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Abstract
Coastal storms can cause erosion and flooding of coastal areas, often accompanied by significant social-economic disruption. 
As such, storm characterisation is crucial for an improved understanding of storm impacts and thus for coastal management. 
However, storm definitions are commonly different between authors, and storm thresholds are often selected arbitrarily, 
with the statistical and meteorological independence between storm events frequently being neglected. In this work, a 
storm identification algorithm based on statistically defined criteria was developed to identify independent storms in time 
series of significant wave height for high wave energy environments. This approach proposes a minimum duration between 
storms determined using the extremal index. The performance of the storm identification algorithm was tested against the 
commonly used peak-over-threshold. Both approaches were applied to 40 and 70-year-long calibrated wave reanalyses 
datasets for Western Scotland, where the intense and rapid succession of extratropical storms during the winter makes the 
identification of independent storm events notably challenging. The storm identification algorithm provides results that are 
consistent with regional meteorological processes and timescales, allowing to separate independent storms during periods of 
rapid storm succession, enabling an objective and robust storm characterisation. Identifying storms and their characteristics 
using the proposed algorithm allowed to determine a statistically significant increasing long-term trend in storm duration, 
which contributes to the increase in storm wave power in the west of Scotland. The coastal storm identification algorithm 
is found to be particularly suitable for high-energy, storm-dominated coastal environments, such as those located along the 
main global extratropical storm tracks.
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1 Introduction

Coastal storms are extreme events characterised by intense 
hydrodynamic forcing (such as large waves and elevated 
water levels) leading to beach erosion and coastal flooding, 
often accompanied by significant social-economic disrup-
tion (Harley 2017). In the context of climate change, the risk 
associated with coastal storms is increasing due to sea-level 
rise (Melet et al. 2018), projected changes in coastal extreme 
wave conditions (Bricheno et  al. 2023), and expanding 
coastal populations (Neumann et al. 2015). Consequently, 
the analysis of storm events is paramount for coastal man-
agement. Characterising past storm events allows to identify 
the climatic controls and trends in storminess parameters, 
which are needed for strategic adaptation planning and dis-
aster preparedness in coastal areas (e.g., Garnier et al. 2018).

Recent trends and future projections of extreme wave 
conditions are mostly assessed in global-scale studies (e.g., 
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Young and Ribal 2019; Timmermans et al. 2020; Lobeto 
et al. 2021; Morim et al. 2021; Sharmar et al. 2021; Erikson 
et al. 2022). These often outline different results in the mag-
nitude and direction of historical trends because of diverse 
data, different assessment periods, and methodologies. For 
example, Sharmar et al. (2021) show differences in annual 
extreme wave heights (> 95th percentile) of 1.2 m between 
different reanalysis products for the same assessment period. 
Furthermore, Erikson et al. (2022) show that trends in the 
annual number of days where the daily-maximum significant 
wave height exceeds 6.0 m can be negative or positive for 
different global wave products for the period between 1980 
and 2014. Findings in global scale analyses are restricted to 
ocean basins and are not directly transferable to the coast 
because nearshore bathymetry is poorly resolved in global 
models. Therefore, global-scale studies need to be comple-
mented with higher-resolution regional-scale analysis that 
can verify and compare ocean-basin trends with coastal 
areas. For that, locally validated and calibrated wave data 
and the consideration of regional meteorological processes 
are important for a robust assessment of changes in stormi-
ness. Small changes in the storm climate, at regional and 
local scale, can significantly enhance coastal erosion. For 
example, Harley et al. (2017) attributed severe coastal ero-
sion in Southeast Australia to the anomalous storm wave 
direction of an extratropical cyclone. Similarly, 5° changes 
in the storm wave direction were found to be a main driver 
of heightened erosion in Northwest Spain during the winter 
of 2013/14 (Flor-Blanco et al. 2021). On the West coast of 
the U.S., changes in the storm wave period can drive large 
increases in the total water level and consequently storm 
impacts (Serafin et al. 2019). These examples highlight 
that detailed assessments of the storm wave climate and its 
variability are essential for understanding regional coastal 
impacts.

