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(Dawson and O’Hare 2000). During El Niño events, the 
central and eastern tropical Pacific waters become anom-
alously warm, leading to a weakening of the trade winds 
(Cai et al. 2021). Moreover, the upwelling off the west coast 
of South America diminishes, reducing the cold tongue of 
oxygen-rich water in the far eastern tropical Pacific. Con-
versely, La Niña events are defined by cooler-than-average 
sea surface temperatures (SSTs) in the central and eastern 
tropical Pacific, strengthening of trade winds, and an exten-
sive cold tongue off the west coast of South America. These 
shifts impact not only SSTs but also generate significant 
atmospheric, biologic and economic anomalies (Cai et al. 
2020; Hu et al. 2021; Reddy et al. 2022). Owing to the wide-
spread global impacts (Timmermann et al. 2018), enhanced 
characterization and forecast of ENSO at multiple lead 
times is crucial.

ENSO events are characterized by different locational 
manifestations, often referred to as classical and non-classi-
cal ENSO. Classical, canonical or Eastern Pacific ENSO is 
the most well-known form of El Niño. The Niño 3.4 index is 

1  Introduction

El Niño Southern Oscillation (ENSO) is a dominant recur-
rent climate pattern influencing global weather patterns 
(Trenberth and Hoar 1996). Centered in the tropical Pacific 
Ocean, its influence extends across the globe, affecting 
weather patterns, ocean conditions, atmospheric circulation, 
and even the global economy (Hsiang et al. 2011; Odériz et 
al. 2020; Hrudya et al. 2021; Dufrénot et al. 2023). ENSO 
encompasses two primary states or phases: El Niño and 
La Niña. Both arise from ocean-atmosphere interactions 
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Abstract
El Niño Southern Oscillation (ENSO) is the prominent recurrent climatic pattern in the tropical Pacific Ocean with global 
impacts on regional climates. This study utilizes deep learning to predict the Niño 3.4 index by encoding non-linear sea 
surface temperature patterns in the tropical Pacific using an autoencoder neural network. The resulting encoded patterns 
identify crucial centers of action in the Pacific that serve as predictors of the ENSO mode. These patterns are utilized as 
predictors for forecasting the Niño 3.4 index with a lead time of at least 6 months using the Long Short-Term Memory 
(LSTM) deep learning model. The analysis uncovers multiple non-linear dipole patterns in the tropical Pacific, with 
anomalies that are both regionalized and latitudinally oriented that should support a single inter-tropical convergence zone 
for modeling efforts. Leveraging these encoded patterns as predictors, the LSTM - trained on monthly data from 1950 to 
2007 and tested from 2008 to 2022 - shows fidelity in predicting the Niño 3.4 index. The encoded patterns captured the 
annual cycle of ENSO with a 0.94 correlation between the actual and predicted Niño 3.4 index for lag 12 and 0.91 for 
lags 6 and 18. Additionally, the 6-month lag predictions excel in detecting extreme ENSO events, achieving an 85% hit 
rate, outperforming the 70% hit rate at lag 12 and 55% hit rate at lag 18. The prediction accuracy peaks from November 
to March, with correlations ranging from 0.94 to 0.96. The average correlations in the boreal spring were as large as 0.84, 
indicating the method has the capability to decrease the spring predictability barrier.
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Non-linear · Spring predictability barrier
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the most often applied indicator that describes the classical 
ENSO pattern (Lee and McPhaden 2010). It measures sea 
surface temperature anomalies in the east-central tropical 
Pacific and serves as a primary arbiter of ENSO’s strength 
and phase. Over the years, research has uncovered the exis-
tence of multiple non-classical ENSO patterns, suggest-
ing its variability and non-linear nature (Geng et al. 2020; 
Dasgupta et al. 2021). These ENSO patterns diverge from 
the classical ENSO based on their specific geographical 
location, spatial patterns, duration, and global impact, rein-
forcing the complexity of the ENSO climate phenomenon 
(Ashok et al. 2007; Kao and Yu 2009; Yeh et al. 2009; Tim-
mermann et al. 2018).

Historically, two main types of models have been used 
to predict ENSO: dynamic and statistical (Ham et al. 2019). 
Dynamic models, grounded in the physical laws governing 
the atmosphere and oceans, simulate the interactions that 
give rise to ENSO. Such models have struggled to depict 
the observed tropical patterns, including ENSO (Hidalgo 
and Alfaro 2015; Ortega et al. 2021; Zhao and Sun 2022; 
Zhang et al. 2022). In contrast, statistical models rely on 
observed relationships between selected variables known to 
modulate ENSO to make predictions. Like their dynamic 
counterparts, current statistical models provide imperfect 
representations of ENSO in its prediction. Consequently, 
both approaches have their merits and challenges in achiev-
ing consistent, long-term predictive success; therefore, it 
is becoming increasingly popular to couple the dynamical 
model with a statistical model to reduce dynamic model 
biases (L’Heureux et al. 2020; Zhang et al. 2022; Cho et al. 
2022).

