPs (see Fig. 12 in the Appendix). On the global scale,
the annual and seasonal β results for SST are robust, with
variations below 3% depending on the scenario, and with
small differences between seasons. On the regional scale,
seasonal differences for different SSPs differ up to 10%, typ-
ically reaching the highest β for the high-emission SSP5-8.5
scenario. In SOO and NAO, β is the highest for SSP1-2.6
in winter and spring, as well as for MED but only annually.
Furthermore, for ARO, NAO, NPO, andMED, seasonal vari-
ations are evident, with differences above 10% (in ARO the
β values are more than doubled when going from DJF and
MAM to JJA and SON).

Global β variations for SSAT with SSP (Fig. 13 in the
Appendix) are up to 5%, showing no large differences
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between seasons. On the regional scale, the differences
between the SSPs do not exceed 10% in most cases, except
in the sea-ice regions. In the case of SSAT the highest β for
SSP1-2.6 appear in ARO and SOO, with large differences
between seasons for all SSPs inMED, NPO, SOO and, espe-
cially, in the ARO region. In this region, the highest β values
for SSAT are in SON and DJF (4.78 to 6.41 K/K, depending
on the SSP) and the lowest in JJA (1.22 to 1.32 K/K), which
is related to seasonal changes in the sea-ice concentration.
During fall and winter, most of the solar radiation is reflected
due to the high sea-ice albedo, and the SSAT increases faster.
In summer, the melted sea-ice allows for the solar radiation
to be absorbed by the sea, and therefore the increase of SST
with global warming is the highest, and the increase of SSAT
the lowest (Levine et al. 2021).

3.2 Regional responses to global warming

Figure 3 represents β spatially for the 26-member CMIP6
ensemble mean annual and seasonal regional responses to
GWL for the SSP5-8.5 scenario. The results are calculated
over the IPCC reference regions, biomes regions, and per grid
cell for both SST and SSAT. Responses for SST are higher in
the NH than in the SH, as expected (Masson-Delmotte et al.
2021; Ruela et al. 2020). Furthermore, there is a northward
positive gradient of intensity of β for SST, especially during
JJA and SON. The scaling factor in SH does not exceed 0.75
K/K throughout the whole year, while in NH this value is
exceeded in most of the regions, especially during JJA and
SON in the ARO and MED IPCC reference regions, as well
as in NH High Latitudes (NHHL) and MED biomes regions,
where SST is predicted to increase faster than the global
warming under SSP5-8.5 (i.e. β > 1 K/K).

Griddedmaps (Fig. 3, third row) show small scale features
that can be distinguished especially in upwelling regions and
areas of strong ocean currents. In the regions of the Canary,
Humboldt, and South Indian currents, there is a very weak
response of SST to global warming, with β below 0.5 K/K
during all seasons. Extremely low and also negative values
duringDJF andMAMcan be distinguishedwithin theNHHL
biome, southeast fromGreenland, indicating cooling of SST.
This coincides with the warming hole where cooling has
already been observed and often related to the weakening
of the Atlantic meridional overturning circulation (AMOC;
Medhaug et al. 2017; Caesar et al. 2021;Keil et al. 2020). The
results indicate that the SST cooling in this subregion is pro-
jected to continue. On the other hand, the Equatorial counter
current within the EO biome, a region strongly affected by
ENSO, shows responses mostly greater than 1 K/K, indicat-
ing that SST warms there faster than the GSAT. Additional

features with stronger response to global warming can be
distinguished south of Australia, which may be related to
seasonal upwelling, and in the Argentine Sea just outside the
mouth of the La Plata river.

The response of SSAT to global warming is similar to
SST, for most of the equatorial and midlatitude regions; it
is substantially different only for the regions with permanent
sea-ice. The increase of SSAT over ARO regions is projected
to be 3 to 6.5 times faster than the GSAT, depending on the
season, with the highest values (6.5 K/K) in DJF. The latter
is also evident over corresponding biome regions, as well as
in the gridded representation. On the other hand, the gridded
representation of the SSAT response to global warming adds
on the regional information over SOO. Close to the Antarctic
coast, SSAT is projected to increase much faster than in the
rest of the SOO region or SHHL biome, which is clearly
related to the presence of sea-ice (hatched areas in Fig. 3).

There is a clear consistency between these two regional
aggregations of the slopes for the SOO and SHHL regions,
but the spatial aggregation is the result of compensating
slopes in the southern Pacific and along the Antarctic coast,
which can be distinguished in the grid-box by grid-box
assessment. The loss of information due to compensating
slopes of β can be also seen in the SAO reference region. In
the NH biomes (i.e. NHS and NHHL) and the SHS region
covering the northern part of the Indian Ocean, the consis-
tency between the two regionalizations is less evident aswell,
with strong gradients of the slopes in their gridded represen-
tation. These biome regions include three IPCC reference
regions - NAO, NPO and EIO. The strongest slope gradi-
ents for both temperatures appear in NAO, where the effects
of the warming hole are compensated with the high slopes
along the eastern Canadian coast (Fig. 3, rows 3 and 6). There
are β differences of up to 40% between the northern and
southern parts of NPO in the gridded representation (espe-
cially for SST) and over the two neighboring ocean biome
regions (NHHL and NHS), but they are compensated in the
regional representation over the IPCC regions. Furthermore,
the effects of seasonal upwelling on β for SST in the Arabian
Sea (AS) is visible in the gridded representation during DJF
and MAM, which is not evident in the EIO IPCC reference
region. Furthermore, it is interesting to note that the biomes
covering coastal regions, such as EB and AR, are excluded
from the IPCC ocean regions and merged into the continen-
tal reference regions. On the other hand, the gridded slopes
show that there are only small discrepancies over oceanic
coastal biomes as compared to their surrounding regions.