There are numerous approaches to identify coastal storms 
depending on data availability and the scope of analysis. In a 
review of coastal storm definitions, Harley (2017) indicated 
that coastal storms are created by meteorologically induced 
disturbances to the local maritime conditions (i.e., waves 
or water levels) that have the potential to alter the coast-
line. In contrast to a synoptic climatological approach in 
assessing coastal storminess that links coastal observations 
with regional synoptic observations such as storm tracks, 
statistical based climatological studies of coastal extreme 
wave occurrences are not able to link every storm to a par-
ticular synoptic system. However, a robust storm definition 
and statistically derived thresholds improve the likelihood 
of meteorological independence between storms (Harley 
2017). Therefore, statistical approaches typically consider 
a minimum duration threshold between consecutive events 
to determine meteorological independence between storm 
events (e.g., Corbella and Stretch 2012; Loureiro and Cooper 

2018; Martzikos et al. 2021a; Amarouche et al. 2022). This 
minimum duration threshold has been designated as mete-
orological independence criterion (Harley 2017), inter-
exceedance time (Fawcett and Walshaw 2008), inter-arrival 
time (De Michele et al. 2007), or run parameter (Oikonomou 
et al. 2020). According to the definition of Harley (2017), 
the minimum duration threshold is linked to the average 
time interval between the passage of different synoptic sys-
tems (e.g., tropical or extra-tropical cyclones) that generate 
storms and can be used to identify meteorologically inde-
pendent storm events. Using different values for the duration 
threshold can substantially influence storm characterisation 
(Sénéchal et al. 2017; Castelle and Harley 2020) and yet, 
this parameter is typically selected arbitrarily or neglected 
in coastal storm analyses (e.g., Senechal et al. 2015; Mas-
selink et al. 2016; Flor-Blanco et al. 2021; Vieira et al. 2021; 
Celedón et al. 2022).

Most regional to local coastal storm analyses have been 
performed in low to medium wave energy environments 
(e.g., Almeida et al. 2011; Mendoza et al. 2011, 2013; Dis-
sanayake et al. 2015; Plomaritis et al. 2015; Garnier et al. 
2018; Amarouche et al. 2022; Martzikos et al. 2021b), while 
only a few were conducted in storm-dominated (Davies, 
1980) or high wave energy environments that are common 
in higher latitudes (e.g., Loureiro and Cooper 2018; Wojty-
siak et al. 2018). Low to medium energy wave environments 
are characterised by mean significant offshore wave heights 
below 2 m, whereas mean significant wave heights in storm-
dominated high energy wave environments are above 2 m 
(Short 1999). A challenging characteristic in such locations 
is the frequent temporal clustering of extratropical cyclones 
(Pinto et al. 2014; Priestley et al. 2017a, b), which further 
complicates the appropriate estimation of the minimum 
duration between consecutive storm events. These extrat-
ropical cyclone clusters can be generated by meteorological 
phenomena such as secondary cyclogenesis (Mailier et al. 
2006) creating cyclone families (Priestley et al. 2020) or 
shifts in large-scale atmospheric flow characterised by an 
intensified jet stream (Dacre and Pinto 2020), resulting in 
events that are meteorologically related. Other mechanisms 
can lead to the temporal clustering of storm wave events, 
challenging the definition of a minimum duration thresh-
old. That was the case of a cut-off-low system that became 
stationary off the coast of South Africa in 2007, leading to 
long and intense storms that resulted in dramatic coastal 
erosion (Smith et al. 2010). The same can occur when tropi-
cal cyclones display irregular paths or stall for significant 
periods such as Hurricane Harvey in 2017 (Hall and Kossin 
2019). Therefore, processes taking place in storm-dominated 
environments challenge existing methods for identifying 
independent storm events due to the frequent temporal clus-
tering of storms, which may be driven by related meteoro-
logical systems.
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So far, no generalised storm identification procedure 
exists for storm-dominated or high wave energy coastal 
areas, which ultimately affect coastal management plan-
ning due to incorrect definition of coastal risks. This work 
presents a generic storm definition that is adapted to ener-
getic wave climates and considers meteorological independ-
ence between storms based on long-term wave statistics. 
The storm identification algorithm is compared against the 
common peak-over-threshold storm identification method, 
with both approaches being applied to two long-term wave 
reanalysis datasets that have been validated and calibrated 
with buoy observations. To develop a storm definition suit-
able for high-energy wave climates this work explores wave 
data from the Outer Hebrides (west of Scotland) (Fig. 1), 
located along the North Atlantic storm track and exposed 
to frequent and intense winter storms. This paper presents 
a robust approach to identify storms in high wave energy 

coastal areas and discusses the implications for the analysis 
of storminess trends and storm climate variability.