Owing to the chaotic nature of the oceans and atmosphere, 
ENSO predictability varies with the lead time. Generally, 
ENSO is most predictable at shorter term forecasts, such as 
≤ 6-months (Jin et al. 2008). The inherent non-linearity in 
the development within each ENSO phase, combined with 
other factors, e.g., external noise, model inaccuracies and 
climate change, make its long-term prediction challenging 
(L’Heureux et al. 2020). Inaccurate ENSO predictions are 
exacerbated during the spring months, and at any lead-time 
that includes the spring (e.g., 12-months and longer fore-
casts), likely because of seasonal transition, use of linear 
models, ocean-atmosphere feedback, and numerical model 
limitations, among others (Barnston et al. 2012; Chen et 
al. 2023a, b). Additionally, capturing the onset and termina-
tion of ENSO events remains problematic (Duan and Wei 
2013; Wu et al. 2021).

In recent years there has been a burgeoning in the appli-
cation of Artificial Neural Networks (ANN) in climate sci-
ence, including for ENSO prediction (Kim et al. 2022; Liu 
et al. 2022; Zhou and Zhang 2023; Wang et al. 2023; Jonna-
lagadda and Hashemi 2023). ANNs have shown potential in 

capturing non-linear relationships intrinsic to ENSO (Ham 
et al. 2019; Zhao and Sun 2022; Zhang et al. 2022). Some 
studies employing recurrent neural networks and Convolu-
tional Neural Networks (CNN) have achieved modest suc-
cess in lead times ranging from 6 to 12 months and beyond, 
often outperforming traditional models (Mu et al. 2021, 
2022; Liu et al. 2023; Patil et al. 2023; Wang and Huang 
2023; Chen et al. 2023a, b). Compared to traditional ANN 
and CNN, the combination of Autoencoders (AE) (Saha et 
al., 2020; Ibebuchi and Richman 2024) and Long Short-
Term Memory Networks (LSTM) represent a viable novel 
alternative for ENSO prediction. AEs can compress vast 
amounts of climatic data into meaningful patterns, poten-
tially unveiling novel ENSO predictors. LSTMs, with their 
ability to “remember” long-term dependencies (Mu et al. 
2020), are ideal for predicting a phenomenon with the tem-
poral complexity of ENSO. Therefore, this study comple-
ments the existing ANN and CNN ENSO forecast literature, 
by presenting a novel approach combining AE and LSTM 
deep learning to forecast ENSO in 6-, 12- and 18-month 
lead times.

2  Data and methods

SST data in the tropical Pacific Ocean were obtained from 
the extended reconstructed sea surface temperature, version 
5 (Huang et al. 2017), at monthly temporal resolution from 
1950 to 2022. The horizontal resolution of the SST data is 
2° longitude and latitude. This provided 13,860 grid points 
and 876 data (time) series. The monthly SST data were pre-
processed, i.e., deseasonalized by subtracting the long-term 
mean from the corresponding monthly SST values. The 
monthly Niño 3.4 index data were obtained from https://psl.
noaa.gov/data/climateindices/list/.

The steps outlined below were followed in developing 
the deep learning model for predicting the Niño 3.4 index. 
First, the SST patterns in the tropical Pacific Ocean were 
encoded using AE (Hinton and Salakhutdinov 2006) applied 
to the deseasonalized 876 × 13,860 SST data matrix. AE 
performs a task similar to the unsupervised learning tech-
nique, principal component analysis (PCA), which includes 
reducing the dimensionality of the SST anomaly data, 
denoising the data and extracting the most crucial inherent 
patterns in the data. However, unlike linear PCA, AE is a 
neural network architecture that can extract non-linear pat-
terns from the data. AE compresses the SST anomaly data 
into a compact latent space representation using an encoder 
and then reconstructs the original SST data from this repre-
sentation using a decoder (Hinton and Salakhutdinov 2006). 
Figure  1 shows the schematic diagram of the AE model 
architecture for deriving the predictors of SST anomalies 
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in the tropical Pacific, which are utilized subsequently for 
ENSO prediction.

