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Abstract
Historical simulations of global sea-surface temperature (SST) from the fifth phase of the Coupled Model Intercomparison 
Project (CMIP5) are analyzed. A state-of-the-art deep learning approach is applied to provide a unified access to the diversity 
of simulations in the large multi-model dataset in order to go beyond the current technological paradigm of ensemble 
averaging. Based on the concept of a variational auto-encoder (VAE), a generative model of global SST is proposed in 
combination with an inference model that aims to solve the problem of determining a joint distribution over the data 
generating factors. With a focus on the El Niño Southern Oscillation (ENSO), the performance of the VAE-based approach 
in simulating various central features of observed ENSO dynamics is demonstrated. A combination of the VAE with a 
forecasting model is proposed to make predictions about the distribution of global SST and the corresponding future path of 
the Niño index from the learned latent factors. The proposed ENSO emulator is compared with historical observations and 
proves particularly skillful at reproducing various aspects of observed ENSO asymmetry between the two phases of warm 
El Niño and cold La Niña. A relationship between ENSO asymmetry and ENSO predictability is identified in the ENSO 
emulator, which improves the prediction of the simulated Niño index in a number of CMIP5 models.

Keywords El Niño Southern Oscillation · ENSO dynamics · Climate models · CMIP5 · Deep learning · Variational auto-
encoder

1 Introduction

1.1  General background

Understanding of the features and drivers of natural climate 
variability or of the response of the climate system to anthro-
pogenic greenhouse gases forcing are needed for risk and 
impact studies across ecosystems and society. The develop-
ment of Earth Systems Models (ESMs) has underlined much 
of the research in climate sciences to understand and predict 
the evolution of climate variability since the mid 1970 s with 
Manabe et al (1975) pioneering work. ESMs have been used 

to study the dynamics of sub-seasonal, to annual and decadal 
climate variability (Robertson et al 2020) – for instance to 
assess how sea surface temperature (SST) anomalies may 
affect surface air temperature multiscale spatial and temporal 
variability, or how decadal variability responds to anthropo-
genic greenhouse forcing.

However, in spite of important progress, uncertainties 
on the evolution of climate dynamics at regional or global 
scales, and sub-seasonal to decadal timescales have remained 
large. For instance, the range of equilibrium climate sensitiv-
ity to a twofold increase in carbon dioxide concentration has 
increased from the estimates of the Coupled Climate Model 
Intercomparison Project Phase 5 (CMIP5, Taylor et al 2012) 
with a range of 2.0–4.7 K to a wider range of 1.8–5.5 K 
for CMIP6 models (Flynn and Mauritsen 2020). The large 
range of estimates derives from model uncertainty linked to 
the diversity of parameterizations between models, such as 
differences in prescribed forcings across models as shown 
in Fyfe et al (2021) and scenario uncertainty (Hawkins and 
Sutton 2009). Indeed, ESMs include physical parameteri-
zations of unresolved scales. These parameterizations are 
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often based on uncertain empirical or theoretical relations. 
The sensitivity of climate model outputs to parameteriza-
tion has led to refer to model tuning as an “art and science” 
(Hourdin et al 2017).

The current technological paradigm in ensemble climate 
prediction is to account for systematic model errors 
by averaging the outputs of independently performed 
simulations with different ESMs. This generally leads to 
a reduced error in the ensemble mean (Reichler and Kim 
2008) and more reliable predictions (Palmer et al 2004). 
Because the models differ strongly in their parameterizations 
of unresolved physical processes, Palmer et  al (2004) 
demonstrate an enhanced reliability and skill of the multi-
model ensemble over a more conventional single-model 
ensemble approach. The operational predictions used by the 
climate research community rely on multi-model ensembles. 
For instance, the Copernicus Climate Change Services 
(C3S 2023) provides sub-seasonal to seasonal forecasts up 
to six months ahead and the North American Multi-Model 
Ensemble (NMME 2023) provides forecasts for up to 12 
months.

However, in the face of the large present and persistent 
inter-model uncertainties and the need to assess potential 
impacts and risks today, several alternative approaches have 
also been suggested. Mauritzen et al (2017) argues that the 
expert-based selection of a subset of models depending on 
the question asked is a more appropriate strategy. Qasmi 
and Ribes (2022) suggest instead a statistical approach to 
constrain multi-model temperature outputs with global and 
local historical observational data to reduce uncertainties in 
local and regional projections. Tools like the ESMValTool 
address the need for fast and comprehensive diagnostics 
and performance metrics for analyzing and evaluating large 
multi-model ensembles, including grouping and selecting 
ensemble members by user-defined criteria (Eyring et al 
2020).

Recently, as well, machine learning and neural network-
based techniques have been suggested in this field to 
understand and forecast low to high-frequency climate 
processes. The emergence of physically constrained 
machine-learning-techniques has in particular shown 
promise to generalize beyond the training data used (Irrgang 
et al 2021; Kashinath et al 2021).

In this manuscript, we propose a methodological 
approach to provide a unified access to the diversity of ESM 
dynamics in order to go beyond the current technological 
paradigm of simple model averaging. The variational 
auto-encoder (VAE) is a universal, state-of-the-art neural 
network (NN)-based machine learning approach (Kingma 
and Welling 2014) that is not limited to any specific kind 
of data and allows for representation learning with many 
applications in computer vision (Higgins et  al 2017; 
Chen et al 2018; Dosovitskiy and Djolonga 2020), natural 

language processing (Bowman et al 2015) and other fields 
(Hafner et al 2021). In this manuscript, we introduce a 
VAE architecture that allows to disentangle the complexity 
inherent to large climate datasets and that helps us extract 
underlying generic properties shared by an ensemble of 
ESMs. Here, the underlying objective is to build an ESM 
emulator requiring a minimum of expert-based fine tuning 
and customization.

In this manuscript, in order to illustrate the performance 
of the proposed VAE-based approach to build an emulator, 
we focus on El Niño Southern Oscillation (ENSO). ENSO is 
a well studied alternation of warm El Niño and cold La Niña 
SST anomalies in the Eastern tropical Pacific and represents 
the strongest year-to-year fluctuation of the global climate 
system, affecting global climate, marine and terrestrial 
ecosystems, fisheries and human activities (Timmermann 
et al 2018). Tang et al (2018) identify ESM model systematic 
error as probably the most challenging issue in ENSO 
prediction. Hope et al (2016) compares characteristics of 
ENSO spectra with models from the CMIP5 and show that 
no single model completely reproduces the instrumental 
spectral characteristics. Beobide-Arsuaga et al (2021) shows 
that ENSO uncertainty is large and that the sign of future 
variation of its amplitude is still unknown in both CMIP5 
and the more recent CMIP6 outputs.

1.2  Subject of the study

We focus on studying the dynamics of monthly global 
temperature fields, represented as gridded global SST with 
a particular focus on the ENSO. The challenge of the task 
of one-to-two year prediction of the mixed deterministic 
and stochastic components of ENSO dynamics is addressed. 
Here, we present the formulation of a VAE deep-learning 
model allowing to derive a future path of an ENSO index 
(e.g. Niño 3.4 index) based on past observations and ESM 
simulations of global SSTs. The model is trained on an 
ensemble of CMIP5 historical runs of global SST and Niño 
3.4. The objective is to build an emulator that is able to 
capture the diversity of the CMIP5 ensemble dynamics in 
the ENSO region. The proposed emulator is a much simpler 
model that reproduces the behavior of the ensemble of ESMs 
by training on sufficiently long simulations of the latter. 
The emulator is compared with historical observations of 
SST data (e.g. NOAA Extended Reconstructed Sea Surface 
Temperature, ERSST, Huang et al, 2017) and is shown to 
provide a skillful emulator of observed ENSO dynamics.

The manuscript is organized as follows: In Sect. 2, we 
first give a brief overview of the data used in this study and 
then present general principles of the VAE and the variant 
that we propose here. In Sect. 3, we present further details 
on the architecture of the NNs used to build the VAE. In 
Sect. 4, we illustrate the generative capabilities of the VAE 
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and compare its statistical properties with those of observed 
ENSO dynamics. A summary of the results concludes the 
paper in Sect. 5, and the Appendix provide technical details 
about model configuration and model training.

1.3  Related work

In recent years, there has been an increasing interest in 
developing deep-leaning techniques for ENSO modeling 
and prediction.

Ham et al (2019) present a deep learning-based ENSO 
forecast framework in which separate convolutional neuronal 
networks (CNNs) are trained independently for each target 
season and forecast lead month, resulting in an ensemble of 
276 different models (23 lead months × 12 target seasons). 
In subsequent studies different variants of deep learning 
architectures are presented by combining CNNs with 
recurrent neural networks (RNNs) (Mahesh et  al 2019; 
Broni-Bedaiko et al 2019), but similarly trained separately 
for each target season or lead month. Given resulting 
inconsistencies in the seasonal characteristics of the ENSO 
predictions of this approach, Ham et al (2021) suggested 
an all-season variant of their previous model that combines 
all lead months and target seasons. To account for seasonal 
variability, they add an auxiliary task to the model in which 
the model is trained to predict the target months.

While we also adopt a similar all-season approach the 
proposed model also provides information about the season 
as an additional input that allows the VAE to condition its 
prediction on the season. We choose a conditioning method 
similar to Dosovitskiy and Djolonga (2020), which allows 
us to generate outputs of the VAE that correspond to the 
information provided as additional input.

Moreover, Ham et al (2021) suggest to average predictions 
over a deep ensemble of 40 independently trained all-season 
model. Instead, we propose to combine the VAE approach 
with a batch-ensemble technique (Wen et al 2020), which 
is a more parameter-efficient variant of the deep ensemble 
technique (Lakshminarayanan et al 2017).

In the ENSO forecast framework of Ham et al (2019), 
the CNNs use SST data on a global grid as input. In 
contrast, Yan et al (2020) focus on scalar data as input, 
which they first decompose into empirical modes and then 
feed into a one-dimensional CNN with causal convolutions 
that operates in the time domain. This hybrid approach is 
similar in structure to our approach in that we also use causal 
convolutions in the VAE. However, the proposed model uses 
principal components (PCs) of global SST as input that 
allows us to infer information on spatiotemporal aspects of 
ENSO. Hassanibesheli et al (2022) develop another hybrid 
approach using echo state networks to predict the low-
frequency variability of different ENSO indices, which is 

combined with estimates of high-frequency variability using 
past-noise forecasting (Chekroun et al 2011).