2  Data and methodology

2.1  Wave data

Significant wave height  (Hs) and peak wave period  (Tp) data-
sets from the Outer Hebrides were used to demonstrate the 
storm identification approach and for presenting an applica-
tion example of storm characterisation in a high wave energy 
coastal environment. While buoy observations are available 
for the last 11 years (Table 1), two recent and state-of-the-art 
reanalysis products were used to provide a continuous and 
extended wave time series, as well as to enable a compari-
son between widely used wave model products. However, 
when compared to in-situ observations wave reanalyses can 
exhibit systematic errors, such as under or over-estimation 
of extreme wave heights (Baordo et al. 2020). Hence, when 
analysing extreme events from wave reanalyses, it is para-
mount to correct these systematic errors by applying cali-
bration functions obtained from the comparison with buoy 
data (Fanti et al. 2023). Moreover, different reanalysis prod-
ucts can yield differences in the magnitude and direction of 
long-term trends (Timmermans et al. 2020; Sharmar et al. 
2021), which highlights the importance of performing a mul-
tisource analysis (Erikson et al. 2022).

For this work, wave buoy observations were obtained 
from the West of Hebrides buoy, deployed and operated by 
CEFAS aproximately 30 km offshore the Outer Hebrides 
in the west of Scotland (Fig. 1) in a water depth of 100 m. 
Wave parameters and spectra are recorded for periods of 
30 min using a Datawell Directional Waverider MkIII buoy. 
The modelled wave data used in this work were obtained 
from the ERA5 reanalysis (Hersbach et al., 2020; Bell et al. 
2021), provided by the European Centre for Medium-Range 
Weather Forecasts, and the Northwest European Shelf Wave 
Hindcast, provided by the Copernicus Marine Service (here-
after CMEMS). ERA5 covers seven decades (1951–2020) 
with hourly data and a 0.5° × 0.5° spatial resolution, while 
CMEMS is restricted to four decades (1980–2020), with 
data every 3 h and a 0.017° × 0.017° resolution (Table1). 

Fig. 1  Location of the Outer Hebrides, West Scotland, wave reanaly-
sis grid outlines (ERA5 in orange and CMEMS in green), and data 
output locations

Table 1  Synthesis of the wave data used and designation of the datasets

Coordinates Sampling 
Interval

Period Variables Source Dataset designation

Buoy 57.289° N, − 7.923° W 0.5 h 2009–2020 Hs, Tp CEFAS Buoy-11
ERA5 57.29° N, − 7.93° W 1 h 1950–2020 Hs, Tp ECWMF ERA5-11; ERA5-40; ERA5-70;

cERA5-11; cERA5-40; cERA5-70
CMEMS 57.2973° N, − 7.9091° W 3 h 1980–2020 Hs, Tp Copernicus 

Marine Service
CMEMS-11; CMEMS-40; 

cCMEMs-11; cCMEMS-40
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ERA5 and CMEMS wave data were extracted for the clos-
est point to the Outer Hebrides wave buoy (Fig. 1). More 
information on the buoy and the reanalyses data and their 
validation against buoy observations are provided in the sup-
plementary materials.

The observations from the Outer Hebrides wave buoy 
were used for validation and calibration of the two wave 
reanalyses. The calibration focused on the extreme values 
(> 95th percentile) of Hs,  Tm, and  Tp, and transfer functions 
with best fits were applied to the model data (y) to better 
reproduce the buoy observation (x). Several transfer func-
tions were tested, including linear, quadratic, and power 
functions, as well as a rotation around the mean following 
Fanti et al. (2023). The transfer functions used for  Hs and  Tm 
are a power function (Eq. 1), while for  Tp a rotational func-
tion around the mean was applied (Eq. 2) which is derived 
from the rotational matrix in Eq. 3.

The transfer functions were then applied to the long-term 
data set (i.e., the 70 and 40 years) assuming that deviations 
in the reanalysis relative to the buoy data are consistent for 
the entire analysis period.This resulted in the calibrated 
ERA5 and calibrated CMEMS wave time series and, as 
such, the long-term data sets are referred to as cCMEMS-40, 
cERA5-40, and cERA5-70, where “c” stands for calibrated 
and the numbers refer to the length of the analysis period, 
specifically 70 years (1950–2020), 40 years (1980–2020), 
and 11 years for the buoy data (2009–2020).