The SST anomaly data were further preprocessed by 
normalizing between [0,1], ensuring uniformity of the 
data values, which is important in training neural networks 
(improves accuracy, lessens overfitting and improves inter-
pretability) and helps in faster convergence during training 
(Pal and Sudeep 2016; Phan et al. 2021). The input and out-
put neurons correspond to the dimension of the input data, 
equating to 13,860 grids for the data used in this study. The 
hidden neurons are selected by iterating over several con-
figurations to find the best trade-off between data represen-
tation and model complexity. Thus, different neurons were 
experimented with, alongside the optimal epoch number, 
resulting in a solution that minimizes the reconstruction 
error between the original data and the reconstructed data 
output by the autoencoder. By using batches of 5 epochs 
(Forouzesh and Thiran 2021), training is halted if there is not 
a significant decrease in validation loss after a given batch, 
thereby preventing potential overfitting and unnecessary 
computation. Figure A1 depicts both training and validation 
loss curves across epochs for each neuron configuration. For 
configurations with 128 and 256 neurons, both the training 
and validation loss patterns show a consistent downward 
trend, eventually asymptoting to a minimum loss. Such pat-
terns indicate that the models are learning effectively with-
out showing obvious signs of overfitting, as an overfitting 
signature would show a simultaneous decreasing training 
loss coupled with an increasing validation loss. Although, 
both the 128- and 256-neuron configurations yielded 

comparable performance with the least losses (Figure A1), 
the more parsimonious model of the 128-neuron configura-
tion was selected for its computational efficiency.

The encoder utilized the rectified linear unit activation 
function (Glorot et al. 2011) that introduces non-linearity 
in the model. The decoder used sigmoid to produce outputs 
between [0,1]. The Adam optimizer (Kingma and Ba 2014) 
was used in training the AE because of its adaptive learning 
rates and efficiency. The compiled architectures were used 
to train the AE, and the encoder part was applied to reduce 
the dimension of the SST anomaly data, preserving crucial 
SST anomaly patterns that were used as predictors of the 
Niño 3.4 index. Identifying and encoding regions or patterns 
that act as predictors of the ENSO mode is crucial as not all 
patterns or regions in the SST data might have predictive 
power. By focusing on these key patterns, the model may 
provide more specific insights into the dynamics and evolu-
tion of ENSO. The associated time series of the encoded 
spatial patterns, necessary for predicting the time series of 
the Niño 3.4 index, were derived by projecting the encoded 
spatial patterns onto the monthly global SST anomaly data 
in the tropical Pacific. Moreover, the final predictors were 
selected only if they had a Pearson correlation of at ≥ 0.8 
with the Niño 3.4 index. We used 0.8 since it was suitable 
as a trade-off between a tractable number of patterns and 
forecast accuracy.

Second, the predictive deep learning model was defined 
using a dataset of both the input predictors (i.e., time series 
of encoded SST patterns) and the predictand output (Niño 
3.4 index). Both the predictors and predictand, which have 

Fig. 1  Schematic diagram of the AE model architecture applied to obtain predictors (spatiotemporal patterns) in the tropical Pacific for ENSO 
prediction
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subset, 30% of it was used for validation during the hyper-
parameter tuning.

Following Ham et al. 2019, who applied deep learning 
to predict the Niño 3.4 index up to 18 months lag, predic-
tors were lagged by 6, 12 and 18 months, which means, for 
instance, that the model would predict the Niño 3.4 index 
for a specific month using encoded patterns from at least 
6 months prior. LSTM neurons are recurrent neural net-
work structures adept at remembering patterns over long 
sequences, making them suitable for time series forecasting 
tasks. The input layer is defined by the shape of the input 
data; in this case, we used one input layer and, within that 
input layer, we have n input features, where n is the num-
ber of predictors. One dense layer with a single neuron was 
used as the output layer. The initial layer of the model con-
sists of an LSTM layer with 100 neurons. The choice of 100 
neurons was determined through experimental evaluations 
to maximize the predictive accuracy of the validation data. 
The LSTM model utilized in this study employs Keras’s 
default implementation (Mohan et al. 2018), which incor-
porates the constant error carousel mechanism as described 

different scales, were normalized using Min-Max normaliza-
tion (Patro and Sahu 2015). This normalization was applied 
to the training data to derive the scaling factors. The same 
factors were then used to scale both the training, valida-
tion and testing data. This practice ensures consistency and 
avoids information from the test set leaking into the model 
training process, leading to seemingly inflated performance 
of the predictions. The same scaling factors derived from 
the training data were also used to transform the predicted 
values back to the original Niño 3.4 index scale, ensuring 
interpretability. Figure 2 shows the flow chart in applying 
the LSTM model.