Our work differs from previous deep learning approaches 
primarily in that we aim to develop a generative model of 
ENSO dynamics. Trained on a variational auto-encoding 
objective, the proposed VAE combines an inference 
model with a generative model. In this way, we can derive 
information about the distribution of generative factors from 
the data and make predictions about the ENSO dynamics 
based on samples of the various latent factors. In this way, 
the proposed model can act as an investigative tool for 
discovery and assist in theoretical advances (Irrgang et al 
2021; Kashinath et al 2021).

2  Methodology

In this section, we first give a brief overview of the data 
used in this study. Next, we present the general principles of 
the VAE and discuss more recent variants that improve the 
learning of disentangled latent factors. Finally, we present 
our variant of VAE in which we combine the auto-encoding 
objective with a prediction task.

2.1  Data

The coupled general circulation climate model simulations 
analyzed in this study are from the fifth phase of the Coupled 
Model Intercomparison Project (CMIP5, Taylor et al 2012). 
We use monthly global SST anomalies from historical 
simulations over the 1865–2005 period. One run of each of 
the CMIP5 models is taken and interpolated onto a regular 
5◦ × 5◦ global grid between 55◦S and 60◦N.

To compute a single set of empirical orthogonal functions 
(EOFs) common to all CMIP5 models, the covariance 
matrices of the SST anomalies are averaged before the 
eigendecomposition. Then, the SST anomalies are projected 
onto the resulting EOFs to obtain an ensemble of principal 
components (PCs). In the present work, the leading S = 20 
PCs are used as input to the VAE, capturing about 80% of 
the total variance in the ensemble of SST anomalies. To give 
the same weight to the PCs, they are further normalized to 
have the same variance and scaled so that their total variance 
matches one. In addition, the corresponding time series of 
monthly SST anomalies averaged over the Niño 3.4 region 
( 170◦W − 120◦W  , 5◦S − 5◦N ) are provided along with the 
PCs as input to the VAE.

For comparison purposes, historical observations of 
monthly global SST data are taken from the fifth version of 
the NOAA Extended Reconstructed Sea Surface Temperature 
(ERSST, Huang et al 2017). We use SST anomalies over the 
same 1865–2005 period projected onto the CMIP EOFs to 
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obtain ERSST PCs. Similarly, the corresponding time series 
of monthly SST anomalies, averaged over the Niño 3.4 region, 
is obtained from ERSST and provided along with the ERSST 
PCs as input to the VAE.

2.2  Variational auto‑encoding

The VAE combines variational inference with deep learning 
and provides a probabilistic approach to describe observa-
tions in the latent space (Kingma and Welling 2014, 2019). 
The VAE encoding and decoding methodology provides a 
computationally efficient way to a) infer information about 
latent variables from observations and b) to approximate the 
difficult-to-compute probability density functions (PDFs) that 
underlie the complex nonlinear ENSO dynamics in the multi-
model CMIP ensemble.

To achieve this, the VAE is trained on samples from the 
multi-model dataset D = {Dm}

M
m=1

 that combines the M 
different historical simulations, Dm = {xm(n)}

N
n=1

 , each 
providing N training samples (cf. Fig. 1). In the following, we 
omit the indices m and n when referring to a random sample 
x = xm(n) from the entire multi-model dataset D.

Auto-encoding The encoder q, parameterized by a neuronal 
network (NN) with parameters � , approximates the PDF of the 
latent space z conditional on the sample x,

The decoder p, parameterized by a second NN with 
parameters � , approximates the PDF of the sample x 
conditional on the latent space z,

In jointly optimizing the parameters of the encoder and 
decoder, the VAE learns to find stochastic mappings between 

(1)q�(z|x).

(2)p�(x|z).

a high-dimensional input space x , whose distribution is 
typically complicated, and a low-dimensional latent space 
z , with a distribution that is comparatively much simpler.

Generative model The VAE combines an inference 
model with a generative model. The inference model, 
represented here by the encoder, approximates the true but 
difficult-to-compute (intractable) posterior, p(z|x) ≈ q�(z|x) . 
The generative model then learns a joint distribution p�(x, z) 
between input space and latent space, which allows us to 
continuously generate new unseen data in input space while 
sampling from the latent space. The generative model is 
typically factorized as

with a prior distribution p�(z) over the latent space and the 
decoder p�(x|z) in Eq. (2). The prior is taken from a family 
of densities whose parameter can be easily optimized; cf. 
Sect. 2.4.

Evidence lower bound The optimization objective of 
the VAE is the evidence lower bound (ELBO) (Kingma and 
Welling 2014, 2019), 

 The ELBO in Eq. (4a) puts a lower bound on the marginal 
likelihood (4b). The expectation on the rhs of Eqs. (4a) and 
(4b) is formally defined using samples z from the approxi-
mate posterior q�(z|x) , taken into account the samples from 
the entire dataset x ∈ D . In practice, though, the VAE is 
optimized using stochastic gradient descent, in which the 

(3)p�(x, z) = p�(z)p�(x|z),

(4a)LELBO(x) = �q�(z|x)

[
log

(
p�(x, z)

q�(z|x)

)]
,

(4b)≤ �q�(z|x)
[
log p�(x)

]
.

Fig. 1  Overview of the model 
components. The model is a 
combination of a VAE, with its 
encoder (left) and decoder (mid-
dle), and a second decoder for 
prediction (right). An example 
of the input x to the encoder 
(blue) and the resulting ensem-
ble of stochastic reconstructions 
x̂ and predictions ŷ (orange) are 
shown below the correspond-
ing model parts. With a prior 
N(0, I) over the latent space, 
the encoder approximates a 
posterior N(�, diag(�2)) , which 
is used by the two decoders to 
stochastically estimate the input 
x and prediction target y (blue)
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expectation in minibatches M ⊂ D is used (Goodfellow et al 
2016).

Maximizing Eq. (4a) allows us to jointly optimize the 
parameters � and � of the encoder and decoder, improving 
at the same time the two aspects we are interested in (see e.g. 
Kingma and Welling 2019, Sect. 2.2): 

1. The inference model improves in the approximation of 
the true posterior distribution (of the data-generating 
factors).

2. The generative model improves in its ability to generate 
more likely (more realistic looking) data.

If we use the factorization of the generative model in Eq. (3), 
the ELBO in Eq. (4a) can be rewritten as the sum of two 
terms, 

 The first term in Eq. (5b) is the log-likelihood of the training 
samples x and is a measure of the reconstruction quality 
of the decoder p�(x|z) . The second term in Eq. (5b) is the 
Kulback-Leibler (KL) divergence and acts as a regularization 
term on the encoder. Minimizing KL

�
q�(z�x)‖p�(z)

�
 keeps 

the approximate posterior q�(z|x) in the proximity of the 
prior p�(z).

Thus, the VAE is trained to find a trade-off between a 
close approximation of the samples from the training data, 
x ∈ D , by the decoder and the amount of information in 
terms of KL divergence that the encoder needs to form the 
aggregated posterior q�(z),

2.3  Disentangled representations

In order to be more flexible in balancing decoding and 
encoding objectives, Higgins et  al (2017) introduce an 
adjustable hyper-parameter � that scales the KL term in 
Eq. (5b). They show that with a carefully chosen � , this 
so-called �-VAE improves the learning of an interpretable 
representation of the independent generative factors of the 
data.

Rolinek et al (2019) show that part of this improvement 
can be attributed to the specific implementation design of a 
diagonal covariance in the encoding NN; cf. Sect.  2.4 for 
implementation details. Although an increase of � promotes 

(5a)

LELBO(x) = �q�(z|x)
[
log p�(x|z)

]
+ �q�(z|x)

[
log

(
p�(z)

q�(z|x)

)]
,

(5b)= �q�(z�x)
�
log p�(x�z)

�
− KL

�
q�(z�x)‖p�(z)

�
.

(6)q�(z) =
1

NM

∑

x∈D

q�(z|x).

(local) independence and disentanglement in the latent space, 
it comes at the cost of a potentially undesirable increase in 
stochasticity in the model-generated data, i.e. an increase in 
blurriness, for which the VAE has often been criticized.

Total correlation Instead of scaling up the entire KL diver-
gence in Eq. (5b), Chen et al (2018) suggest a further decom-
position of the KL divergence. They show that one component 
that proves particularly important in learning a disentangled 
representation is the total correlation (TC). The TC quantifies 
the statistical dependence between the different dimensions zk 
of z ∈ ℝ

K and is defined as

In minimizing the TC loss in Eq. (7), the encoder is forced 
to find statistically independent factors in the aggregated 
posterior. Chen et al (2018) provide a minibatch version of 
the sampled TC that approximates the aggregated posterior 
q�(z) and its marginal distributions q�(zk) in a minibatch M 
when optimizing the VAE with stochastic gradient descent.

Batch ensemble Despite the success of VAE and its 
variants in efficiently learning interpretable disentangled 
representation in large datasets, there is generally no guarantee 
of success for finding isolated compositional factors in 
real-world data. For example, Locatello et al (2019) show 
that the quality of disentanglement is strongly influenced 
by randomness in the form of initial values of the model 
parameters and the training run. To reduce this undesired 
influence, Duan et al (2020) propose to train an ensemble of 
multiple VAEs that are initialized and trained independently. 
They argue that disentangled representations are similar and 
entangled representations are different in its own way, and 
propose a comprehensive ranking algorithm that quantifies 
the quality of disentanglement in an ensemble of VAEs.

Instead of performing exhaustive training of an ensemble 
of independent VAEs, we rely here on the principle of a batch 
ensemble (Wen et al 2020). The members in a batch ensemble 
share most of their parameters and can be efficiently trained in 
parallel by combining them into a minibatch. The minibatch is 
augmented with different ensemble members that are given the 
same data, so their individual parameters are jointly optimized 
along with the shared parameters in each step of the stochastic 
gradient descent.

More generally, the ensemble approach attempts to mitigate 
the problem that NNs are typically under-specified by the data 
D . In the case of the encoder, for example, we can have many 
different settings of parameters � that all perform equally well, 
and the posterior that we want to compute is

(7)L
TC
(x) = KL

(
q�(z) ∥

∏

k

q�(zk)

)
.