These results suggest that certain oceanic IPCC AR6 ref-
erence regions may be redefined in order to better capture the
spatial variability of regional sensitivity to climate change.
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Fig. 3 Annual and seasonal (columns) slope β [K/K] of the linear
scaling of SST (top 3 raws), and SSAT (bottom 3 raws) with global
warming for the SSP5-8.5 scenario, over IPCC reference regions (1st
and 4th row), biomes (2nd and 5th rows), and each grid cell (3rd and
6th). Hatched areas indicate the areas where the sea-ice concentration

exceeds 1% (single hatching patterns), and black crosshatched areas
indicates the areas with non-significant results. Biomes region bound-
aries are overlaid on the gridded plots to facilitate visual analysis of
regional consistency

In the same manner, SOO and NPO show a strong gradient
towards the equator, and according to the gridded results, the
regions should be subdivided in two subregions. In SAO, a
strong feature in the Argentine Sea outside La Plata river’s
mouth can be clearly distinguished, indicating a potential
subdivision of the region in two parts as well. Strong con-
trasting features inNAO, including the effects of thewarming
hole, suggest the subdivision of the region in three parts,
while ARS region could be extended by incorporating a por-
tion of the Equatorial Indian Ocean (EIO), to better capture
the effects of seasonal upwelling in the AS biome. A refine-
ment of the IPCC reference regions over oceans according
to these suggestions is illustrated in Fig. 4.

To illustrate the application of these proposed regions, we
show (Fig. 5) the spatial spread of β for SST (for SSAT in
Fig. 15 in the Appendix) within both the current six IPCC
AR6 regions that were refined and the newly suggested ones.
The results highlight variations in the spatial distribution of β
for the newlydefined regions, particularly noticeable inNAO.

Sub-regions within NAO, such as SNAO, exhibit a more
homogeneous spatial β distribution as compared to EANO
and WCNAO, with the latter two differing in their mean
value. Pronounced differences in spatial spread of β can be
seen in NPO and SOO, where regions more impacted by sea-
ice (NNPO and the new SSO) display a higher spread. The
SAO region exhibits high seasonal sensitivity, evidenced by
a substantial difference in spread between the two newly pro-
posed regions during JJA. The newly proposed ARS region
mostly features a significantly higher spatial spread, while
this change does not have a strong impact on the newly pro-
posed EIO.

3.3 Sensitivity to the GCM horizontal resolution

The analysis presented in the previous section considered
an ensemble of GCMs, combining various models with dif-
ferent grid spacings, and the gridded results (Fig. 3, rows 3
and 6) showed details related to specific ocean features such
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Arctic Ocean (ARO)
Northern North Pacific Ocean (NNPO)
Southern North Pacific Ocean (SNPO)
Equatorial Pacific Ocean (EPO)
South Pacific Ocean (SPO)

Eastern North Atlantic Ocean (ENAO)
Western and Central North Atlantic Ocean (WCNAO)
Southern North Atlantic Ocean (SNAO)
Equatorial Atlantic Ocean (EAO)

Southern South Atlantic Ocean (SSAO)
Northern South Atlantic Ocean (NSAO)

Arabian Sea (ARS)
Bay of Bengal (BOB)
Equatorial Indian Ocean (EIO)
South Indian Ocean (SIO)

North Southern Ocean (NSO)
South Southern Ocean (SSO)

Mediterranean (MED)

Caribbean (CAR)

South-East Asia (SEA)

Fig. 4 Suggested refinement of the IPCC ocean reference regions (region names in bold). NPO, NAO, SAO and SOO are divided in two subregions,
NAO in three subregions. EIO is split in two subregions, with the left part (striped) merged to ARS

as upwelling regions or presence of strong currents. In this
section, we analyze the robustness of the above results with
respect to horizontal resolution by performing the analysis
on two individual GCMs that differ only in their grid spacing.

Figure 6 shows the grid cell scaling of the CNRM-CM6-
1-HR model, which has the highest resolution (HR) over the
ocean areas (25 km) among the 26 ensemble members, and

the comparison to the results from the correspondingCNRM-
CM6-1-LR GCM at lower resolution (100 km), and the
difference between the two. The highest differences between
LR andHRcan be seen again in the regionswith the influence
of the sea-ice dynamics (hatched areas in Fig. 6), especially
in the region covering the Southern Ocean (i.e. SHHL) in
austral summer (DJF) and autumn (MAM), which show a

Fig. 5 Spatial mean and spread of β for SST. The results are displayed for both the six existing IPCC AR6 regions (one region per panel, black
markers) and their newly suggested counterparts (in colors, see legend)
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Fig. 6 Annual and seasonal (raws) representations of the β slope for
SST in [K/K] calculated for each grid cell, all interpolated at 0.25 regular
grid for the CNRM-CM6-1-LR (1st column), CNRM-CM6-1-HR (2nd
column), and the difference between the two (3rd column). Overlaid

black lines indicate ocean biomes boundaries. Hatched areas show the
areas with sea-ice concentration above 1% (single hatching patterns).
The areas with non-significant results use the crosshatched in black

spatial correlation coefficient R < 0.5 (Fig. 7). Overall, the
mean area coveredwith sea-ice is larger in theLR simulations
in the south, while in the north more sea-ice is simulated with
the HR model. More pronounced local features can be dis-
tinguished in the LR simulations. For example, the features
in the Argentine Sea and southern Australia, also visible in
the ensemble mean (Fig. 3), can be clearly distinguished in

the LR, but not in the HR simulations (e.g. see Fig. 15 in the
Appendix), where the features seem to be smoothed. Fur-
thermore, some features such as in the ocean area east from
Peru, eastern and western edges of the SHHL region, and
in south from the Indian Ocean, are smoother when increas-
ing the model resolution. This can be related to the stronger
deepwatermixingwhich is simulated in the higher resolution

Fig. 7 Spatial correlation R
coefficient calculated as the
Pearson coefficient between the
slopes β from the 2 sets of data,
CNRM-CM6-1-LR and
CNRM-CM6-1-HR, over the
grid cells included in each of the
10 ocean biomes

123



J. Milovac et al.

ocean models (Koenigk et al. 2021). This causes more effi-
cient water transport northwards in the SH and southwards
in the NH in the HR simulations, which might smoothen the
gradients that are visible in the LR run.