For model training and testing, the dataset was portioned 
into an 80% training subset, from January 1950 to June 
2007. Because of the inclusion of an 18-month lag, the test 
data subset starts from November 2008 and continues until 
December 2022, thereby omitting the period between July 
2007 and October 2008. This adjustment ensures that we 
can validate forecasts for all considered lags within a con-
sistent and continuous timeframe. From the 80% training 

Fig. 2  Flow chart in applying the LSTM for ENSO predictions
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predicted value doesn’t. False positive (false alarm) is when 
the predicted value for a date exceeds the threshold but the 
actual value doesn’t. A false positive might imply a water 
manager preparing for an ENSO event that doesn’t occur 
(which could have economic implications), whereas a false 
negative could simply be that manager caught off guard by 
an unpredicted event and could also lead to unpreparedness 
for potential adverse impacts, which might be devastating 
in some cases. Further, false positives and negatives lead to 
mistrust of the models.

Further evaluation metrics are (1) Hit Rate (Sensitivity 
or Recall), defined as the ratio of hits to the total of hits and 
misses; (2) False Alarm Ratio, defined as the ratio of false 
alarms to the sum of hits and false alarms; (3) Critical Suc-
cess Index (CSI) Threat Score), defined as the ratio of hits 
to the sum of hits, misses, and false alarms (Schaefer 1990); 
(4) mean absolute error of duration: defined as the average 
of the absolute difference in months or days between the 
actual and predicted event durations.

3  Results and discussion

The correlation criterion of at least 0.8 between the time 
series of the AE patterns and the Niño 3.4 index revealed that 
10 patterns would be investigated. Figure A2 also shows the 
correlation between the 10 encoded patterns and the Niño 
3.4 index at lags 0, 6, and 12. All correlations were at least 
0.8 at lag 0. Nodes 3 and 4 have the highest correlations with 
the Niño 3.4 index. Figure 3 shows the spatial pattern of the 
encoded patterns representing distinct non-linear variabil-
ity patterns in the tropical Pacific Ocean. By comparing the 
largest positive and negative excursions of the time series 
in the panels of Figure A3, the temporal variability of the 
encoded time series is consistent with those from the Niño 
3.4 index, indicating that the encoded patterns using the AE 
possess sufficient spatiotemporal characteristics of ENSO. 
Table A1 shows that a substantial portion of the variance 
in each node’s time series is explained by their linear asso-
ciation with the Niño 3.4 index with the variance overlap 
ranging from approximately 63.75–85.68%. Thus, there is 
still a portion of the variance difference (ranging from about 
14.32–36.25%) that cannot be accounted for using a linear 
association. This remaining unexplained variance implies 
nonlinear methods might offer additional insights.​ Hence, 
we utilize the encoded patterns as predictors for ENSO pre-
diction using the deep LSTM predictive model.

Node 4, which has the highest correlation (R = 0.93) to 
the Niño 3.4 index, shows a typical Niño 3.4 pattern associ-
ated with the SST anomalies in the central to eastern tropical 
Pacific. Other nodes reveal the distinct zonal dipole patterns 
in the tropical Pacific. This contrasts with the traditional use 

by Hochreiter and Schmidhuber (1997). This mechanism 
preserves the internal cell state across time steps by a recur-
rent connection with a fixed weight of 1.0, ensuring that the 
signal’s strength doesn’t vanish or approach infinity over 
long sequences. The model’s forget gate is also leveraged 
to reset the cell state when necessary, providing the network 
with the ability to learn and decide when to clear previous 
information. A vanilla LSTM architecture (Van Houdt et al. 
2020) was applied. The Keras LSTM mechanism employs 
the tanh activation for the cell state and the sigmoid activa-
tion for its gates. This LSTM layer is configured to return 
sequences, allowing for subsequent LSTM layers to receive 
input sequences, thereby enhancing the depth and complex-
ity the model can capture. Consequently, a second LSTM 
layer was added, also with 100 units. The model terminates 
with a dense layer containing a single neuron, responsible 
for outputting the forecast Niño 3.4 index value. For com-
piling the model, the Adam optimizer was selected (Choi et 
al. 2019), and the mean squared error was employed as the 
loss function.