(8)q(z|x,D) = ∫ q�(z|x)p(�|D)d�.
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Rather than placing everything on a single set of param-
eters, we want to marginalize the parameters � (Wilson and 
Izmailov 2020). In this context, Wen et al (2020) show that 
batch ensembles can indeed compete in performance with 
other ensembling techniques, for example, even compared 
to typical deep ensembles (Lakshminarayanan et al 2017) on 
out-of-distribution tasks.

We note that the TC affects the diversity of ensemble 
members as training progresses. Since different members are 
jointly optimized on the same data, minimizing TC leads to 
an increase in the diversity of the parameters p(�|D).

Cross entropy To increase the diversity in the data 
generating process as well, i.e., to avoid overfitting the 
training data, we add a loss term inspired by the contrastive 
learning approach of Radford et al (2021).

Let x̂ be a sample from the decoder p�(x|z) . We first 
compute the cosine similarity between all pairs x̂i and x̂j 
in a minibatch. In this symmetric matrix, we then seek 
to reduce the similarity for negative pairs ( i ≠ j ). In 
doing so, we follow Radford et al (2021) and continue to 
normalize the rows of the cosine similarity matrix using 
the softmax function. This normalization provides the 
probability distributions, which we finally use to calculate 
the categorical cross entropy LCE(x̂) with the diagonal i = j 
as target labels.

Since different members of the batch ensemble are jointly 
optimized with the same data x , minimizing the cross 
entropy LCE(x̂) on samples x̂ increases diversity in the data 
generation process and prevents the ensemble of decoders 
from placing everything on a single set of parameters. 
Similar to the encoder case in Eq. (8), we can have many 
different settings of the parameters � with similar data 
likelihood, and the data distribution we want to model is

Instead of a local maximum-likelihood approximation, the 
data distribution we want to approximate could be more 
complex in nature, so that functional diversity in Eq.  (9) is 
important for a good approximation (Wilson and Izmailov 
2020). Based on our experience with the CMIP data, we 
find that with the minimization of LCE(x̂) , the reproduction 
of ENSO asymmetry in the generative part of the VAE 
improves (not shown).

2.4  Gaussian approximation

For various practical considerations, the approximate 
posterior of the encoder is often parameterized in the form 
of a factorized Gaussian distributions,

(9)p(x|z,D) = ∫ p�(x|z)p(�|D)d�.

(10)q�(z|x) = N
(
z;�, diag(�2)

)
,

with mean � and a diagonal covariance matrix, diag(�2).
The encoder NN, which is typically implemented as a 

deterministic feed-forward NN (cf. Fig. 1), returns a tuple 
of parameters representing the mean, � , and diagonal of 
the covariance matrix, diag(�2) , of the factorized Gaussian 
in Eq. (10), i.e.,

The encoder therefore learns the parameters of the 
distribution of z conditioned on input x.

In the combination of a simple factorized Gaussian 
posterior with a Gaussian prior, p�(z) = N(0, I), the KL 
divergence in Eq. (5b) can then be computed component-
wise in closed form as, cf. Kingma and Welling (2014),

where �k and �2
k
 denote the k-th components of � and �2 , 

respectively.
The decoder NN, which is likewise implemented as a 

deterministic feed-forward NN (cf. Fig. 1), samples from 
the approximate posterior, 

 and provides stochastic estimates x̂ of the input x . The 
reconstruction error in Eq. (5b) is approximated by the mean 
square error,

which maximizes the likelihood on Gaussian-distributed 
data. For the sake of simplicity, the dispersion of the 
Gaussian distribution is omitted in Eq.  (14), i.e. we 
only consider the mean of p�(x|z) when optimizing the 
parameters � of the decoder NN.

Since we would like to optimize the ELBO objective 
with stochastic gradient descent, Kingma and Welling 
(2014) introduce a so-called reparameterization trick. To 
that end, the sampling from the posterior in Eq. (13a) is 
externalized by an auxiliary random process � ∼ N(0, I) as

with ⊙ the element-wise product.
In this way, the encoder NN in Eq.  (11) receives as 

input x and returns the parameters � and �2 of the 
approximate posterior in Eq.  (10). Sampling from the 
approximate posterior in Eq. (13a) is then performed by 
sampling from the auxiliary random process � in Eq. (15). 
The random sample z is then used as input to the decoder 

(11)(�,�2) = Encoder�(x).

(12)KL
�
q�(z�x)‖p�(z)

�
=

1

2

K�

k=1

�2
k
+ �2

k
− log �2

k
− 1,

(13a)z ∼ N
(
�, diag(�2)

)
,

(13b)x̂ = Decoder𝜃(z),

(14)�q𝜃 (z�x)
�
log p𝜃(x�z)

�
≃ −�q𝜃 (z�x)‖x − x̂‖2.

(15)z = � + � ⊙ �,
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NN in Eq. (13b) to provide a stochastic estimate x̂ of the 
input x , cf. Fig. 1.

2.5  VAE and forecasting

In addition to the auto-encoding task, a second decoder 
NN with parameters � is trained jointly to approximate the 
conditional PDF between z and a prediction target y:

Similarly to the first decoder NN, the random sample z from 
the approximate posterior in Eq. (15) is used as input to the 
second decoder NN, cf. Fig. 1,

and provides a stochastic estimate ŷ of the prediction target 
y . The prediction error is also approximated by the mean 
square error,

and jointly minimized with the auto-encoding objective. 
Similar to the first decoder, we also try to increase the 
diversity in the batch ensemble of forecasts and minimize 
the cross entropy loss LCE(ŷ) in a minibatch of predictions ŷ.

In summary, parameters � , � , and � are optimized by 
minimizing the total loss

The first and second terms of Eq.  (19) represent the 
reconstruction and prediction error, respectively. The 
remaining term of Eq. (19), on the other hand, represent the 
various regularization penalties for the model. A summary 
of their individual scaling parameters used in the ENSO 
modeling application is provided in Appendix . At training 
time, we apply an annealing scheme to the regularization 
strength in which we gradually increase the scale � 
(Bowman et al 2015). In this way, the model can initially 
encode a maximum amount of information, but is then 
forced to find a more compact, disentangled representation 
that approximates the diversity in the data.

Figure 1 provides an overview of the different components 
of the model as well as of their interaction. Below each of 
the model components, an example of the data is shown 
to illustrate the general flow of data within the model. In 
each step of the stochastic gradient descent, a minibatch 
M of pairs x and y is drawn from the multi-model dataset 
D . Next, independent random samples are drawn from the 
auxiliary process � for each of the pairs and used to obtain 

(16)p�(y|z)

(17)ŷ = Decoder𝜂(z),

(18)�q𝜃 (z�x)
�
log p𝜂(y�z)

�
≃ −�q𝜃 (z�x)‖y − ŷ‖2,

(19)

L𝜃,𝜙,𝜂(x, y) = �q𝜃 (z�x)‖x − x̂‖2 + 𝛼 �q𝜃(z�x)‖y − ŷ‖2

+ 𝛽
�
KL

�
q𝜙(z�x)‖p𝜃(z)

�
+ 𝛾 LTC(x)

+𝛿xLCE(x̂) + 𝛿y LCE(ŷ)
�
.

z from the approximate posterior in Eq. (15). Provided as 
input to the decoder NNs, stochastic estimates x̂ and ŷ in 
Eqs. (13b) and (17), respectively, are finally obtained. The 
encoder receives as input a sample x ∈ ℝ

L×(S+1) from the 
CMIP data in Sect. 2.1, combining values of the leading S 
PCs with Niño 3.4 SST in a sliding time window of length 
L. These are the observations of the last L month before a 
given time t, which are used as input to the encoder NN to 
approximate the posterior N(�, diag(�2)) at time t. A new 
sample is drawn from the posterior at time t, z = z(t) , and 
provided as input to the two decoder NNs. While the first 
decoder NN provides estimates x̂ of the past observations x , 
the second decoder NN is used to make future predictions ŷ 
for the following F months of the Niño 3.4 index in y.

The minibatch is augmented with different ensemble 
members that are given the same data x and y (not shown), 
but optimized with different random samples � from the 
auxiliary process. This provides an additional source of 
diversity in the data generation process insofar as the 
minimization of the total correlation loss LTC and the cross 
entropy losses LCE in Eq. (19) increase the diversity in the 
batch ensemble.

3  Model architecture of encoder 
and decoder NNs

The following section provides a more detailed description 
of the implementation of the encoding and decoding NNs. 
A detailed schematic representation of the architectures of 
the two NNs and the different elements we find in each of 
them is shown in Fig. 2.

Both the encoder and decoder are implemented as 
residual networks (He et al 2016a) that process their input 
through a stack of residual units. In this framework, the 
output of the residual unit fl is combined with the input xl to 
the unit, xl+1 = fl(xl) + xl . These skip connections improve 
signal propagation from one unit to another leading to easier 
optimization. We use a variant of full pre-activation (He et al 
2016b) in which the convolutional layers are preceded by a 
batch-normalization layer and the activation function. For 
the latter, we use the sigmoid linear unit or SiLU, a specific 
case of the swish activation function.

In the convolutional layers, we use causal convolutions 
to ensure that temporal dependencies are modeled in the 
right order; cf. e.g. van den Oord et al (2016). However, by 
reversing the temporal order in the output of the decoder, 
the temporal dependencies are modeled in an anti-causal 
order in the convolutional layers. The features that we 
extract from the convolutional layers are then used as input 
to a multilayer perceptron (MLP), from which we obtain 
the mean and variance of the posterior. Although the MLP 
is not causal, we see that past observations in x , at time 



 A. Groth, E. Chavez 

t + � with −L ≤ 𝜏 < 0 , are modeled with latent samples z(t) 
drawn at time t from the posterior, cf. Fig. 1. In this way, 
the encoder aggregates information from an interval of past 
observations to form the posterior, which the first decoder 
NN uses to model the past observations. In the second 
decoding NN used for forecasting, the output is not reversed, 
so the prediction target y , at time t + � with 0 ≤ 𝜏 < F is 
modeled in the forward direction in the convolutional layers, 
cf. Fig. 1.