From a regional perspective, regions with seasonal upwel-
ling, such as the Arabian Sea (AS), Gulf of Mexico (GF),
and Amazon River (AR), show the lowest spatial correla-
tion between the two resolutions, with R values around or
below 0.5 (Fig. 7). On the other hand, the area covering EB,
the regions with prominent continuous upwelling processes
along the coast, show the highest spatial correlation between
LR andHRmodels.Within the EB region, slightly higher dif-
ferences can be seen only in parts of the Humboldt upwelling
system (see Fig. 6).

The Mediterranean area has been identified as a hotspot
of climate change (Giorgi 2006). In Fig. 8, we focus over
the MED biome (the Mediterranean Sea). The differences in
the spatial pattern between the 2 resolutions are the highest
in JJA and SON seasons. In JJA, the HR model version for
most parts, especially over Tyrrhenian, Ionian, and Balearic
Seas, accounts for faster SST warming than the mean GSAT
in JJA (i.e. β > 1), which is not the case for the LR version. In
most of the biome, the HR version of the model account for
higher values of β than its corresponding LR version, with
an exception in the Gulfs of Lyon and Gabes, where slightly
higher values are obtainedwith LR, especially inDJF season.
The spatial correlation is the lowest in JJA and especially in
SON season, when the HR version accounts for more than
20% higher values in the Adriatic and Ionian seas.

NHHL also shows a distinct behavior due to the presence
of the North Atlantic warming hole. Figure 9 represents the
part of NHHL covering the NAO IPCC reference region. Dif-
ferent local patterns can be distinguished in the LR results,
which are completely absent in the HR version, especially
during DJF and MAM. The area with β above 1 K/K in the
LR version does not appear in the HRmodel. The strong gra-
dients that are evident in the LRmodel are much smoother in

the HRmodel version. Furthermore the location of minimum
negative β values, indicating the location of the warming
hole, are shifted eastward from the location in the LR model
version.Note that these areaswithminimal values are not sig-
nificant. It is known that HRmodels tend to simulate stronger
mixing, especially in subpolar gyres (Koenigk et al. 2021),
and that AMOC is projected to weaken more in the future
when the model resolution is increased (Roberts et al. 2020).
The results depicted in Fig. 9 are consistent with these find-
ings, where the gradients are significantly smoothened due
to the increased mixing in the HR model version, and bet-
ter represented southward water transport (Chassignet et al.
2020, 2017). Furthemore, the difference in amount of sea-
ice between the two simulations affects the sea-ice-albedo
feedbacks, which may strongly affect sea-ice seasonal shift-
ing and, consequently, the presence of sea-ice in the selected
region (Kashiwase et al. 2017).

4 Discussion

Both SSAT and SST scale linearly with GWL on a global
spatial scale, with annual scaling factors 0.86 ± 0.001 K/K
and 0.71 ± 0.001 K/K respectively, with slightly higher val-
ues in JJA and SON. On the regional scale, most regions
scale linearly as well with GWL, but with very different
scaling factors. Regions in SH have notably lower values
than the regions in the NH, indicating that the oceans in NH
are projected to warm faster than those in the SH, which is in
agreement with Ruela et al. (2020). The lowest annual value
of β = 0.54 ± 0.005 K/K for SSP5-8.5 is obtained over the
SOO region, indicating that this part of the globewill warm at
the slowest annual rate, with almost no changes between the
seasons. Conversely, the region with the highest annual value
of β = 0.91 ± 0.013 K/K among the IPCC reference regions
is ARO. The annual scaling of SST with GWL in this region
fits slightly better to an exponential model, suggesting that

Fig. 8 As Fig. 6, just zoomed over the Mediterranean region (MED)
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Fig. 9 As Fig. 6, just zoomed in over the North-Atlantic Ocean (NAO) IPCC reference region. Crosshatched areas are not significant according to
a two-sided Wald test with a 99% confidence

the increase of SST accelerates as higher GWLs are reached.
The ensemble spread of β is high in ARO (i.e. β differences
between the CMIP6 GCMs), with the standard deviation of
an order of magnitude higher than in the rest of the regions.
ARO also shows a strong variation of β between the seasons,
with β well above 1 K/K in JJA and SON, and very low val-
ues (β ~ 0.5 K/K) in DJF and MAM. Such behavior in the
polar regions can be explained by the presence of permanent
sea-ice, which represents a blocking barrier for solar radi-
ation (i.e. reflects due to high albedo) and therefore limits
the increase of SST. Sea-ice melts much faster in ARO than
in SOO, and it is projected to start to disappear completely
during JJA season by the mid 21st century (Gutiérrez et al.
2021; Masson-Delmotte et al. 2021). Therefore, a strong dif-
ferences of β between the seasons are evident in this region,
with significantly higher β values in JJA and SON, in the sea-
sons when the sea-ice in the region is minimal or even absent.
On the other hand, inDJF andMAM,before sea-ice ismelted,
the scaling factor β is very low. In this region, the change of
β between the seasons for SSAT is reversed; it is the lowest
in JJA (β =1.32 K/K) and the highest in DJF (β =4.78 K/K).
However, in the south, there are no strong seasonal varia-
tions, as sea ice melts there at a slower rate than in the north.
For that reason, β is the lowest in SOO with the changes

between the seasons not as evident as in the northern sea-ice
regions.