Third, several metrics were utilized to evaluate the 
monthly predicted Niño 3.4 index against the actual 
monthly Niño 3.4 index during the test period. These met-
rics include the Pearson correlation, which is efficient in 
comparing the distance between two standardized vectors, 
the mean absolute error and the root mean square error. 
However, since the primary concern of stakeholders (e.g., 
policymakers, climatologists) is to predict extreme events 
(i.e., strong or very strong ENSO events), owing to their 
significant climatic impacts, another metric has been added, 
introducing a threshold to examine if the predicted values 
are consistent with actual values exceeding that thresh-
old. Three non-overlapping thresholds were applied after 
z-score standardization is employed to convert the Niño 
3.4 index values into anomalies that represent deviations 
from the climatological normal of 1991–2020, facilitating 
the identification of unusual or extreme events: (1) when 
the actual index is |z| ≥ 1.5 standard deviations above the 
mean for the test period to define very strong positive and 
negative ENSO events; (2) when the actual index is |z| ≥
1.0 standard deviations above the mean for the test period to 
define strong positive and negative ENSO events; (3) when 
the actual index is |z| ≥ 0.5 standard deviations above 
the mean for the test period to define moderate positive 
and negative ENSO events. Consequently, a true positive 
(hit) is defined as when both actual and predicted values 
for a date exceed the threshold in the same direction. For 
example, for a strong El Niño event (implying index > + 1.5 
threshold) if the actual index is greater than + 1.5 at a given 
date, the predicted should be greater than + 1.5 on that same 
date to be a hit. False negative (miss) is defined as when 
the actual value for a date exceeds the threshold but the 
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Fig. 3  Encoded SST pattern in the tropical Pacific Ocean using the autoencoder neural network. The patterns were z-score standardized to obtain 
anomalies, which aids their interpretability. 
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decreased as lead time increased (e.g., Ham et al. 2019; 
Qiao et al. 2023).

From Fig.  5, the correlation between the standardized 
actual and predicted monthly Niño 3.4 index during the test-
ing period, is 0.91 at lag 6, 0.94 at lag 12 and 0.91 at lag 18. 
The larger predictive accuracy at lag 12 can be traced to the 
findings that the encoded patterns are more correlated to the 
Niño 3.4 index at lag 12 (Figs. A2 and A3), better capturing 
the annual cycles of the ENSO phenomenon as shown in 
Fig. 6, beyond the SPB. In some months outside the DJFM 
(when the predictive accuracy peaked), such as July 2016 
for lag 6, September 2016 for lag 18, and May 2020 for lag 
12, the difference between the actual and predicted monthly 
index exceeded 1.0 (Figure A4). This is mostly because of 
the SPB and the limitation of the current model in capturing 
the full variability of the reference Niño 3.4 index. Gener-
ally, for Lag 6, 72.94% of biases have an absolute magni-
tude less than 0.5. and 27.06% of biases have an absolute 
magnitude greater than or equal to 0.5. For Lag 12, 83.53% 
of biases have an absolute magnitude less than 0.5 whereas 
16.47% of biases have an absolute magnitude greater than 
or equal to 0.5. For Lag 18, 75.29% of biases have an abso-
lute magnitude less than 0.5 whereas 24.71% of biases have 
an absolute magnitude greater than or equal to 0.5 (Figure 
A4). Figure A4 also shows a negative slope in the biases 
during the test period. Hence for all lags, the Niño 3.4 Index, 
showed a trend towards increased predictability over time, 
with the effect being most pronounced for Lag 6. This could 
be due to various factors such as changes in the underlying 
data patterns.

From Fig. 6, for the East Pacific ENSO patterns (nodes 
5, 6, 8, 9, 10), during the analysis period, the nodes had 
their maximum amplitudes in May 2015, April 2016, April 
2016, March 2016, and May 2015, respectively. These East 
Pacific ENSO patterns recorded their minimum amplitudes 
during October 1955 for nodes 5, 6, 8, and 9; and January 
1974 for node 10. For the Central Pacific ENSO patterns 
(nodes 2, 4), the nodes recorded their minimum ampli-
tude in January 1974 and their maximum amplitudes in 
November 2015. Node 3 recorded its maximum amplitude 
in November 2015 and its minimum amplitude in January 
1974. For the remaining more irregular patterns (nodes 1 
and 7), the maximum amplitudes were in April 2016; node 1 
had its minimum amplitude in October 1955, whereas node 
7 had its minimum amplitude in January 1974. Node 10 was 
dominant during the period when many nodes reached their 
minimum values (e.g., in 1955 and 1974). Conversely, node 
4, which is the most related to the Niño 3.4 index (Figure 
A2 and Table A1), was dominant in the recent period (2015–
2016) when several nodes peaked.

Different studies that applied other deep learning meth-
ods have reported success in forecasting ENSO in several 

of linear PCA to depict ENSO that does not discriminate the 
encoded patterns (Ibebuchi, 2024). From Fig. 3, nodes 5, 6, 
8, 9, and 10 can be grouped as East Pacific ENSO patterns, 
whereas nodes 2 and 4 can be grouped as Central Pacific 
ENSO patterns. Nodes 1, 3, and 7 are associated with non-
canonical patterns over the tropical Pacific involving both 
the central and eastern tropical Pacific Ocean. Such non-
canonical El Niño patterns and their impact on Atlantic 
tropical activity have been reported by Larson et al. (2012).