To capture temporal dependencies on different time 
scales, the data is resampled in each of the B residual 
blocks as shown in Fig. 2, i.e., sub-sampled at half the 
sampling rate in the encoder and up-sampled at twice 
the sampling rate in the decoder. To efficiently resample 

the data, we use here a parameter-free variant of a pixel 
shuffling originally proposed in the context of image super-
resolution (Shi et al 2016). Some illustrative examples of 
the pixel-shuffle algorithm in the encoder and decoder 
are shown in Fig. 2. In the encoder, pairs of temporally 
adjacent elements are stacked, which reduces the sampling 
rate by half and doubles the number of channels in each of 
the B blocks, i.e. x ∶ RL×C

↦ R
L

2
×2C . In the decoder, these 

stacks are redistributed again by splitting the channels 
into half and then filling temporally adjacent pairs with 
the respective elements, i.e. x ∶ RL×C

↦ R
2L×

C

2 . Therefore, 
resampling by pixel shuffling preserves the number of 
elements in x and thus the total amount of information. 
The cost, however, is the exponential growth in the number 

Fig. 2  Architecture of the encoder NN (left) and the decoder NN 
(right). The figure shows the case of B = 2 blocks. Examples of the 
input data x to the encoder and the decoder output x̂ are shown below 
the corresponding parts. The encoder and decoder consist of multiple 
blocks combining causal convolutional layers and temporal resam-
pling by pixel shuffling (blue boxes) to aggregate and distribute tem-
poral information. Auxiliary information on the index m of the CMIP 

model from which the sample xm ∈ Dm was taken and the temporal 
information s(t) are used to modulate features in the encoder and 
decoder NNs by FiLM layers (green boxes). Only the first decoder 
NN for reconstruction is shown, cf. Fig. 1. The second decoder NN 
used for forecasting (not shown here) has the same structure as the 
first decoder NN, but differs only in the output size F × 1 and keeps 
the temporal order, i.e. has no reverse layer
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of channels, which limits it to a few resampling steps. 
Since the output of residual block B has a shape L

2B
× 2BC , 

the number of parameters in the convolutional layers 
likewise grows exponentially with the number of blocks. 
To keep the number of parameters in the convolutional 
layers manageable, we use here only a few blocks, e.g., 
B ≤ 3.

In the encoder, an initial convolutional layer with kernel 
size 1 embeds the input with S + 1 channels into an initial 
number of C channels, which is used as input to the stack 
of B residual blocks. The features that we extract from the 
stack are then used as input to an MLP, from which we 
obtain the mean and variance of the posterior. In this MLP, 
we have a first fully-connected (FC) layer with K′ units 
and the hyperbolic tangent as nonlinearity, from which we 
obtain the mean and variance through a pair of FC layers 
with K units each.

In the decoder, a sample from the latent space is used as 
input to an MLP in which we combine a pair of FC layers 
with K′ and L ⋅ C units, respectively, with a hyperbolic 
tangent in the middle. The output of the MLP is then used 
as input to the stack of B residual blocks, while a final 
convolutional layer with kernel size 1 provides the desired 
number of output channels.

Forecasting In the first decoder NN, the number 
of output channels is the same as the number of input 
channels to the encoder NN, cf. Fig.  1. However, in 
the second decoder NN used for forecasting, we only 
consider one output channel, the Niño 3.4 SST, so we 
choose a smaller number of embedding channels C′ < C 
in the convolutional layers. This reduces the number of 
parameters not only in the convolutional layers, but also in 
the MLP, where the second FC layer has F × C� units in the 
second decoder NN. On the other hand, the two decoders 
in Fig. 1 are of the same structure, and we have omitted 
the second decoder in Fig. 2. Note that the time is reversed 
only in the first decoder NN used for reconstruction.

Feature-wise linear modulation (FiLM) Based on 
auxiliary information, the computation in the stack of 
residual blocks is influenced by so-called FiLM layers. 
Introduced as a general-purpose conditioning method, 
FiLM layers influence neural network computation via 
a simple, Feature-wise Linear Modulation (FiLM, Perez 
et al 2018). In their FiLM layers, the auxiliary input is first 
transformed to match the number of features (channels) 
C of the FiLM-ed input by a pair of FC layers with C 
units each. The output of the two FC layers is then used to 
scale and shift the features in the FiLM-ed tensor. In the 
present context, this allows the encoder and decoder NNs 
to condition their computation on auxiliary information. 
Here we condition the NNs on two types of information: 
a) temporal information on the current month and b) 
ensemble information on the current ensemble member.

To encode temporal information on the current month at 
time t, we combine sine and cosine functions of different 
frequencies,

The functions are sampled at frequencies of the discrete 
Fourier transform and form a system of orthogonal 
functions. For illustration, the monthly values of the first six 
components of the temporal encoding are shown in Fig. 2. 
The set of periodic functions in the vector s(t) of size 12 is 
then used as input to a FC layer with P units to obtain the 
conditioning information for the FiLM layers. In this way, 
the encoder and decoder NNs can learn seasonal variations 
of the feature-wise scale and bias parameters in the FiLM 
layers specific to each month of the year.

To encode information about the current ensemble 
member, we draw a random number from a categorical 
distribution, where the different categories represent 
different members of the batch ensemble. As shown 
in Fig. 2, sampling from the categorical distribution is 
implemented by categorical reparameterization with 
Gumbel-Softmax (Jang et al 2017), which allows the NN 
to optimize the parameters of the categorical distribution 
with stochastic gradient descend. Instead of selecting 
the batch ensemble members at random (Wen et  al 
2020), we make the selection process itself dependent on 
auxiliary information. For the latter, we use the index m 
of the CMIP model from which the sample xm ∈ Dm was 
taken. This means that the integer index m is first one-
hot encoded into a binary vector m ∈ ℝ

M , with a single 
high (one) bit at the m-th position, and then used as input 
to a FC layer with E units to learn the parameters of the 
categorical distribution. A sample from the distribution 
with E categories is then used as input to a second FC 
layers with P units and added to the temporal encoding. 
This way, the model can learn an optimal combination of 
the two types of information.

Conditioning on index m allows the encoder and 
decoder to learn a distribution of the feature-wise scale 
and bias parameters in the FiLM layers specific to each 
of the m CMIP models. In learning distributions p(�|Dm) 
in the encoder and p(�|Dm) in the decoder, we attempt to 
marginalize parameters, although quite simplistically, in 
the approximation of the posterior in Eq. (8) and the data 
distribution in Eq. (9), respectively.

In our experiments with the CMIP data, optimizing on 
the TC and CE terms in Eq. (19) prevents the model from 
collapsing to a single category in the Gumbel Softmax and 
helps mitigate the risk of overfitting the data. On the other 
hand, setting the batch ensemble size E to a value smaller 

(20)

s(t) =

{(
sin

(
2�

k

12
t

)
, cos

(
2�

k

12
t
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, k = 1, 2,… , 6

}
.
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than M, i.e., E < M , encourages more general inter-model 
solutions common to different CMIP models.

A summary of the model configuration and related 
parameters can be found in Appendix A.

4  ENSO modeling

An important aspect of the ENSO dynamics is the 
asymmetry between the two phases of warm El Niño and 
cold La Niña. While there is significant differences in the 
observed spatial pattern, amplitude and duration of the two 
phases (e.g. Dommenget et al 2012), climate models still 
underestimate the degree of the observed ENSO asymmetry 
(Dommenget et al 2012; Zhang and Sun 2014; Zhao and 
Sun 2022).

Given the wide range in the simulation of ENSO events 
in the climate models, some of which are more realistic 
than others, we will first assess the extent to which the 
VAE can disentangle the complexity inherent in the large 
CMIP5 dataset. We hence extract the underlying generic 
properties that are shared among an ensemble of climate 
models and build an emulator of ENSO dynamics, which 
we will subsequently study then in greater detail. We will 
demonstrate the various generative capabilities of the ENSO 
emulator and evaluate its ability to reproduce various key 
features of the observed ENSO asymmetry.

4.1  Latent‑space dynamics

We start by analyzing properties of the latent space. In doing 
so, we sort the latent dimensions, k = 1…K , in descending 
order with respect to their KL divergence in Eq. (12), aver-
aged over all samples from D . Just as is common practice 
to order principal components by their contribution to the 
variance, we rank the latent dimensions according to their 
contribution of encoding information in the posterior, cf. 
Burgess et al (2018) for a similar approach.

Figure  3 summarizes statistical properties of the 
aggregated posterior in the latent space z0 × z1 , spanned by 
the leading two latent variables z0 and z1 of the input z ∈ ℝ

K 
to the decoder. Given the diversity of the CMIP ensemble, 
we will see that the VAE has found a remarkable simple 
abstraction of the ENSO dynamics in this subspace.

In Fig. 3a, we see that the posterior is centered at the 
origin, i.e., close to the prior. The samples are dense with 
no apparent gaps or isolated regions, which allows us to 
randomly sample from the posterior during data generation.

To gain a first insight into the generative properties of the 
decoder, we show in Fig. 3b the averaged decoder output 
of Niño 3.4 SST while sampling from the posterior. We 
consider here the average of the last three months out of 
the window of L months that are returned by the decoder; 
cf. again Fig. 1. In Fig. 3b we observe a smooth, continuous 
picture in the averaged decoder output that separates positive 
and negative SST. There is a visible skewness amplitude, 
with a notably larger magnitude of positive Niño 3.4 SST, 

Fig. 3  Phase-space properties of the latent space spanned by the lead-
ing two latent dimensions, z0 × z1 . The latent variables are aggregated 
over the entire CMIP5 dataset to form the aggregated posterior. a 
Samples z from the aggregated posterior. The different colors refer 
to different types of ENSO events. The phase-space is divided into 
small bins, and in each bin, the b decoder output of Niño 3.4 SST 
corresponding to samples z and the c temporal dynamics estimated by 

finite-time differences of consecutive samples z (arrows) is averaged; 
see text for more details. The arrows are colored according to the 
speed of rotation around the origin. For reference, z-values derived 
from the ERSST dataset at El Niño and La Niña events are shown 
(red and blue triangles). The contours in all three panels correspond 
to regression of the decoder output of Niño 3.4 SST on z0 × z1 based 
on k-nearest neighbors
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which is consistent with observed ENSO asymmetry. This 
is interesting that many CMIP5 models on which the VAE 
is trained underestimate this asymmetry in ENSO amplitude 
(Zhang and Sun 2014). Later in Sect. 4.5, we will show 
that the VAE is indeed able to reproduce observed ENSO 
asymmetry.