The spatial representation of β at grid cell scale shows
additional features and details. For example, in the NAO
region, the location of the warming hole can be clearly dis-
tinguished, which is masked in the regional analysis. This
location of extremely low and negative β shows that the neg-
ative trend will persist in DJF and MAM season. Extremely
low values can be distinguished also in subregions of SOO,
which coincides with the regions having currently negative
SST trends (Armour et al. 2016; Auger et al. 2021; Xu et al.
2022). The results in this study indicate that these negative
trends in the SOO region tend to change the sign in the future
at highest GWL. Furthermore the gridded representation of
β allows to easily distinguish the Equatorial counter current
within the EO biome having β > 1, indicating that the SST
in this region will increase faster than the mean GSAT. Loca-
tions south of Australia and in the Argentine Sea, just outside
theLaPlata river’smouth, also showfaster SSTwarming than
the mean GSAT. In general, the SST pattern follows that of
SSAT, except for the regions influenced by sea-ice dynamics,
especiallywhen focused on the changes between the seasons.
In the sea-ice regions in both hemispheres the summer SSAT
scaling is the lowest, while in winter it is the highest.

123



J. Milovac et al.

The sensitivity to the GCM’s horizontal resolution was
analyzed by comparing the gridded representation of β using
the same GCM on 2 different resolutions. The main differ-
ence between the two representations is not in the overall
patterns represented, but in the fact that the same features
in the HR model version are smoothed when compared to
the representation given by the LR model. This is especially
evident in the regions with the special features, such as in
NHHL around the warming hole, and in the whole SHHL
biome, where the differences in β tend to be higher than
50%. The reason for these large differences in SHHL can be
related to the stronger mixing of the ocean waters and more
efficient transport towards the North, which is characteristic
for the HR models in general (Koenigk et al. 2021). In the
warming hole, itmay be related toAMOC,which is projected
to weaken more in the future when the model resolution is
increased (Roberts et al. 2020).

From the 3 mixed regions, in SEA and CAR linear scaling
of β is evident for both SST and SSAT, with a small spread
between themodels (Figs. 10 and11), and small interseasonal
variability (Figs. 12 and 13). Distinctive scaling characteris-
tics of β with GWL are evident only inMED. SST and SSAT
scales linearlywithGWLalso in this region, but the values for
β (0.85± 0.005K/K and 0.95± 0.005K/K, respectively) are
notably higher than in most of the analyzed regions. Further-
more, seasonal variations are evident, with differences of up
to 20% between the seasons. In summer the SSAT increase is
projected to be even faster than the global warming (β = 1.08
± 0.005 K/K). This region also shows a sensitivity to the res-
olution, as it includes a very complex coast, and HR models
tend to better resolve the orography and sea-land disconti-
nuities. The HR model overall gives the higher SST-GWL
scaling factors than the LR model version, with the highest
difference in summer and autumn seasons.

5 Conclusions

In this study we investigate the response of SST and SSAT
to global warming using the latest CMIP6 GCM simula-
tions. The analysis is focused on these two variables, with
GWL used as a dimension of global warming. We analyze

SSAT, which is obtained from GSAT by masking the land
surface. For each variable, we calculate non-overlapping 10-
year mean anomalies with respect to a PI period, and we
analyze how SST and SSAT scale with the corresponding
GSAT anomalies, which is a specific form of the GWL rep-
resentation. We analyze the slope β of the linear fit on global
and regional spatial scales, as well as on annual and seasonal
temporal scales. Additionally, we applied a one-term expo-
nential model to analyze if and how the fitting depends on
the region and season. We applied 2 types of regionaliza-
tion, i.e. over the IPCC reference regions and ocean biomes
(Gutiérrez et al. 2021; Masson-Delmotte et al. 2021; Iturbide
et al. 2021), as well as the grid-box per grid-box analysis, to
investigate whether the results are robust to the type of the
regionalization applied.

The application of the linear regression method to assess
the scaling of SST and SSAT with GWL unveiled strong
differences in the results at the regional scale. Further exami-
nation of the linear scaling factor β at the grid scale provided
more detailed insights into oceanic features and potential
inhomogeneities within the same region. The pronounced
gradients identified in the gridded β within IPCC AR6 ref-
erence regions indicate the need to enhance the borders
of specific ocean regions in forthcoming regional climate
change assessments. Particularly affected regions are the
Southern Ocean (SOO) and South Atlantic Ocean (SAO)
regions in the Southern Hemisphere, along with the North
Atlantic Ocean (NAO), North Pacific Ocean (NPO), and
Equatorial IndianOcean (EIO) regions in theNorthernHemi-
sphere. A redefinition is necessary to account for the effects
of local features specific to each region. We propose incor-
porating five additional oceanic regions to complement the
existing twelve IPCC reference regions over oceans (Fig. 4).
Moreover, with an anticipated increase in the horizontal res-
olution of GCMs, coastal areas are expected to be better
resolved. These coastal areas predominantly constitute parts
of the continental regions in the current version of the IPCC
reference regions, as illustrated in Fig. 1, where a noticeable
gap exists between the borders of the ocean regions and coast-
lines. It will be crucial to refine the ocean regions further to
incorporate these coastal areas, to enhance the accuracy of
future regional climate assessments.
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Appendix: Additional figures and tables

Fig. 10 GWLplots showing responses of regional SST to global warm-
ing over the IPCC reference regions. Filled dots represent mean decadal
anomaly for each of the 26 GCMs during the 21st century since 2010
with respect to the baseline period (i.e. 1850-1900). In the upper left
corner statistical information on the slope β and the correlation coeffi-

cient R2
lin of the linear fit (black solid line), and R2

exp of the exponential
fit (black dashed curves). Squares represent the decadal ensemble mean
values, including information on the robustness over the 21st century
(all shown in red i.e. all robust)
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Fig. 11 As Fig. 10 but for SSAT
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Fig. 12 Heat map of annual and seasonal β between SST and GWL in K/K units (raws) over the IPCC regions (columns) and globe (last column),
for 4 SSPs (triangles)