Similarly to previous studies on the wave climate of the 
Northeast Atlantic (e.g., Santo et al. 2015), here the winter 
season is defined as the extended boreal winter comprising 
the months of October to March (ONDJFM). The ONDJFM 
extended winter considered here is also consistent with the 
time period when most extreme sea-level events occur in the 
northwest of the UK (Haigh et al. 2016). For simplicity, the 
winter year designation used in this work refers to the second 
part (JFM) of the winter season, meaning that winter 2020 
refers to OND of 2019 and JFM of 2020.

2.2  Storm identification

There are many coastal storm identification approaches 
based on time series, which use variables such as Hs, Tp, 
wave direction, and water levels (Martzikos et al. 2021a 
and references therein). Storm identification can be based 

(1)y� = ayb,

(2)y� = sin�
(

x − xc
)

+ cos�
(

y − yc
)

,with� = (1 − a),

(3)
[
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]

=

[
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y − yc

]

,

on single, combined, or composite parameters (e.g., storm 
power), but the most common approaches rely on  Hs time 
series (Harley 2017). However, the identification of storms 
from  Hs time series lacks a consistent methodology, as 
recently outlined by Harley (2017) and Martzikos et al. 
(2021a). Existing definitions of coastal storm events (based 
on  Hs data) encompass several concepts, criteria, and thresh-
olds, and are often topic specific. In storm erosion studies 
for example, the  Hs thresholds are based on hydrodynamic 
conditions that result in significant morphological change 
(e.g., Almeida et al. 2012; Armaroli et al. 2012; Del Río 
et al. 2012), and the duration thresholds are based on the 
subsequent morphological recovery periods (e.g., Loureiro 
et al. 2012; Senechal et al. 2015). Consequently, storm cri-
teria and thresholds become highly site-specific due to the 
varying coastal morphodynamics, wave climate character-
istics and regional meteorological systems that generate the 
storms (Ciavola et al. 2014; Harley 2017). Because of this, 
Castelle and Harley (2020) encourage generic criteria for 
storm identification based on long-term wave statistics, as 
this allows to broaden the application and compare findings 
from coastal storm analyses.

2.2.1  Conceptual description

Typically, the identification of storm events for climatic 
analysis of storminess considers three criteria: (1) an 
extreme  Hs threshold, hereafter storm threshold (ST), (2) a 
minimum storm duration (MSD), and (3) an independence 
duration (ID) (Ciavola et al. 2014; Harley 2017; Martzikos 
et al. 2021a). However, these three storm identification cri-
teria have been mostly applied in low to medium-energy 
wave environments. In storm-dominated or high wave 
energy environments with consecutive and rapidly succeed-
ing storms, an additional criterion needs to be considered to 
ensure appropriate aggregation or separation between con-
secutive exceedances of the  Hs storm threshold. The pro-
posed criterion is designated as the independence threshold 
(IT). These four storm identification criteria are explained 
conceptually below and defined statistically in Sect. 2.2.2.

The ST determines if wave conditions are considered 
extreme and hence separates the  Hs time series into storm 
 (Hs > ST) and calm periods  (Hs < ST). In the simpler situa-
tion (Fig. 2, S1), when ST is up-crossed, it dictates the start 
of a storm, and likewise, when it is down-crossed it defines 
the end of a storm.

During storms, waves can temporarily down-cross the 
storm threshold, but this does not necessarily imply that a 
storm has ended, and as such it is necessary to also con-
sider the length of time between successive down-crossings 
and up-crossings of ST. This is defined as the Independence 
Duration (ID) and is used to determine the meteorological 
and statistical independence between consecutive storm 
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events, by combining exceedances of ST into one storm 
event until the inter-exceedance period is long enough to 
assume independence. In a meteorological or oceanographic 
context, ID corresponds to the average passage time of syn-
optic systems that drive storms over a coastal area (e.g., 
Harley 2017). From a statistical perspective, a storm analysis 
should be conducted on an independent (and identically) 
distributed extreme value dataset (e.g., Lopatoukhin et al. 
2000). The extreme value dataset usually consists of an 
extreme wave height, period, or power for each independ-
ent storm, which is then used for further statistical analysis. 
However, a single storm can include several  Hs peaks with 
occasional periods of  Hs < ST. Consequently, an independent 
storm is only considered when the period between a down-
crossing of ST and the following up-crossing is longer than 
ID (Fig. 2, C2), and when the duration between consecutive 
up-crossings is shorter than ID the storm is extended in time 
(Fig. 2, S2).