Given the clear picture that the decoder shows in 
Fig. 3b, we can easily define distinct regions in the latent 
space that represent different types of ENSO. We rely 
here on a non-parametric form of a regression, based on 
k-nearest neighbors, that approximates a mapping from 
z0 × z1 to the decoder output as the target. Since we are 
interested in a sufficiently smooth approximation, we use a 
fairly extensive number of neighbors on the order of about 
100. In all panels of Fig. 3, we have added contours of the 
resulting regression model.

To define different types of ENSO, we follow 
the common classification scheme by Niño 3.4 SST 
temperature values T, cf. e.g. Dommenget et al (2012):

• strong El Niño ( T > 1◦C),
• weak El Niño ( 0.5◦C < T < 1◦C),
• weak La Niña ( −1◦C < T < −0.5◦C),
• strong La Niña ( T < −1◦C).

The result of this ENSO classification procedure is 
shown in Fig. 3a, with different colors assigned to the 
different categories. We note that the asymmetry in the 
magnitude of Niño 3.4 SST in Fig. 3b is also reflected in 
an asymmetry of the posterior. In Fig. 3a, the posterior has 
a positive skewness with a longer tail for strong El Niños, 
which means that the VAE gives more weight to this part 
of the posterior in terms of higher KL divergence.

To understand the dynamical aspects in the latent space 
z0 × z1 , we obtain estimates of first-order time derivatives 
from consecutive samples, z = z(t) , of the posterior using 
the Savitzky-Golay filter (Savitzky and Golay 1964). The 
estimates are averaged within small bins, and the resulting 
vector field is shown in Fig. 3c. We see that the temporal 
dynamics are dominated by a single large vortex that is 
characterized by a clockwise motion around the origin. 
The magnitude apparently depends on the ENSO strength 
and phase indicating the presence of non-linear dynamics. 
The phase speed ranges from about 0.1 to 0.3 cycles per 
year, which corresponds to a period of about 3 to 10 
years. This is consistent with the wide range of observed 
periods of motion of ENSO (Timmermann et al 2018). It 
is interesting to note that the VAE reveals an asymmetry 
in the phase speed between transitions from El Niño to 
La Niña (upper right quadrant) and from La Niña to El 
Niño (lower left quadrant). The transitions from strong El 
Niño to La Niña are particularly pronounced in the vortex, 
indicating a more deterministic behavior with improved 

predictability, which contrasts with the more diffuse 
picture we see in the transition from La Niña to El Niño. 
Later in Sect.  4.4, we will see that the VAE found the 
transition from El Niño to La Niña to be more predictable, 
which is consistent with observations (Timmermann et al 
2018).

To briefly test the robustness of the VAE, especially the 
universality of the latent space with respect to changes in the 
input distribution, we use samples from the ERSST dataset 
as input. In Fig. 3c, we show the resulting z-values that 
correspond to observed El Niño and La Niña events since 
1920. Although ERSST data were not used during model 
training, we find a robust separation between observed 
El Niño and La Niña events, which is a good indicator 
for the zero-shot skill of the VAE. Note that there is no 
index m associated with the ERSST data, and the z-values 
presented here are averages over various random numbers 
m. Variations of m, however, do not affect the quality of 
separation (not shown).

4.2  Global patterns

To get an overview of the spatiotemporal dynamics associ-
ated with the different ENSO clusters in Fig. 3a, we aggre-
gate the decoder output corresponding to the leading S PCs, 
cf. again Fig. 1.

In this subsection, we analyze the average SST over 
samples from the different ENSO clusters. For this reason, 
the PCs generated in each ENSO cluster are first averaged 
and then multiplied with the corresponding EOFs to obtain 
SST composites; cf. again Sect. 2.1 for details of the initial 
EOF analysis.

In Fig.  4, we show the resulting SST composites at 
various time lags � ∈ {−L,… ,−1} that correspond to the 
different positions in the decoder output x̂ of length L; cf. 
again Fig. 1. In Figs. 4a–d, the composites from samples 
of the cluster of strong El Niño is shown, and compared 
with the composite of strong La Niña in Figs. 4e–h. Given 
the diversity of modeled ENSO dynamics in CMIP, it is 
remarkable that the VAE draws a picture of the dynamics 
that is consistent with the different phases that we see in 
the composite evolution of observed El Niño and La Niña 
events; see for example Timmermann et al (2018) and Fig. 1 
therein. The cyclical character that we have already seen in 
the latent space of the VAE is likewise reflected in the SST 
composites. For example at � = −16 months in Figs. 1a and 
e, we can distinguish slightly negative or positive SST values 
in the Niño 3.4 region prior to the onset of El Niño and La 
Niña, respectively.

However, in addition to the cyclical nature, the VAE has 
identified notable differences in the two SST composites. 
At � = −11 months, for example, the SST composite has 
a rather neutral character ( T ≈ 0 ) at the onset to a strong 
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El Niño (Fig. 4b), while there is still a persistent positive 
anomaly in Niño 3.4 SST at the onset to a strong La Niña 
(Fig. 4f).

To highlight differences in the two SST composites, we 
show in Figs. 4i–l the sum of the two SST composites. At all 
values of the time lag � , we see a notable spatial asymmetry 
that is to a large extent characterized by a stable spatial 
pattern over time. The asymmetry appears strongest in 
earlier phases and reaches its maximum at � = −16 months 
(Fig.  4i); i.e., the maximum lag considered here. Just 
before the mature phase at � = −1 (Fig. 4l), the asymmetry 
pattern in the Tropical Pacific is consistent with the spatial 
asymmetry that we observe between strong El Niños and 
strong La Niñas (Kang and Kug 2002; Dommenget et al 
2012). In a comparison with coupled ESM simulations from 
the CMIP3 database, Dommenget et al (2012) show that a 
similar ENSO asymmetry is found in only a few models. 
Since many of the CMIP5 models still underestimate ENSO 
asymmetry (Zhang and Sun 2014), it is therefore interesting 
to note that the VAE shows a spatial pattern similar to the 
observed one. We will see in Sect. 4.5 that, in fact, few of the 
CMIP5 models used for model training have a comparable 
magnitude in ENSO asymmetry, and that the VAE has given 
greater weight to these models in the posterior.

4.3  Precursors of strong ENSO

To quantify the relevance of the patterns in the SST com-
posites of the VAE, we will next test the significance of the 
SST values.

As before, the part of the decoder output corresponding 
to the leading S PCs is obtained and SST maps are generated 
by the product of the PCs with the EOFs. However, instead 
of comparing the average of the SST values in the different 
SST composites, we next compare their distribution. At each 
grid point and time lag separately, we compare the generated 
SST values from samples of strong ENSO with the ones 
from samples of weak ENSO and test whether: 

1. SST values from samples of strong El Niño are 
statistically significantly greater than SST values from 
samples of weak El Niño and

2. SST values from samples of strong La Niña are 
statistically significantly lower than SST values from 
samples of weak La Niña.

Following the non-parametric Mann–Whitney U test 
(Mann and Whitney 1947), the probabilities of success in 
the two tests are determined and their significance levels 
are approximated by a normal distribution centered around 
p = 0.5.

Fig. 4  Spatiotemporal SST composites obtained by averaging the 
decoder output over samples from different clusters of the aggregated 
posterior, as defined in Fig. 3a. Shown are SST composites from sam-

ples of the cluster of a–d strong El Niño and e–h strong La Niña. The 
sum of the two SST composites is shown in i–l. Note the different 
scale in the right column
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In Fig. 5 we show the results of the two tests at the 
various time lags � . As in the previous section, the time 
lag � ∈ {−L,… ,−1} correspond to the different positions 
in the decoder output x̂ of length L. In Figs. 5a–e we show 
the results for the first test on El Niño, and in Figs. 5f–j the 
results for the second test on La Niña.

The spatial asymmetry in the SST composites of strong 
El Niño and strong La Niña is likewise reflected here. For 
large time lags, for example at � = −16 months, there is 
no significant precursor signal in the SST values prior to a 
strong El Niño (Fig. 5a). This means that a strong El Niño 
is not necessarily preceded by a La Niña. However, prior to 
a strong La Niña at � = −16 months, there is a significant 
pattern of positive SST values along the equatorial tropical 
Pacific (Fig. 5f), which means that a strong La Niña is more 
likely preceded by an El Niño than a weak La Niña.

This asymmetric picture that the VAE shown here at 
� = −16 months is consistent with the asymmetric forcing 
of ENSO events: while strong El Niño events are mostly 
wind driven and less predictable, strong La Niña events are 
mostly driven by the depth of the thermocline and therefore 
more predictable (Dommenget et al 2012; Timmermann 
et al 2018). In the latter case, however, we find other regions 
with significant SST differences (Fig. 5f) that could also be 
potential sources of predictability for strong La Niña events; 

for example, a positive phase of the Indian Ocean Dipole 
(IOD), which has been shown to often precede La Niña 
events (Izumo et al 2010).

The asymmetry in the ENSO dynamics is also reflected 
in the later growth patterns to a mature ENSO event. Prior 
to a strong El Niño, at time lags of about � = −6 months, 
we already observe a significant increase in the SST values 
along the equatorial Pacific (Fig. 5c). The equatorial Pacific 
warm water volume is known to be an essential parameter 
in the ENSO cycle (Meinen and McPhaden 2000) and 
indicative of potentially developing El Niño conditions 
(Timmermann et  al 2018). In the picture here, we see 
indeed an increase in the likelihood for the development 
of an El Niño event, with a further strengthening in the 
Eastern Pacific (Fig. 5d). During the mature phase, finally, 
we observe a highly significant spatial asymmetry between 
the distribution of strong and weak El Niño events (Fig. 5e). 
This shift of strong El Niño events towards the Eastern 
tropical Pacific that we observe here is consistent with 
observed ENSO asymmetry (Dommenget et al 2012).

Prior to a strong La Niña, we observe no significant SST 
patterns at time lags of about � = −6 months (Fig. 5h) and 
differences emerge only later at time lags of about � = −3 
months (Fig. 5i). On the other hand, we find no clear spatial 
asymmetry between strong and weak La Niña events along 

Fig. 5  Probability of SST values from samples of strong ENSO being 
greater than SST values from samples of weak ENSO at different 
time lags � prior to a strong ENSO. Probabilities of a–e strong El 
Niño compared with weak El Niño and f–j strong La Niña compared 

with weak La Niña. In all panels, only probabilities that are signifi-
cant at the 10% and 90%-level from an approximation with a normal 
distribution are shown
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the equatorial Pacific (Fig. 5j), although there is some 
weak evidence of observed ENSO asymmetry in La Niña 
(Dommenget et al 2012).