Fig. 13 As Fig. 12 but for SSAT
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Fig. 14 Annual and seasonal (columns) representations of the β slope for SST in [K/K], zoomed over SAO IPCC reference region, calculated for
each grid cell interpolated at 0.25 regular grid for the CNRM-CM6-1-LR (1st row), CNRM-CM6-1-HR (2nd row), and the difference between the
two (3rd row)

Fig. 15 Spatial mean and spread of β for SSAT. The results are displayed for both the existing six IPCC regions (each region per panel) and their
newly suggested counterparts
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Table 1 List of 26 CMIP6 GCMs used in the study, with corresponding resolutions of the atmospheric (column 2) and coupled oceanic model
(column 3). The coupled ocean models are listed in column 4, and the sea-ice parametrization in column 5

CMIP6 GCMs �x atmos. [km] �x ocean [km] Ocean model Sea-Ice model

ACCESS-CM2 250 250 ACCESS-OM2 CICE5.1.2

ACCESS-ESM1-5 250 250 ACCESS-OM2 CICE4.1

AWI-CM-1-1-MR 100 25 FESOM 1.4 FESOM 1.4

BCC-CSM2-MR 100 100 MOM4 SIS2

CAMS-CSM1-0 100 100 MOM4 SIS 1.0

CanESM5 500 100 NEMO3.4.1 LIM2

CESM2-FV2 250 100 POP2 CICE5.1

CESM2-WACCM-FV2 100 100 POP2 CICE5.1

CMCC-CM2-SR5 100 100 NEMO3.6 CICE4.0

CNRM-CM6-1 250 100 NEMO3.6 Gelato 6.1

CNRM-CM6-1-HR 50 25 NEMO3.6 Gelato 6.1

CNRM-ESM2-1 250 100 NEMO3.6 Gelato 6.1

EC-Earth3 100 100 NEMO3.6 LIM3

EC-Earth3-Veg 100 100 NEMO3.6 LIM3

GFDL-ESM4 100 50 GFDL-OM4p5 GFDL-SIM4p5

INM-CM4-8 100 100 INM-OM5 INM-ICE1

INM-CM5-0 100 100 INM-OM5 INM-ICE1

IPSL-CM6A-LR 250 100 NEMO-OPA NEMO-LIM3

MIROC-ES2L 500 100 COCO4.9 COCO4.9

MIROC6 250 100 COCO4.9 COCO4.9

MPI-ESM1-2-HR 100 50 MPIOM1.63 (Semtner zero-layer) dynamic (Hibler 79) sea ice model)

MPI-ESM1-2-LR 250 250 MPIOM1.63 (Semtner zero-layer) dynamic (Hibler 79) sea ice model)

MRI-ESM2-0 100 100 MRI.COM4.4 MRI.COM4.4

NorESM2-LM 250 100 MICOM CICE

NorESM2-MM 100 100 MICOM CICE

UKESM1-0-LL 250 100 NEMO-HadGEM3-GO6.0 CICE-HadGEM3-GSI8

Acknowledgements Thiswork is part of the projectATLAS (PID2019-
111481RB-I00) funded by MCIN/AEI/10.13039/501100011033. JF
and JM acknowledge support from the project CORDyS (PID2020-
116595RB-I00) funded by MCIN/AEI/10.13039/501100011033. RGJ
acknowledges support from the Met Office Hadley Centre Climate
Programme funded by the UK government’s Department for Science,
Innovation and Technology. We also acknowledge the Earth System
Grid Federation (ESGF) infrastructure, an international effort led by the
U.S.Department of Energy’s Program forClimateModelDiagnosis and
Intercomparison, the European Network for Earth System Modelling
and other partners in the Global Organisation for Earth System Science
Portals (GO-ESSP). We acknowledge theWorld Climate Research Pro-
gram’s Working Group on Coupled Modelling, which is responsible
for CMIP, and we thank the climate modeling groups for producing
and making available their model output. Special thanks go to Joaquín
Bedia Jiménez for his contribution in developing the GWL analysis
conception and his comments that helped to improve this manuscript.

Author Contributions All authors contributed to developing the study
conception and design. Material preparation and data collection were
performed by Josipa Milovac and Maialen Iturbide, code development
by JosipaMilovac, Jesús Fernández and JavierDiez-Sierra, and analysis
by Josipa Milovac. The first draft of the manuscript was written by
Josipa Milovac and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This work was supported by the
projects ATLAS (PID2019-111481RB-I00) funded by MCIN/AEI/
10.13039/501100011033, and CORDyS (PID2020-116595RB-I00)
funded by MCIN/AEI/10.13039/501100011033. RGJ was supported
by the Met Office Hadley Centre Climate Programme funded by the
UK governments Department for Science, Innovation and Technology.

Data Availability The dataset generated and analysed in the study and
the polygons of the suggested refined Physical-climate-assessment-
reference-regions-v4.1 are available in Zenodo: https://doi.org/10.
5281/zenodo.10666947 and the GitHub repository: https://github.com/
SantanderMetGroup/2023_Milovac_SSTvsGWL.

Code Availibility The code used for the analysis is available in the
GitHub repository:
https://github.com/SantanderMetGroup/2023_Milovac_SSTvsGWL.