At different lag times, these non-linear patterns act as 
predictors of ENSO variability. Interestingly, Figure A2 
shows that the encoded patterns in Fig. 3 have larger cor-
relations with the Niño 3.4 index at lag 12 compared to lag 
6, which implies these nonlinear patterns have a reasonable 
linear predictive relationship with the Niño 3.4 index; and 
that they can predict ENSO up to a year ahead. Whereas the 
slightly smaller correlation at lag 6 might be linked to the 
spring predictability barrier (SPB), the fact that the lag 12 
correlation increases over lag 6 suggests this method low-
ers the predictability barrier compared to traditional linear 
models (Lopez and Kirtman, 2014; Chen et al. 2020). Other 
studies have also documented the existence of several non-
linear types of ENSO consistent with the encoded patterns 
in Fig. 3 (An et al., 2004; Levine and McPhaden 2015).

From Fig. 3, node 3, which is associated with Niño 3.4, 
and nodes 2 and 4, which are associated with Niño 4 (i.e., 
SST anomalies in the central Pacific) are the most common 
ENSO patterns. Node 8 reproduces the cold tongue index 
with a correlation of 0.70. As the reproduction of the cold 
tongue is part of the ENSO phenomenon (Hu et al. 2019) 
and its reproduction has been problematic in climate models 
(e.g., see discussion in Ying et al. 2019), node 8, and per-
haps several other AE patterns, may be useful in validating 
ENSO in such models.

Further, the time series of the spatially encoded patterns 
in Fig. 3 are applied as predictors of the ENSO mode in at 
least a 6-month lead time. Figure  4  shows the actual and 
predicted Niño 3.4 index and Fig.  5 shows the validation 
metrics. From Fig. 4, the monthly variability of the actual 
Niño 3.4 index was captured by the predicted index, though 
in some months there are visual dissimilarities in the mag-
nitude of the actual and predicted values. Also, the accuracy 
of the predictions for the distinct strength of ENSO events 
appears to be dependent on the lag considered. For exam-
ple, Fig. 4 indicates that the 2015 El Niño event was better 
represented at lag 6 compared to lags 12 and 18. Consider-
ing the evaluation metrics in Fig. 5, the AE model shows 
promising fidelity in predicting ENSO monthly variability 
with at least a 6-month lead time, and notably most accurate 
in a 12-month lead time, with excellent results out to 18 
months. In previous studies, the accuracy of the predictions 
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reached in this study (Figs. 3 and 5) using the AE and LSTM 
deep learning model are supportive of previous convolu-
tional LSTM results for ENSO prediction.

Figure  7 shows the correlation for each month and, to 
address uncertainty in the correlations, Table A2 shows the 
bootstrapped observed mean correlation coefficients and the 
interquartile range (IQR) confidence intervals of the actual 
bootstrapped correlations. The most accurate result at lag 
12, when considering all months in the evaluation period 
(Fig. 5), is shown to be associated with predictions from the 
months of May to August when they were relatively superior 

lead times (Liu et al. 2022, 2023; Kim et al. 2022; Wang 
et al. 2023; Mu et al. 2021; Chen et al. 2023b; Chen et al. 
2023; Jonnalagadda and Hashemi 2023). Ham et al. (2019) 
applied a convolutional LSTM to achieve skillful ENSO 
forecasts for lead times of up to one and a half years. In 
their study, the correlation skill of the Niño 3.4 index in the 
CNN model was above 0.5 for up to 17-months lead. The 
deep learning forecasts were also reported to be better than 
the dynamical forecast system. Wang and Huang (2023) 
also reached the same conclusion that CNN outperforms the 
dynamical forecast system. Thus, the promising predictions 

Fig. 4  Monthly time series (2008-11-30 to 2022-12-31) of the actual and predicted Niño 3.4 index at 6-, 12-, and 18-month lead times. Above-
average (below-average) values indicate El Niño (La Niña) events, respectively
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with those of Fig. 7. From Fig. 7, the decrease of the corre-
lation coefficient from 0.91 in April (IQR confidence inter-
val: 0.90–0.94) to 0.61 in May (IQR confidence interval: 
0.54–0.71) at lag 6, is indicative of the SPB. Also, for lag 12 
and lag 18, similar decreases in the correlation values from 
April are also evident but were less pronounced compared 
to those for lag 6. Nonetheless, a correlation of 0.61 in May 
at lag 6 and 0.76 (confidence interval: 0.66–0.86) at lag 12, 
is relatively large compared to traditional expectations for 

to lags 6 and 18 predictions (Fig. 7). In other months, lag 6 
correlations were the same or larger than the correlations of 
lags 12 and 18 (Fig. 7). The same argument holds for lag 
18 from May to July. Overall, the correlations are relatively 
smallest at lag 18, yet still remarkably large given the long 
lead time. The most accurate predictions were achieved 
from December to March and the least accurate were 
achieved from May to July. Ham et al. (2019) also found 
better predictions in the early months of the year, consistent 