This approach enables brief crossings below ST within a 
single storm event by combining several  Hs peaks in rapid 
succession that belong to the same meteorological distur-
bance (Harley 2017).

However, periods of rapid storm succession that are com-
mon in storm-dominated coasts in the winter season can lead 
to storms lasting several weeks, which are likely caused by 
different meteorological disturbances. Therefore, to enhance 
meteorological independence an additional independence 
threshold (IT) is defined. IT is a  Hs threshold that repre-
sents storm dissipation. Consequently, IT must be smaller 
than ST but above the mean  Hs for the coastal region. In the 
case of rapid storm succession (Fig. 2, S2, S3), when the 
time between two consecutive storms is shorter than ID but 
Hs < IT (Fig. 2, C3), two independent storm events should 

be considered (Fig. 2, S2 and S3). By including IT in the 
storm identification, the independence between consecutive 
storms can be achieved in two ways: if after a down-crossing 
Hs remain below ST for longer than ID (Fig. 2, C2), or if Hs 
falls below IT (Fig. 2, C3).

Finally, not all records that exceed ST should be consid-
ered a storm, as storm events must have a minimum dura-
tion. Therefore, when storm duration is lower than the MSD, 
the event is not considered a storm (Fig. 2, C4). The role 
of MSD is to filter out short-lived exceedances of ST that 
will have no relevant impacts on the coast (Martzikos et al. 
2021a).

The performance of the proposed storm identification 
approach was tested against a simple Peak-Over-Threshold 
(POT) approach which is still widely used for the characteri-
sation of coastal storms (e.g., Flor-Blanco et al. 2021; Vieira 
et al. 2021; Celedón et al. 2022; Gramcianinov et al. 2023b). 
In extreme value analysis, the POT approach refers to the 
extraction of peak  Hs values from threshold exceedance 
clusters (e.g., Ferreira and Guedes Soares 1998), whereas 
in coastal storm analysis the POT approach can also refer 
to the extraction of all threshold exceedances of the cluster 
to analyse storm characteristics such as duration and power 
(Harley 2017). A simple POT approach considers ST as a 
stand-alone storm criterion, with each storm identified as 
the consecutive wave records over the ST (e.g., Weisse and 
Gunther 2007; Gramcianinov et al. 2023b), but neglects 
MSD, ID and IT. In the example of Fig. 2, storm S2 would 
be identified as two separate storms by the POT approach 
because no independence duration is defined. In addition, 
considering the POT approach, the  Hs peak in C4 would be 
identified as an additional storm. Differences between the 
proposed storm identification and the POT approach were 

Fig. 2  Synthetic representation of the storm identification methodology adapted to high wave energy environments.  Hs is the significant wave 
height. C1–C4 are the calm periods between storms, and S1–S3 are individual storm events
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assessed by comparing the long-term storminess metrics 
using the Outer Hebrides datasets as a case study (Sect. 2.4). 
Additionally, a sensitivity analysis of the storm criteria was 
performed by attributing changes in the total storm counts 
and storm duration to each storm criterion, given that both 
storm count and duration have been shown to be sensitive 
to changes in storm identification methods (Sénéchal et al. 
2017; Castelle and Harley 2020).

2.2.2  Statistical definition

The two  Hs thresholds, ST and IT, are estimated based on 
long-term  Hs records. In line with most coastal storm analy-
ses (e.g., Masselink et al. 2014; Castelle et al. 2015; Harley 
et al. 2017; Martzikos et al. 2021b), ST was defined as the 
 95th percentile of the  Hs time series. IT aims to determine 
the conditions below which  Hs is no longer associated with 
a storm event by considering the average conditions of the 
season with most storm occurrences. Based on this, IT is 
defined as the mean winter  Hs, as it will be lower than ST 
but higher than the long-term mean  Hs for the coastal region.