Declarations

Competing interests The authors have no relevant financial or non-
financial interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-

123

https://doi.org/10.5281/zenodo.10666947
https://doi.org/10.5281/zenodo.10666947
https://github.com/SantanderMetGroup/2023_Milovac_SSTvsGWL
https://github.com/SantanderMetGroup/2023_Milovac_SSTvsGWL
https://github.com/SantanderMetGroup/2023_Milovac_SSTvsGWL


J. Milovac et al.

tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Adusumilli S, Fricker HA, Medley B, Padman L, Siegfried MR (2020)
Interannual variations in meltwater input to the Southern Ocean
from Antarctic ice shelves. Nat Geosci 13:616–620. https://doi.
org/10.1038/s41561-020-0616-z

Alves JMR,PelizA,CaldeiraRMA,MirandaPMA(2018)Atmosphere-
ocean feedbacks in a coastal upwelling system. Ocean Model
123:55–65. https://doi.org/10.1016/j.ocemod.2018.01.004

Anderson B,Mackintosh A (2012) Controls onmass balance sensitivity
of maritime glaciers in the Southern Alps, New Zealand: The role
of debris cover. J GeophysRes Earth Surf 117(F1):F01003. https://
doi.org/10.1029/2011JF002064

Armitage TWK, Kwok R, Thompson AF, Cunningham G (2018)
Dynamic Topography and Sea Level Anomalies of the Southern
Ocean: Variability and Teleconnections. J Geophys Res Oceans
123(1):613–630. https://doi.org/10.1002/2017JC013534

Armour KC, Marshall J, Scott JR, Donohoe A, Newsom ER (2016)
Southern Ocean warming delayed by circumpolar upwelling and
equatorward transport. Nat Geosci 9(7):549–554. https://doi.org/
10.1038/ngeo2731

Auger M, Morrow R, Kestenare E, Sallée JB, Cowley R (2021) South-
ern Ocean in-situ temperature trends over 25 years emerge from
interannual variability.NatCommun12(1):514. https://doi.org/10.
1038/s41467-020-20781-1

Bulgin CE, Merchant CJ, Ferreira D (2020) Tendencies, variability
and persistence of sea surface temperature anomalies. Sci Rep
10(1):7986. https://doi.org/10.1038/s41598-020-64785-9

Caesar L,McCarthyGD,ThornalleyDJR,CahillN,Rahmstorf S (2021)
Current Atlantic Meridional Overturning Circulation weakest in
last millennium. Nat Geosci 14(3):118–120. https://doi.org/10.
1038/s41561-021-00699-z

Cai W, Ng B, Wang G, Santoso A, Wu L, Yang K (2022) Increased
ENSO sea surface temperature variability under four IPCC emis-
sion scenarios. Nat Clim Change 12(3):228–231. https://doi.org/
10.1038/s41558-022-01282-z

Carton JA, Ding Y, Arrigo KR (2015) The seasonal cycle of the Arctic
Ocean under climate change. Geophys Res Lett 42(18):7681–
7686. https://doi.org/10.1002/2015GL064514

Chassignet EP, XuX, Chassignet EP, XuX (2017) Impact of Horizontal
Resolution (1/12 to 1/50) on Gulf Stream Separation, Penetration,
andVariability. J PhysOceanogr 47(8):1999–2021. https://doi.org/
10.1175/JPO-D-17-0031.1

Chassignet EP,Yeager SG, Fox-Kemper B, BozecA, Castruccio F, Dan-
abasoglu G, Horvat C, KimWM, Koldunov N, Li Y, Lin P, Liu H,
Sein DV, Sidorenko D, Wang Q, Xu X (2020) Impact of horizon-
tal resolution on global oceansea ice model simulations based on
the experimental protocols of the Ocean Model Intercomparison
Project phase 2 (OMIP-2). Geosci Model Dev 13(9):4595–4637.
https://doi.org/10.5194/gmd-13-4595-2020

Diez-Sierra J, IturbideM, Fernández J, Gutiérrez JM,Milovac J, Cofiño
AS (2023) Consistency of the regional response to global warm-

ing levels from CMIP5 and CORDEX projections. Clim Dyn
61(7):4047–4060. https://doi.org/10.1007/s00382-023-06790-y

Durack PJ (2015)Ocean Salinity and theGlobalWater Cycle. Oceanog-
raphy 28(1):20–31. https://doi.org/10.5670/oceanog.2015.03

Froelicher TL, Fischer EM, Gruber N (2018) Marine heatwaves under
global warming. Nature 560(7718):360–364. https://doi.org/10.
1038/s41586-018-0383-9

Garcia-Soto C, Cheng L, Caesar L, Schmidtko S, Jewett EB, Cheripka
A, Rigor I, Caballero A, Chiba S, Báez JC, Zielinski T, Abraham
JP (2021) An Overview of Ocean Climate Change Indicators: Sea
Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved
Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Vol-
ume, Sea Level and Strength of the AMOC (Atlantic Meridional
Overturning Circulation). Frontiers in Marine Science 8

Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8).
https://doi.org/10.1029/2006GL025734

Gutiérrez J, Jones R, Narisma G, Alves L, Amjad M, Gorodetskaya
I, Grose M, Klutse N, Krakovska S, Li J, Martínez-Castro D,
Mearns L, Mernild S, Ngo-Duc T, van den Hurk B, Yoon JH
(2021) Atlas. In: Masson-Delmotte V, Zhai P, Pirani A, Connors
S, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M,
Huang M, Leitzell K, Lonnoy E, Matthews J, Maycock T, Water-
field T, Yeleki O, Yu R, Zhou B (eds) Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Cli-
mate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, pp 1927–2058. https://doi.
org/10.1017/9781009157896.021, type: Book Section

Haumann FA, Gruber N, Mnnich M (2020) Sea-Ice Induced Southern
Ocean Subsurface Warming and Surface Cooling in a Warming
Climate. AGU Advances 1(2):e2019AV000132. https://doi.org/
10.1029/2019AV000132

Iturbide M, Gutiérrez JM, Alves LM, Bedia J, Cerezo-Mota R,
Cimadevilla E, Cofiño AS, Di Luca A, Faria SH, Gorodetskaya
IV, Hauser M, Herrera S, Hennessy K, Hewitt HT, Jones RG,
Krakovska S, Manzanas R, Martínez-Castro D, Narisma GT,
Nurhati IS, Pinto I, Seneviratne SI, van den Hurk B, Vera CS
(2020) An update of IPCC climate reference regions for subcon-
tinental analysis of climate model data: definition and aggregated
datasets. Earth Syst Sci Data 12(4):2959–2970. https://doi.org/10.
5194/essd-12-2959-2020