4.4  ENSO predictions

We next examine the extent to which the asymmetry is also 
reflected in the predictions of Niño 3.4 SST. To this end, we 
sample from the different ENSO clusters in the posterior and 
generate trajectories of past and future Niño 3.4 SST from 
the corresponding output of the first and second decoder of 
the VAE, respectively; cf. Fig. 1.

Figure 6 shows the mean and various quantiles of the 
distribution of trajectories generated in the different ENSO 
clusters. In all panels, we observe noticeable differences not 
only in the mean SST, but also the distribution. To study 
the transition dynamics linking the two ENSO phases, we 
also determine the probability p that the generated Niño 3.4 
trajectory falls into the different ENSO categories, as defined 
in Sect. 4.1. The resulting temporal patterns of p are also 
shown in Fig. 6. First, note that in all panels, the ENSO 
category from which the latent samples are taken is also the 
most likely one at � ≈ 0 , i.e., as we would expect based on 
the definition of ENSO clusters in Sect. 4.1.

On the other hand, there are significant variations in the 
transition dynamics between the different ENSO clusters. In 
Fig. 6a, for example, we see that the probability of La Niña 
one year after a strong El Niño event ( 𝜏 ≳ 12 months) tends 
to be higher than the probability one year before ( 𝜏 ≲ −12 

months). However, the opposite pattern emerges for strong 
La Niñas, as shown in Fig. 6b. Here, the probability of El 
Niño one year after a strong La Niña event is noticeably 
smaller, while the probability of El Niño one year before a 
strong La Niña event is higher.

The picture that the VAE draws is fairly consistent with 
observed transitions, in which strong El Niño events are 
followed by La Niña events and strong La Niña events 
are preceded by El Niño events (Dommenget et al 2012; 
Timmermann et  al 2018). This again suggests some 
asymmetry in the driving forces of strong El Niño and La 
Niña events found by the VAE in the CMIP5 ensemble, and 
which is consistent with the picture found by Dommenget 
et al (2012) in four of the CMIP3 models. Between weak 
El Niño and La Niña, though, the differences in Figs. 6c 
and d are rather marginal, indicating that asymmetries 
become more pronounced with increasing strength.

This asymmetry in the transition dynamics between El 
Niño and La Nina explains the asymmetry in the posterior 
that we have already identified in Fig. 3. Since transitions 
from El Niño to La Niña appear more regular in Fig. 6, 
they are also more pronounced and regular in the vortex 
of Fig. 3c. This clearly highlights the ability of the VAE 
to learn reasonable stochastic mappings between a high-
dimensional input space, whose distribution is typically 
complicated, and a low-dimensional latent space, whose 
distribution is relatively simple and much easier to 
interpret.

Fig. 6  Dynamics of past and future Niño 3.4 SST generated from 
samples of different ENSO clusters of the aggregated posterior. 
Reconstructions x̂ of past observations ( 𝜏 < 0 ) and predictions ŷ of 
future values ( � ≥ 0 ) are obtained by sampling the output of the first 
and second decoder, respectively; cf. Fig. 1. The samples correspond 
to the clusters of a strong El Niño, b strong La Niña, c weak El Niño, 

and d weak La Niña, as defined in Fig.  3a. In all panels, the mean 
of the reconstruction (bold dashed lines) and prediction (bold solid 
lines), as well as different percentiles of the distribution are shown 
(green shading). The corresponding probability p of the reconstruc-
tion and prediction of Niño 3.4 SST values falling into different 
ENSO categories is likewise shown in all panels (inset axes)
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Prediction of simulated ENSO Next, we will evaluate 
the ability of the VAE to reproduce the asymmetry in the 
transition dynamics between El Niño and La Niña in the 
CMIP5 ensemble. To this end, we also obtain SST compos-
ites from trajectories of Niño 3.4 SST from the individual 
CMIP5 models. For this purpose, we select all pairs of 
CMIP5 data, x and y , such that the corresponding samples 
z from the posterior q�(z|x) fall into the different ENSO 
clusters, cf. again Fig. 3a. The resulting SST composites of 
the CMIP ensemble are shown in Fig. 7.

In all panels of Fig. 7, we see that the distribution of SST 
values in the CMIP5 ensemble is fairly consistent with the 
generated distribution of SST values in the VAE (Fig. 6). In 
particular the distribution of past observations x ( 𝜏 < 0 ) is 
well reproduced by the VAE, which is consistent with the fact 
that the VAE is trained on maximizing the data likelihood 
of x in the CMIP5 ensemble. In the distribution of future 
SST values y ( � ≥ 0 ), however, we see some differences 
emerge. In particular at much larger lead times ( 𝜏 > 15 
month), the VAE tends to underestimate the probability of 
strong ENSO events, which shows the limits of the VAE in 
the long-term prediction of ENSO in the CMIP5 ensemble. 
Still, at lead times of up to about 15 months, the VAE is able 
to predict fairly well the distribution of future SST values 
in the CMIP5 simulations; especially the asymmetry in the 
future distribution of SST values following strong El Niño 
and strong La Niña events in Fig. 7a and b, respectively, is 
well reproduced by the VAE, cf. again Fig. 6a and b.

Prediction of observed ENSO Finally, we will evalu-
ate the ability of the VAE to make predictions about the 
observed ENSO dynamics. In Fig. 3, we have already seen 

a clear separation between observed El Niño and La Niña 
events from the ERSST dataset in the latent space of the 
VAE. In a next step, we will use these z-values to generate 
trajectories of Niño 3.4 SST from the corresponding out-
put of the two decoders. For this purpose, we first select all 
pairs of ERSST data, x and y , at observed El Niño and La 
Niña events in the 1920–2005 period, respectively. Next, 
corresponding samples z from the posterior q�(z|x) are 
drawn and used as input to the two decoders, so that we 
can finally generate trajectories of past and future Niño 3.4 
SST from the corresponding output of the first and second 
decoder, respectively.

In Fig.  8, we show the resulting output of the two 
decoders (lower panels), which we compare with the 
observed Niño 3.4 SST in the ERSST dataset (upper 
panels). We see that the VAE is able to reproduce the 
observed dynamics of past and future Niño 3.4 SST fairly 
well. In particular the distribution of past observations 
x ( 𝜏 < 0 ) is well reproduced by the VAE, which 
demonstrates the robustness of the VAE with respect 
to changes in the input distribution and its ability to 
generalize to unseen data. For example, the VAE is able 
to reproduce the seasonality in the SST variability that we 
can observe in the ERSST dataset; see the percentile range 
in Fig. 8a and b, which is well reproduced by the VAE in 
Fig. 8c and d. Note that � = 0 corresponds to December of 
the year of the observed El-Niño and La-Niña events and 
that the SST variability, which is particularly pronounced 
in the boreal winter (e.g. Timmermann et al 2018), peaks 
at a multiple of 12 months.

Fig. 7  Similar to Fig.  6, but with data from the CMIP5 ensemble. 
The SST composites are obtained from pairs of past observations x 
and the corresponding future y from the CMIP5 dataset. The pairs 

are selected such that the corresponding samples z from the posterior 
q�(z|x) fall into the clusters of a strong El Niño, b strong La Niña, c 
weak El Niño, and d weak La Niña, as defined in Fig. 3a
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However, when comparing the distributions of future SST 
values ( � ≥ 0 ), differences become more apparent. The fact 
that the VAE tends to underestimate the probability of strong 
ENSO events in simulated ENSO is also reflected here. In 
comparison to the SST composites of observed El Niño 
events (Fig. 8a), for example, we see that the VAE tends to 
underestimate the probability of strong La Niña events at 
lead times of � ≈ 12 months (Fig. 8c). However, the season-
ality in the SST variability is still reproduced at lead times 
of up to about 18 months and only becomes underestimated 
at much larger lead times of about 24 months (Fig. 8c); i.e. 
the VAE tends to predict the SST as more neutral at very 
large lead times.

When compared to the picture we see for observed La 
Niña events (Fig. 8b), the VAE tends to predict the SST as 
more neutral and therefore underestimates SST variability 
already at shorter lead times of � ≈ 12 months (Fig. 8d). 
This illustrates that the prediction performance drops 
more significantly after observed La Niña events, but 
this is consistent with a similar decrease in the prediction 
performance after simulated La Nina events; see again 
Fig. 6b and d, in which the VAE tends to predict the SST 
at large lead times more neutrally than is observed in the 
CMIP5 ensemble in Fig. 7b and d, respectively.

4.5  ENSO asymmetry

In Sect. 4.2, we demonstrated that the VAE found a clear 
pattern of a spatial asymmetry between strong El Niño and 
strong La Niña events along the equatorial Pacific; cf. again 
Fig. 4l. Since underestimation of ENSO asymmetry remains 
a common limitation in CMIP5 models (Zhang and Sun 
2014), we will evaluate the ability of the VAE to reproduce 
the magnitude of observed ENSO asymmetry and compare 
it with the CMIP5 ensemble used for model training.

To quantify the spatial asymmetry along the equatorial 
Pacific that we find in the sum of the SST composites of 
Fig. 4l, we follow the analysis of Dommenget et al (2012) 
and consider in a next step its difference between the eastern 
equatorial Pacific ( 140◦W − 80◦W  , 5◦S − 5◦N  ) and the 
western equatorial Pacific ( 140◦E − 160◦W  , 5◦S − 5◦N  ). 
Since the VAE is trained on PCs, we would need to account 
for any potential bias that the EOF analysis has on the 
SST. This means that we also average the PCs in each of 
the historical CMIP5 runs under either El Niño or La Niña 
conditions, which are then multiplied with the corresponding 
EOFs to determine their SST composites. We thus closely 
follow the procedure used to obtain SST composites from 
the decoder output of the VAE; cf. Sect. 4.2.