The selection of an appropriate ID is more challenging 
as it requires consideration of the average passage time of a 
meteorological or oceanographic system driving the storm 
(Harley 2017). As a consequence, ID is commonly selected 
arbitrarily in coastal storm analyses. However, ID can be 
estimated statistically based on the extremal index proposed 
by Ferro and Segers (2003). This approach has been used 
previously in the estimation of return periods of extreme  Hs 
occurrences (Oikonomou et al. 2020), extreme precipitation 
(Barton et al. 2016) and extreme water levels (Arns et al 
2013).

For the calculation of the extremal index, a binary param-
eter  Wi is defined so that  Wi = 1 when  Hs > ST and  Wi = 0 
when  Hs < ST, similarly to the POT approach. The total 
count of independent storms, Z, is given by

where n is the number of  Hs data points (Smith and Weiss-
man 1994). Ferro and Segers (2003) demonstrate that the 
extremal index (θ, ∈ [0, 1]) describes the proportion of 
non-zero inter-exceedance times of an extreme event and 
the reciprocal of the mean of the non-zero inter-exceedance 
times as demonstrated by Smith and Weissman (1994). 
Therefore, θ can be defined as

(4)Z =

n
∑

i=1

Wi

(

1 −Wi+1

)

…
(

1 −WID+1

)

,

(5)�(ST) =
2

�

∑N−1

j=1

�

Tj − 1
�

�2

(N − 1)
∑N−1

j=1
(Tj − 1)

�

Tj − 2
�
,

where  Tj is the time between two consecutive ST exceed-
ances with j ∈ [1, N – 1] and  Tj > 2, and as an estimate of the 
true extremal index:

corresponding to the reciprocal of the mean storm duration, 
where N is the number of total ST exceedances:

After calculating θ (Eq. 5) it is possible to estimate Z 
(Eq. 6) iteratively through Eq. 4, increasing ID values until 
Z is reached. ID is therefore estimated based on the  Hs time 
series itself and explained by asymptotic theory (Ferro and 
Segers 2003). When seasonality in the extreme wave climate 
is expected, the long intervals between consecutive storms 
during the calm or summer season contribute to the overes-
timation of ID (Oikonomou et al. 2020). Therefore, for the 
calculation of ID, the  Hs time series is restricted to the winter 
season, when most extreme value exceedances occur.

The MSD was set to 6 h, which is a commonly used mini-
mum duration for coastal storm analysis (Martzikos et al. 
2021a and references therein). This MSD value assumes that 
storms that last at least 6 h have a high-likelihood (~ 70%) of 
coinciding with high-tide conditions in a semi-diurnal tidal 
cycle, which increases the possibility of significant storm-
induced morphological impacts on the coast and minimizes 
the loss of extreme wave records in the storm analysis. Further-
more, the 6 h MSD ensures that a minimum of 2 storm records 
are used for storm identification using the CMEMS reanalysis, 
as this has the lowest temporal resolution (3 h) of the datasets 
considered (Table 1).

2.3  Long‑term analysis

Following the application of the storm identification algorithm, 
storm parameters were estimated to define and characterise 
each storm event and compute aggregated winter metrics. The 
storm duration describes the time between the start and end 
of an independent storm (Fig. 2, S1-3), and accounts for the 
sampling intervals of the different wave records (Table 1). For 
the characterisation of each independent storm event, mean 
storm  Hs  (SHs), mean storm  Tp  (STp), and the 98th percentile 
of  SHs and  STp were computed. In order to compare averaged 
wave trends with other studies, the winter mean and  98th per-
centile of  Hs and  Tp were computed in addition to storm met-
rics. The storm power (SP) was calculated following Splinter 
et al. (2014), with

(6)�� = Z∕N,

(7)N =

n
∑

i=1

Wi

(8)SP = ∫
D

0

�g2

64�
SH2

s
STpΔt,
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where D is the storm duration, ρ is the seawater density 
(~ 1024.5 kg/m3), g is the gravitational acceleration (9.81 m/
s2), and Δt is the sampling interval.