Fig. 6  Annual cycle of the Niño 3.4 index and the ten encoded patterns used as predictors

 

Fig. 5  Evaluation metrics of the time series predictions 
from our AE-LSTM model
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during the early part of the SPB (for example, forecasts ini-
tiated in late fall or early winter) will have their target pre-
diction period fall directly within the spring months when 
the SPB is most influential. In contrast, 18-month forecasts, 
despite also encountering the SPB, have the advantage of a 
longer temporal window to adjust to these changes, poten-
tially leading to somewhat lessened SPB impacts (Fig. 7). A 
12-month lead time forecast is less directly affected by the 
SPB since the prediction period spans a full annual cycle, 
including periods both before and after the SPB. This allows 
the model to integrate information from a complete seasonal 
cycle (Fig.  6), potentially offering a more comprehensive 
understanding of the ENSO dynamics. The ability of the 
model to integrate information from a complete seasonal 
cycle of ENSO might account for the reason why the fore-
cast accuracy, measured by the anomaly correlations, dur-
ing this spring months is relatively highest in a 12-month 
lead time and least accurate in a 6-month month-lead time 
(Figs. 6 and 7). This also has an impact on the overall accu-
racy of the all-season predictions during different lead times 
(Fig. 5).

Other evaluation metrics based on ENSO events, i.e., 
hit rate, false alarm ratio, and the CSI, in addition to the 
count of events, are shown in Figs. 8 and 9. From Fig. 8, 
forecasting very strong ENSO events is more accurate (i.e., 
large hit rate, small false alarm ratio, and large CSI) at lag 
6 compared to other lags with an 85% hit rate. The forecast 
of very strong ENSO events was the least accurate at lag 18 
with a 55% hit rate and a 70% hit rate at lag 12. Similarly, 
the false alarm ratio for very strong ENSO events was also 
the lowest at lag 6, which is the lag associated with the larg-
est CSI. However, strong events and moderate events were 
forecast with improved accuracy at extended lead times of 

ENSO forecasting during the SPB (Barnston et al. 2012; 
Larson and Kirtman 2017; Mukhin et al. 2021). The mod-
est spring barrier decrease for our approach suggests that 
the AE model improved predictions during those months. 
A similar predictability pattern, but with somewhat smaller 
correlations exceeding 0.5, during spring was also achieved 
by Ham et al. (2019). However, the result in Fig.  7 from 
April to May exceeds the correlations achieved in other 
studies and reinforces the capability of deep learning pre-
dictive models to improve ENSO predictions during spring 
(Gupta et al. 2020; Wang et al. 2022). Key processes con-
tributing to the SPB include the seasonal shift in the position 
of the Intertropical Convergence Zone and the associated 
changes in oceanic and atmospheric circulation patterns 
(Duan and Wei 2013). These transitions create a period of 
uncertainty, significantly impacting the accuracy and reli-
ability of ENSO predictions and making the SPB a focal 
point in the field of climate modeling. Our results show that 
the combination of AE and LSTM networks aids in identify-
ing essential physical processes and their interactions when 
applied to SST in the tropical Pacific, and this advancement 
could be critical for understanding and overcoming the SPB. 
The AE component is particularly effective in data compres-
sion and feature extraction, a crucial aspect in identifying 
the essential physical variables and interactions underlying 
the SPB. For example, Fig. 3 demonstrates the autoencoder 
model’s proficiency in detecting diverse physical processes 
that influence ENSO dynamics.

Furthermore, given our model training period (January 
1950 to June 2007) and the test period starting from Novem-
ber 2008, the SPB has different degrees of impact on fore-
casts with 6-month, 12-month, and 18-month lead times. 
Forecasts with a 6-month lead time initiated just before or 

Fig. 7  Monthly correlations between actual 
and predicted Niño 3.4 index at 6-, 12-, and 
18-month lead times. All the correlations are 
statistically significant at a 95% confidence 
level
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event was from April 2015 to April 2016, but the predicted 
event was from May 2015 to June 2016. Therefore, if such 
a bias is found to be consistent, a bias adjustment of the 
forecast from our model by subtracting one month might 
improve the accuracy of the forecast event durations.