Since the strength of modeled ENSO dynamics varies 
widely across the CMIP5 models (Zhang and Sun 2014), we 
repeat the analysis with different values of the thresholds Tc 
to define ENSO conditions in each of the model runs, i.e., 

Fig. 8  Observed dynamics of past and future Niño 3.4 SST from the 
ERSST dataset in comparison with predictions from the VAE. In the 
upper panels, SST composites of past observations x ( 𝜏 < 0 ) and 
the corresponding future y ( � ≥ 0 ) are obtained from samples of the 
ERSST dataset in the 1920–2005 period at observed a El Niño and 
b La Niña events. In the lower panels, the corresponding reconstruc-
tions x̂ and future predictions ŷ from the VAE are shown for observed 

c El Niño and d La Niña events. In all panels, the mean of the Niño 
3.4 SST (bold lines), different percentiles of the distribution (green 
shading), and the 5%–90%-percentile range (orange, dash-dotted) are 
shown. The corresponding probability p of the Niño 3.4 SST values 
falling into different ENSO categories is likewise shown in all panels 
(inset axes)
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we obtain the Niño 3.4 index Tnino from the 3-month average 
of Niño 3.4 SST, and consider the model to be in El Niño 
or La Niña condition whenever Tnino > Tc or Tnino < −Tc , 
respectively. For reference, we repeat the analysis on the 
ERSST dataset in the same time interval of 1865–2005.

In Fig. 9, we show the resulting values of the ENSO 
asymmetry as a function of the El Niño strength for various 
values of Tc . Within the CMIP5 ensemble, we find a 
considerable diversity between the individual models that 
ranges from models with a strong asymmetry to models 
with a weak or even no asymmetry. In comparison with the 
ERSST dataset, the picture supports the findings of Zhang 
and Sun (2014) in that underestimation of observed ENSO 
asymmetry still remains a pervasive challenge in CMIP5.

Similarly, we also vary the threshold Tc defining El 
Niño and La Nina clusters in the latent space of the VAE. 
However, this time we do not distinguish between strong 
and weak ENSO while sampling from the posterior. The 
ENSO asymmetry that we obtain from the resulting SST 
composites of the VAE is also shown in Fig. 9. In contrast to 
the mixed picture that we observe in the CMIP5 ensemble, 
the asymmetry in the VAE is remarkably close to the 
observed ENSO asymmetry over a wide range of the El 
Niño strength. This is even more remarkable in comparison 
to a simple ensemble average, which is often used to 
combine different CMIP runs. In Fig. 9 we also show the 

ENSO asymmetry that results from combining all historical 
runs into a single long run. However, as can be seen, the 
asymmetry in this simple ensemble average is clearly below 
the observed ENSO asymmetry.

To understand the improvement that we see in the VAE 
over a simple ensemble average, we next rank the various 
CMIP runs in order of their contribution of encoding 
information in the posterior. That is, for each CMIP dataset 
Dm separately, we average the corresponding KL divergence 
in the two clusters of a strong El Niño and a strong La Niña 
in Fig. 3a. The CMIP runs with the highest KL divergence 
contribute most to the aggregated posterior and possibility 
also to the underlying data generation process that the VAE 
has learned. To better understand their contribution, we will 
focus on the CMIP runs with the highest KL divergence and 
explore their dynamics in more detail.

The CMIP runs that rank in the top 8 in terms of KL 
divergence are highlighted in bold in Fig. 9. It appears that 
most of these models show a well-developed asymmetry in 
their ENSO dynamics that scales similarly to the observed 
asymmetry with increasing strength of El Niño. However, we 
also see that in a some of these models the ENSO dynamics 
appears to be much stronger in magnitude and asymmetry 
than it is observed. It is interesting to note that these models 
already account for about 50 % of the total KL divergence 

Fig. 9  ENSO asymmetry as a function of the El Niño strength. ENSO 
asymmetry, on the vertical axis, is defined as the east–west difference 
along the equatorial Pacific in the sum of the SST composites of the 
two ENSO phases; El Niño strength, on the horizontal axis, is defined 
as the average of the Niño 3.4 SST in El Niño condition. The thresh-
old Tc to define the two ENSO phases is varied to illustrate the rela-
tionship between El Niño strength and ENSO asymmetry. Values of 
observed ENSO asymmetry in the ERSST observational dataset (blue 

solid line) are compared with modeled ENSO asymmetry with (1) 
the VAE (green solid line), (2) the individual CMIP5 historical runs 
(light orange lines), and (3) the aggregated CMIP5 ensemble (brown 
dashed line). The modeled ENSO asymmetry in the VAE, with the 
top-8 CMIP5 models removed from the aggregated posterior, is also 
shown (red solid line). The corresponding CMIP5 models that rank in 
the top 8 in terms of KL divergence are highlighted in bold
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in the two ENSO clusters, indicating a strong focus of the 
VAE on only a few models in these parts of the posterior.

Finally, to quantify the extent to which the top 8 models 
contribute to the ENSO asymmetry in the SST composites 
of the VAE, we have removed their samples from the 
aggregated posterior. As expected, the resulting asymmetry 
in the modified SST composites is significantly lower, as 
shown in Fig. 9, and is comparable to the asymmetry we 
find in the SST composite of a simple ensemble average of 
all CMIP runs.

4.6  ENSO predictability

To understand the rationale behind the focus on a few 
CMIP models in the construction of the posterior, we must 
keep in mind that the model in Fig. 1 has been trained on 
different objectives: (1) reconstruct past observations, (2) 
predict the corresponding future, and (3) efficiently encode 
the information needed to solve the first two objectives. 
In the pure auto-encoder setting (objectives 1 and 3), the 
model is trained on a reconstruction-information trade-off, 
which means that the model will try to optimally encode 
information in the posterior while still being able to 
reconstruct the past observations as good as possible. In the 
prediction setting (objectives 2 and 3), the model is trained 
on a prediction-information trade-off, which means that 
the model will try to optimally encode information in the 
posterior while still being able to predict the future as good 
as possible. In both settings, the regularization term ensures 
an optimal encoding of information in the posterior that is 
most relevant to jointly solve the two tasks (1) and (2). In 

particular, this means that pairs of training samples x and y , 
which are easier to model, will be given more weight in the 
posterior in the form of a higher KL divergence. Vice versa, 
pairs of training samples that are more difficult to model will 
have a lower KL divergence.

In view of the strong focus on the ENSO region in the 
design of the training data (cf. Fig. 1), it is therefore likely 
that training samples from CMIP models, which are easier 
to model in terms of their ENSO dynamics, are given more 
weight in the posterior. To better understand the particular 
focus on CMIP models with enhanced ENSO asymmetry, 
we will show in the following that the VAE has identified a 
useful relationship between ENSO asymmetry and ENSO 
prediction that helps to jointly solve the two tasks.

To see this effect, we repeat the analysis from Sect. 4.4 in 
two mutually exclusive variants, where we 

1. Restrict the aggregated posterior to the top 8 CMIP 
models and

2. Exclude the top 8 models from the aggregated posterior.

As before, we generate trajectories of past and future Niño 
3.4 SST from the output of the first and second decoder of 
the VAE. In Fig. 10 we compare the SST composites of the 
two variants for strong El Niño (Fig. 10a, c) and strong La 
Niña (Fig. 10b, d).

At a time lag of � ≈ 0 , we see that in all variants the 
most likely ENSO category still matches the cluster from 
which we sample, although the likelihood is slightly lower 
in the second variant (Fig. 10c, d). This reduction is con-
sistent with Fig. 9 in that we remove CMIP models with a 

Fig. 10  Same as Fig. 6, but with samples taken from the clusters of a, 
c strong El Niño and b, d strong La Niña. Samples are from a-b the 
aggregated posterior, which is restricted to the CMIP5 models that 

rank in the top 8 in Fig. 9, and c-d the aggregated posterior, in which 
the top 8 models are excluded
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particularly strong El Niño from the composite in the second 
variant.

However, at other time lags, there are noticeable 
differences in the distribution of the trajectories generated 
in the two variants. In Fig. 10a, for example, the probability 
of a La Niña following a strong El Niño is very pronounced 
in the first variant and much larger than in the second variant 
Fig. 10c. This shows that for the first variant, transitions 
from El Niño to La Niña are more regular and thus more 
predictable, which explains why the VAE attributes more 
weight to these CMIP models given their higher KL 
divergence. This increase in regularity is also reflected in 
the dynamics preceding a La Niña, where the probability 
of El Niño preceding a strong La Niña is higher in the first 
variant (Fig. 10b) than in the second variant (Fig. 10d).

Interestingly, the differences are less pronounced in the 
opposite transition from La Niña to El Niño. The probability 
of an El Niño following a strong La Niña is only slightly 
more enhanced in the first variant (Fig. 10b) than in the 
second variant (Fig. 10d). This suggests that dynamical 
aspects driving the transition from El Niño to La Niña are 
more pronounced in the CMIP models used in the first 
variant, which enhances the predictability of the more 
thermocline depth-driven La Niña events. In the opposite 
transition, the picture is less clear maybe due to the more 
stochastic nature of the problem and a lower predictability 
of the more wind-driven El Niño events.

The relationship between asymmetry and predictability 
identified by the VAE in the CMIP ensemble may be related 
to the different flavors of ENSO (Dommenget et al 2012; 
Timmermann et al 2018). Jeong et al (2012), for example, 
have shown that the evolution of the canonical Eastern 
Pacific (EP) type of El Niño is more predictable than the 
evolution of the central Pacific (CP) type.

Although these are not distinct types rather than two 
modes of a continuum (Johnson 2013), we will analyze 
next the extent to which the difference in predictability 
between the two variants in Fig. 10 is also reflected in the 
spatial structure of the equatorial Pacific SST. We therefore 
repeat the analysis in Sect. 4.3 using the two variants of the 
posterior.

In the first variant, where we restricted the posterior to 
the top 8 models, there are no notable changes in the spa-
tiotemporal structure of the probability distribution, and 
the picture (not shown) is very similar to that of Fig. 5. 
During the mature phase of a strong El Niño (Fig. 5e), the 
SST distribution peaks in the Eastern Pacific, which sug-
gests that strong El Niño events are more likely to be of 
EP type in the first variant, and hence leads to a stronger 
ENSO asymmetry as discussed in Fig. 9

In the second variant, where the top 8 models are 
excluded from the posterior, we observe indeed notable 
differences (Fig.  11); e.g., a f lattening in the SST 
distribution along the equatorial Pacific in the mature 
phase of a strong El Niño (Fig.  11e). In this variant, 

Fig. 11  Same as Fig. 5, but with samples from the aggregated posterior, in which the top 8 models are excluded
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the likelihood to observe a strong El Niño of EP type is 
less pronounced and similar to the CP type. In the onset 
phase at a time lag of � = −6 months (Fig. 11c), there is 
no longer a significant pattern of increased SST values 
along the equatorial Pacific; i.e. a signal indicative of 
potentially developing El Niño conditions, which we found 
to be significant in Fig. 5c. The rather flat distribution in 
the flavor of strong El Niño events along with the lack of 
potential trigger signals could therefore be a source of 
uncertainty for the VAE in modeling the evolution of El 
Niño and therefore explain why the VAE assigns a lower 
KL divergence to these CMIP models.