Iturbide M, Fernández J, Gutiérrez JM, Bedia J, Cimadevilla E, Díez-
Sierra J, Manzanas R, Casanueva A, Baño Medina J, Milovac J,
Herrera S, Cofiño AS, San Martín D, García-Díez M, Hauser M,
Huard D, Yelekci (2021) Repository supporting the implementa-
tion of FAIR principles in the IPCCWGI Atlas. https://doi.org/10.
5281/zenodo.5171760, 00000

Jones PW (1999) First- and Second-Order Conservative Remap-
ping Schemes for Grids in Spherical Coordinates. Mon
Weather Rev 127(9):2204–2210. https://doi.org/10.1175/1520-
0493(1999)127<2204:FASOCR>2.0.CO;2

Kashiwase H, Ohshima KI, Nihashi S, Eicken H (2017) Evidence
for ice-ocean albedo feedback in the Arctic Ocean shifting to
a seasonal ice zone. Sci Rep 7(1):8170. https://doi.org/10.1038/
s41598-017-08467-z

Keil P, Mauritsen T, Jungclaus J, Hedemann C, Olonscheck D, Ghosh
R (2020) Multiple drivers of the North Atlantic warming hole.
NatClimChange 10(7):667–671. https://doi.org/10.1038/s41558-
020-0819-8

Kessler A, Goris N, Lauvset SK (2022) Observation-based Sea sur-
face temperature trends in Atlantic large marine ecosystems.
Prog Oceanogr 208:102902. https://doi.org/10.1016/j.pocean.
2022.102902

Koenigk T, Fuentes-Franco R, Meccia VL, Gutjahr O, Jackson LC,
New AL, Ortega P, Roberts CD, Roberts MJ, Arsouze T, Iovino
D, Moine MP, Sein DV (2021) Deep mixed ocean volume in

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41561-020-0616-z
https://doi.org/10.1038/s41561-020-0616-z
https://doi.org/10.1016/j.ocemod.2018.01.004
https://doi.org/10.1029/2011JF002064
https://doi.org/10.1029/2011JF002064
https://doi.org/10.1002/2017JC013534
https://doi.org/10.1038/ngeo2731
https://doi.org/10.1038/ngeo2731
https://doi.org/10.1038/s41467-020-20781-1
https://doi.org/10.1038/s41467-020-20781-1
https://doi.org/10.1038/s41598-020-64785-9
https://doi.org/10.1038/s41561-021-00699-z
https://doi.org/10.1038/s41561-021-00699-z
https://doi.org/10.1038/s41558-022-01282-z
https://doi.org/10.1038/s41558-022-01282-z
https://doi.org/10.1002/2015GL064514
https://doi.org/10.1175/JPO-D-17-0031.1
https://doi.org/10.1175/JPO-D-17-0031.1
https://doi.org/10.5194/gmd-13-4595-2020
https://doi.org/10.1007/s00382-023-06790-y
https://doi.org/10.5670/oceanog.2015.03
https://doi.org/10.1038/s41586-018-0383-9
https://doi.org/10.1038/s41586-018-0383-9
https://doi.org/10.1029/2006GL025734
https://doi.org/10.1017/9781009157896.021
https://doi.org/10.1017/9781009157896.021
https://doi.org/10.1029/2019AV000132
https://doi.org/10.1029/2019AV000132
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5281/zenodo.5171760
https://doi.org/10.5281/zenodo.5171760
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
https://doi.org/10.1038/s41598-017-08467-z
https://doi.org/10.1038/s41598-017-08467-z
https://doi.org/10.1038/s41558-020-0819-8
https://doi.org/10.1038/s41558-020-0819-8
https://doi.org/10.1016/j.pocean.2022.102902
https://doi.org/10.1016/j.pocean.2022.102902


Regional scaling of sea surface temperature...

the Labrador Sea in HighResMIP models. Clim Dyn 57(7):1895–
1918. https://doi.org/10.1007/s00382-021-05785-x

LevineXJ, Cvijanovic I, Ortega P, DonatMG, Tourigny E (2021)Atmo-
spheric feedback explains disparate climate response to regional
Arctic sea-ice loss. npj Clim Atmos Sci 4(1):1–8. https://doi.org/
10.1038/s41612-021-00183-w

Long M, Zhang L, Hu S, Qian S (2021) Multi-Aspect Assessment of
CMIP6Models for Arctic Sea Ice Simulation. J Clim 34(4):1515–
1529. https://doi.org/10.1175/JCLI-D-20-0522.1

Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A,
Rouco JFG, Jansen E, LambeckK, Luterbacher J, Naish T, Osborn
T, Otto- Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Tim-
mermann A (2013) Information from Paleoclimate Archives. In:
Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J,
Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013:
The Physical Science Basis. Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, United
Kingdom and New York, USA, pp 383–464. https://doi.org/10.
1017/CBO9781107415324.013, section: 5

Masson-Delmotte V, Zhai P, Prtner HO, Roberts D, Skea J, Shukla
PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors
S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, May-
cock T, Tignor M, Waterfield T, Pirani A, Moufouma-Okia W,
Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X,
Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds)
(2018) Global Warming of 1.5C: An IPCC Special Report on the
impacts of global warming of 1.5C above pre-industrial levels and
related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty. Cam-
bridge University Press

Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S,
CaudN,ChenY,GoldfarbL,GomisMI,HuangM,LeitzellK,Lon-
noy E, Matthews JBR,Maycock TK,Waterfield T, Yeleki , Yu R,
Zhou B (eds) (2021) Climate Change 2021: The Physical Science
Basis. Contribution of Working Group I to the Sixth Assessment
Report of the Intergovernmental Panel on Climate Change. Cam-
bridge University Press