In summary, the novel deep learning model presented 
here adds to the increasing body of literature suggesting that 
ANN has the capacity to improve ENSO forecast at several 
lead times (Zhou et al. 2021; Chen et al. 2023b; Chen et al. 
2023). Recently, Zhou and Zhang (2023) introduced a trans-
former-based model for ENSO prediction, signifying fur-
ther advancements in the application of neural networks for 
ENSO forecasting. The major difference between the novel 
method introduced here and the similar, but more popular, 
convolutional LSTM that has been successfully applied by 
Guputa et al. (2020) is that, whereas AE’s strength lies in 
data compression and capturing nonlinearities, CNNs excel 
at spatial pattern recognition directly from raw data. In actu-
ality, AE is explicitly designed for data compression and 
dimensionality reduction. Forecasting large-scale space-
time problems, such as the one presented herein, involves 
a high dimensionality for the input data. The AE nodes can 
capture and represent essential patterns in data in a lower-
dimensional space, making the model training more trac-
table and hence efficient. Conversely, CNNs focus primarily 
on spatial feature extraction but are not inherently designed 
for compression. Both AE and CNN can capture non-linear 
patterns, given their use of non-linear activation functions. 
However, the nature of the non-linearities they capture might 
differ, owing to their architecture. AEs, through their encod-
ing and decoding process, capture non-linear relationships 
to reconstruct the data. CNNs capture spatial non-linearities 
through their convolutional layers. CNNs may have a poten-
tial advantage when it comes to spatial pattern recognition 
owing to their convolutional nature. They can automatically 

at least 1 year. Strong events generated a 74% hit rate at lag 
12, compared to 65% at lag 6 and 71% at lag 18. Moderate 
events have a larger accuracy of 86% at lag 12, compared to 
85% at lag 18 and 78% at lag 6. Also, the CSI for strong and 
moderate events was highest at lag 12. However, lag 6 has 
the smallest false alarm ratio for strong events, which was 
larger for lags 12 and 18. This suggests that as the lead time 
increases the model accuracy in forecasting very strong 
ENSO events decreases. Considering moderate events, lag 
12 had the smallest false alarm ratio.

From Fig. 9, the capability of the AE—LSTM forecast 
model to accrue true positives more than false positives or 
false negatives can be seen. Again, for very strong ENSO 
events, the count of true positives is relatively higher at 
lag 6. Nonetheless, for strong and moderate events there 
are relatively more counts of true positives under lag 12. 
The evaluations in Figs. 8 and 9 indicate these forecasts are 
trustworthy, as the improved success achieved in forecast-
ing ENSO at greater lead times is crucial for stakeholders’ 
applications of the forecasts (e.g., Pagano et al. 2001). Other 
studies applying ANN have recorded promising percentages 
of hit rates in forecasting the Niño 3.4 index. For exam-
ple, in the 1984–2017 validation period, Ham et al. (2019) 
applied CNN and reported a hit rate of 66.7% at 12 months 
lead. Our model also reasonably captured the annual vari-
ability of ENSO decay rates (with a correlation of ~ 0.8) cal-
culated as the difference between the DJF Nino 3.4 index in 
the preceding winter and the MAM Niño3.4 index (Li et al., 
2023), possibly because the input predictors captured the 
annual cycle and monthly variability of ENSO (Figure A5).

A drawback of the current model is in forecasting event 
duration, particularly for strong ENSO events. Figures A6 to 
A8 indicate that a phase error discrepancy of at least 30 days 
can be expected in forecasting strong ENSO events with the 
current model. A typical example was that at lag 6, an actual 

Fig. 8  Evaluation metric for predicting 
very strong (columns 1–3), strong (col-
umns 4–6), and moderate (columns 7–9) 
ENSO events. An event can either be El 
Niño or La Niña. Hence the prediction is 
considered accurate only when it aligns 
with the sign and magnitude of the 
actual event. The values in the brackets 
are the thresholds for calculating the 
ENSO events
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Fig. 9  Further evaluation metrics of the Niño 3.4 predictions based on counts of events at different lags and thresholds. Total events are the sum 
of the true positives and false negatives
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lead time forecasts) in the spring months suggest that the 
impact of the SPB was lowered, compared to previous stud-
ies. This improvement represents an advance in modeling 
and predicting ENSO. Finally, given that ENSO prediction 
is important for climate modelers, the techniques introduced 
here provided results that had improved accuracy to various 
measures of the ENSO phenomenon and hence may be use-
ful for such scientists to help lessen the cold pool bias in the 
current group of GCMs and, further, helping to diagnose the 
double Inter-tropical Convergence Zone problem (Tian and 
Dong 2020).

Finally, this study shows that, in terms of temporal pat-
terns, LSTM, when combined with AE can capture sequen-
tial or temporal patterns in time series data, making it 
suitable for time series forecasting problems, like predicting 
ENSO. When there is a need to capture sequential patterns 
in time series data in a computationally efficient manner, 
this research suggests AE and LSTM may well be a pre-
ferred machine learning approach.
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