In the mature phase of strong La Niña events (Fig. 11j), 
the changes that we see in the second variant are rather 
marginal compared to the full composite in Fig. 5j. Instead, 
differences become more apparent at a time lag of � = −16 
months (Fig. 11f) in that there is no longer a significant 
pattern indicating a possible precursor signal before a strong 
La Niña; i.e., in contrast to the potential precursors that we 
saw in various regions of Fig. 5f.

The lack of a precursor signal before a strong La Niña is 
consistent with a decrease in regularity we observed in the 
transition from El Niño to La Niña in the second variant 
(Fig. 10d). Instead, we see that the probability of an El Niño 
preceding a strong La Niña in the second variant (Fig. 10d) 
is comparable to the probability of an El Niño preceding a 
weak La Niña in the full composite (Fig. 6d). This suggests 
that (non-linear) dynamical aspects driving a strong La Niña 
are less developed in the second variant and therefore may 
have contributed to an underestimation of ENSO asymmetry 
in these CMIP models. However, the extent to which the 
potential precursors that we see in various regions of 
Fig. 5f are independent in nature or rather manifestations 
of a common underlying mechanism is not clear from the 
present analysis.

5  Summary

We have analyzed historical simulations of global sea-
surface temperature (SST) from the fifth phase of the 
Coupled Model Intercomparison Project (CMIP5, Taylor 
et al 2012). To provide a unified access to the diversity of 
simulations in the large multi-model dataset and go beyond 
the current technological paradigm of simple ensemble 
averaging, we proposed a state-of-the-art deep learning 
approach based on the concept of a variational auto-encoder 
(VAE, Kingma and Welling 2014).

In the VAE-based approach, a generative model of global 
SST is trained in combination with an inference model that 
aims to solve the problem of learning a joint distribution 
over the data generating factors. Parameterized by neu-
ronal networks (Fig. 2), we have shown that this variational 

deep-learning approach enables efficient learning of sto-
chastic mappings between global SST, whose distribution 
is typically complicated, and a low-dimensional latent space, 
whose distribution is relatively simple (Fig. 3).

We focused on El Niño Southern Oscillation (ENSO) 
and presented a generative model to emulate ENSO. The 
ENSO emulator has been shown to reproduce several aspects 
of observed ENSO asymmetry between the two phases of 
warm El Niño and cold La Niña, such as a spatial asymmetry 
between their SST composites in the equatorial Pacific 
(Fig. 4) that is still underestimated by many CMIP5 models 
(Zhang and Sun 2014).

We further analyzed the predictions of the VAE about 
the distribution of global SST in different ENSO regimes 
and tested the statistical significance of the SST composites 
to identify precursors of strong ENSO events (Fig. 5). It 
appears that the ENSO asymmetry between strong El Niño 
and strong La Niña was also reflected in the evolution of 
global SST (Fig. 5). Prior to a strong La Niña (Fig. 5f), the 
VAE found different regions with significant SST patterns 
that could be potential sources of predictability for strong La 
Niñas, e.g., positive SST values along the equatorial Pacific, 
indicating that a strong La Niña is likely to be preceded by 
an El Niño event, or a positive phase of the Indian Ocean 
Dipole, which has been shown to often precede La Niña 
events (Izumo et al 2010). However, prior to a strong El 
Niño, the VAE found no precursor in global SST (Fig. 5f), 
which is consistent with the mostly wind driven and less 
predictable nature of strong El Niño events (Dommenget 
et al 2012; Timmermann et al 2018).

Furthermore, a combination of the VAE with a forecasting 
model was proposed (Fig. 1) to provide predictions about the 
future path of the Niño 3.4 SST (Fig. 6). The proposed model 
identified an asymmetry in the transitions between El Niño 
and La Niña that is consistent with observed transitions, e.g., 
that strong El Niño events are followed by La Niña events 
(Dommenget et al 2012; Timmermann et al 2018).

The ability of the VAE to make predictions about the 
observed ENSO dynamics, taken from the fifth version of the 
NOAA Extended Reconstructed Sea Surface Temperature 
(ERSST, Huang et al 2017), was further evaluated. Although 
the VAE was not trained with the ERSST dataset, it was able 
to reproduce the statistical properties of the observed Niño 
3.4 SST quite well (Fig. 8). It was shown that the prediction 
performance decreases more significantly after observed 
La Niña events than after observed El Niño events (Fig. 8). 
This is consistent with a similar decrease in the prediction 
performance of the VAE (Fig. 6) for simulated La Niña 
events of the CMIP5 ensemble (Fig. 7).

Since underestimation of ENSO asymmetry remains a 
common problem in CMIP5 models (Zhang and Sun 2014), 
we have evaluated the ability of the VAE to reproduce the 
magnitude of observed ENSO asymmetry and compared 
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it with the CMIP5 ensemble used for training. While we 
found a considerable diversity of models with a strong 
asymmetry to models with a weak or even no asymmetry in 
the CMIP5 ensemble, the asymmetry in the VAE simulation 
is remarkably close to the observed ENSO asymmetry over a 
wide range of the El Niño strengths (Fig. 9). To understand 
the improvement in the VAE over a simple ensemble 
average, we ranked the various CMIP runs in order of their 
importance and found a strong focus of the VAE on only a 
few models with a strong asymmetry (Fig. 9).

Finally, to understand the rationale behind higher 
weighting performed by the VAE on models with a strong 
asymmetry, we analyzed different variants of the posterior 
and their impact on the predictability of ENSO. It was shown 
that the VAE has identified a useful relationship between 
ENSO asymmetry and ENSO predictability that improves 
the prediction of the simulated Niño index in a number of 
CMIP5 models with strong ENSO asymmetry (Fig. 11). In 
CMIP5 models with a weak ENSO asymmetry, on the other 
hand, the VAE was less certain in modeling the evolution to 
a strong El Niño (Fig. 11). A possible connection with the 
different ENSO types was discussed, supporting the findings 
of Jeong et al (2012) that the evolution of the canonical 
eastern Pacific (EP) type of El Niño is more predictable than 
the evolution of the central Pacific (CP) type.

In summary, we have shown that the VAE approach is 
capable of disentangling the complexity inherent to large 
climate datasets and helps us extract the underlying general 
properties shared by an ensemble of ESMs. The VAE is a 
universal, state-of-the-art machine learning approach that 
enables efficient learning of a skillful ESM emulator that 
can serve as an investigative tool for discovery and assist 
in theoretical advances (Irrgang et al 2021; Kashinath et al 
2021).

Appendix A: Model configuration 
and training

The appendix summarizes the model configurations of the 
encoder, decoder, and forecast NNs discussed in detail in 
Sect. 3. A summary of the exact values we have chosen here 
for the different parts in the NNs can be found in Table 1. In 
this configuration, the final model in Fig. 1 has about 162 k 
trainable weights.

The model weights are optimized using the Adam opti-
mizer (Kingma and Ba 2014) and a learning rate of 10−3 . 
They are optimized on the objective in Eq. (19) with stochas-
tic gradient descend on mini-batches of size NM . The mini-
batches are augmented with r different members sampled 
from the batch ensemble so that the different members are 
jointly optimized on the same data. The model weights are 
optimized for 20 epochs on the data D , using all available 

data from historical simulations in the period 1865–2005, 
cf. Sect. 2.1. A summary of the training parameters can be 
found in Table 2.

In our experience, the proposed VAE model is not very 
sensitive to the choice of the parameters determining the 
configuration of the encoder, decoder, and forecast NNs 
(listed in Table 1). Note that the number of model parame-
ters even exceeds the number of training samples in D (listed 
in Table 2). Instead, a proper choice of the regularization 
turns out to be more crucial (listed in Table 2). As moti-
vated in Sect.  2.3, the various regularization objectives help 
the VAE to learn a disentangled representation of the data 
generating factors and to mitigate the problem of overfit-
ting to the training data. The choice of the regularization 
parameters in Table 2 is not straightforward and requires 
some experimentation to find a proper balance between a 
good fit to the training data and a good generalization to 
unseen data. We have not run any systematic experiments to 
find the optimal regularization parameters, which in case of 

Table 1  Summary of model configurations of encoder, decoder, and 
forecast NNs as described in section 3 and shown in Figs. 1 and 2

The values in parentheses show the differences in the forecast NN

Property Value

Input length L 16
PCs S 20
Embedding channels C ( C′) 20 (8)
Residual blocks B 3
Prediction length F 24
Latent dimensions K 14
FC units K

′ 48
Size of batch ensemble E 6
Size of condition P 12
# of parameters 162 k

Table 2  Overview of the training configuration used in stochastic 
gradient descent and the corresponding scale parameters of the differ-
ent loss terms in Eq. (19)

Property Value

# training samples in D N ⋅M 62 k
Batch size NM 128
Ensemble members in batch r 5
Augmented batch size r ⋅ NM 640
Scale of regularization � 0 → 0.2

Scale of TC term � 3
Scale of CE term in decoder �

x
1

Scale of CE term in forecast �
y

3
Scale of prediction loss � 3
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learning disentangled representations is not straightforward 
(e.g. Locatello et al 2019; Duan et al 2020). Instead, we 
have chosen to slowly increase the strength of the regulariza-
tion during model training by annealing the parameter � in 
Table 2. This is a common strategy in VAEs (Bowman et al 
2015) and allows us to explore trade-off effects between a 
good fit and generalization. More generally, the choice of 
the regularization parameters in Table 2 and the annealing 
scheme is not unique and can be further explored in future 
work (e.g. Fu et al 2019; Sankarapandian and Kulis 2021). 
Dosovitskiy and Djolonga (2020), for example, further 
extend the idea and explore a whole spectrum of trade-offs 
with the �-VAE along a rate-distortion curve (Alemi et al 
2018; Burgess et al 2018).
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