Medhaug I, Stolpe MB, Fischer EM, Knutti R (2017) Recon-
ciling controversies about the global warming hiatus. Nature
545(7652):41–47. https://doi.org/10.1038/nature22315, https://
www.nature.com/articles/nature22315

Middlemas E, Clement A, Medeiros B (2019) Contributions of atmo-
spheric and oceanic feedbacks to subtropical northeastern sea
surface temperature variability. Clim Dyn 53(11):6877–6890.
https://doi.org/10.1007/s00382-019-04964-1

Palmer M, Slangen A, Domingues C, Savita A, Dias F, Koll R (2021)
Chapter 9: Ocean, cryosphere and sea level change - IPCC AR6
Fox-Kemper B, Hewitt HT, Xiao C, Aalgeirsdóttir G, Drijfhout
SS, Edwards TL, Golledge NR, Hemer M, Kopp RE, Krinner G,
MixA, Notz D, Nowicki S, Nurhati IS, Ruiz L, Sallée J-B, Slangen
ABA, Yu Y 2021:. Cambridge University Press

Rackow T, Danilov S, Goessling HF, Hellmer HH, Sein DV, Semm-
ler T, Sidorenko D, Jung T (2022) Delayed Antarctic sea-ice
decline in high resolution climate change simulations. Nat Com-
mun 13(1):637. https://doi.org/10.1038/s41467-022-28259-y

Rantanen M, Karpechko AY, Lipponen A, Nordling K, Hyvrinen
O, Ruosteenoja K, Vihma T, Laaksonen A (2022) The Arctic
has warmed nearly four times faster than the globe since 1979.
Commun Earth Environment 3(1):1–10. https://doi.org/10.1038/
s43247-022-00498-3

Roberts MJ, Jackson LC, Roberts CD, Meccia V, Docquier D, Koenigk
T, Ortega P, Moreno-Chamarro E, Bellucci A, Coward A, Dri-
jfhout S, Exarchou E, Gutjahr O, Hewitt H, Iovino D, Lohmann
K, Putrasahan D, Schiemann R, Seddon J, Terray L, Xu X,
Zhang Q, Chang P, Yeager SG, Castruccio FS, Zhang S, Wu L
(2020) Sensitivity of the Atlantic Meridional Overturning Circu-
lation to Model Resolution in CMIP6 HighResMIP Simulations
and Implications for Future Changes. J Adv Model Earth Syst
12(8):e2019MS002014. https://doi.org/10.1029/2019MS002014

Ruela R, Sousa MC, deCastro M, Dias JM (2020) Global and regional
evolution of sea surface temperature under climate change. Glob
Planet Change 190:103190. https://doi.org/10.1016/j.gloplacha.
2020.103190

Seneviratne SI, Hauser M (2020) Regional Climate Sensitivity of Cli-
mate Extremes in CMIP6 Versus CMIP5 Multimodel Ensembles.
Earth’s Future 8(9):e2019EF001474. https://doi.org/10.1016/10.
1029/2019EF001474

Varela R, Lima FP, Seabra R,MeneghessoC,Gómez-GesteiraM (2018)
Coastal warming and wind-driven upwelling: A global analy-
sis. Sci Total Environ 639:1501–1511. https://doi.org/10.1016/j.
scitotenv.2018.05.273

Varela R, DeCastro M, Rodriguez-Diaz L, Dias JM, Gómez-Gesteira
M (2022) Examining the Ability of CMIP6 Models to Reproduce
the Upwelling SST Imprint in the Eastern Boundary Upwelling
Systems. J Mar Sci Eng 10(12):1970. https://doi.org/10.3390/
jmse10121970

Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Courna-
peau D, Burovski E, Peterson P, Weckesser W, Bright J, van der
Walt SJ, Brett M,Wilson J, Millman KJ, Mayorov N, Nelson ARJ,
Jones E, Kern R, Larson E, Carey CJ, Polat I, Feng Y, Moore EW,
VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I,
Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa
F, van Mulbregt P (2020) SciPy 10 Contributors, SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python. Nat
Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-
2

Xu X, Liu J, Huang G (2022) Understanding Sea Surface Temperature
Cooling in the Central-East Pacific Sector of the Southern Ocean
During 1982–2020. Geophys Res Lett 49(10):e2021GL097579.
https://doi.org/10.1029/2021GL097579

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s00382-021-05785-x
https://doi.org/10.1038/s41612-021-00183-w
https://doi.org/10.1038/s41612-021-00183-w
https://doi.org/10.1175/JCLI-D-20-0522.1
https://doi.org/10.1017/CBO9781107415324.013
https://doi.org/10.1017/CBO9781107415324.013
https://doi.org/10.1038/nature22315
https://www.nature.com/articles/nature22315
https://www.nature.com/articles/nature22315
https://doi.org/10.1007/s00382-019-04964-1
https://doi.org/10.1038/s41467-022-28259-y
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1038/s43247-022-00498-3
https://doi.org/10.1029/2019MS002014
https://doi.org/10.1016/j.gloplacha.2020.103190
https://doi.org/10.1016/j.gloplacha.2020.103190
https://doi.org/10.1016/10.1029/2019EF001474
https://doi.org/10.1016/10.1029/2019EF001474
https://doi.org/10.1016/j.scitotenv.2018.05.273
https://doi.org/10.1016/j.scitotenv.2018.05.273
https://doi.org/10.3390/jmse10121970
https://doi.org/10.3390/jmse10121970
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1029/2021GL097579

	Regional scaling of sea surface temperature with global warming levels in the CMIP6 ensemble
	Abstract
	1 Introduction
	2 Data and methodology
	2.1 CMIP6 GCM data and regionalization maps
	2.2 Scaling and GWL plots
	2.3 Spatial plots

	3 Results
	3.1 GWL plots
	3.2 Regional responses to global warming
	3.3 Sensitivity to the GCM horizontal resolution

	4 Discussion
	5 Conclusions
	Appendix: Additional figures and tables
	Acknowledgements
	References