The maximum  Hs value of each identified winter storm 
was used to form an independent and identically distrib-
uted extreme value dataset and was used to determine the 
return period of extreme  Hs conditions. However, using the 
POT approach that lacks the ID criteria to identify storms 
could violate the independence requirement for the extreme 
value dataset. The return periods of  Hs were estimated from 
1 to 100 years by fitting the Generalized Pareto Distribu-
tions (GPD) to the winter storms  Hs datasets, and assuming 
stationarity (e.g., Coles 2001). To meet the homogeneity 
requirement for the application of extreme value theory, only 
the storms during the ONDJFM season were considered. The 
GPD was fitted via numerical maximum-likelihood estima-
tion, with return periods of maximum  SHs  (RSHs) values 
defined by:

where σ is the scale parameter of the GPD, ξ is the shape 
parameter of the GPD, R is the return period, L is the length 
of the extreme value dataset, and λ is the period of the  Hs 
time series in years. Calculating  Hs return periods for the 
various datasets considered in this work (Table 1), including 
the buoy and the calibrated reanalysis data, provides addi-
tional validation of the calibration as it allows to consider 
the results for the higher percentiles of the  Hs data (Fanti 
et al. 2023).

Winter storm counts and storm parameters were calcu-
lated to analyse the variability and periodicity of storminess 
in the Outer Hebrides and to compare the proposed storm 
identification algorithm and the common POT approach. 
The significance of the long-term trends was determined 
using the Mann–Kendall test and the magnitude and direc-
tion of the trends were estimated using Sen’s slope, follow-
ing Young and Ribal (2019) and Erikson et al. (2022), as this 
provides robust trend estimates when data are non-normally 
distributed. The significance of long-term trends was tested 
considering 0.05 and 0.1 significance levels. Climatic con-
trol of winter storminess was explored through correlation 
analysis of the storm parameters with the North Atlantic 
Oscillation (NAO) index, which is the leading mode of cli-
mate variability in the NE Atlantic (e.g., Hurrell 1995; Scott 
et al. 2021). To determine the extended winter NAO, sea 
level pressure data were obtained from the National Cen-
tre for Atmospheric Research (NCAR) for Lisbon (40.0N, 
10.0W) and Reykjavik (65.0N, 20.0W) and used to com-
pute the station-based NAO. The NAO was computed using 
a reference period from 1951 to 1980 and normalized to 
monthly sea level pressure following the method proposed 

(9)RSHs = TH +
�

�

[

(

RL

�

)�

− 1

]

for� ≠ 0

by the Climate Research Unit (2022) for station-based NAO 
index estimation. For consistency with the storm analysis, 
the NAO index was calculated for the extended winter sea-
son (ONDJFM). The correlation between the extended win-
ter NAO and winter storm parameters was computed with 
Pearson’s linear correlation coefficient (R) considering a 
0.05 significance level.

2.4  Study site

The wave climate of the Outer Hebrides (Fig. 1) is con-
sidered one of the most energetic globally, with a fetch of 
more than 6000 km for the dominant W to WNW wave 
direction (Ramsay and Brampton 2000). Consequently, the 
Outer Hebrides have been the focus of wave energy extrac-
tion research due to the high wave power resources (e.g., 
Neill et al. 2017). The wave climate of the west of Scotland 
displays high seasonality, with very energetic conditions 
throughout the extended winter season from October until 
the end of March (Santo et al. 2015). The winter wave cli-
mate in this region is also highly correlated with the NAO, 
where a positive NAO index is associated with energetic 
winters and a negative or lower NAO index with calmer 
winter conditions (Santo et al. 2015; Castelle et al. 2017; 
Hochet et al. 2021; Scott et al. 2021). The well-established 
association between positive NAO and increased winter 
storminess determined from wind records was linked to 
increasing coastal erosion in the Outer Hebrides (Dawson 
et al. 2004). Dawson et al. (2007) argue that winter stormi-
ness in the west of Scotland was lower in the first part of the 
twentieth century compared to the late nineteenth century, 
as evidenced by mean monthly wind velocities and monthly 
maximum gust velocities. Santo et al. (2015) demonstrated 
that offshore the Orkney islands, in the north of Scotland, 
the wave power climate was characterised by strong interan-
nual and multidecadal variability between 1665 and 2005. 
Furthermore, extreme  Hs (Castelle et al. 2018) and wave 
storminess (Loureiro and Cooper 2018) have been shown to 
exhibit a positive long-term linear trend since 1950 in the 
higher latitudes of the NE Atlantic. Therefore, the intensity, 
frequency, and variability of storms in the Outer Hebrides 
make this area an ideal location to develop and test a robust 
storm identification for high-energy or storm-dominated 
environments as a basis for analysing storminess patterns.

3  Results

3.1  Reanalysis calibration

ERA5-11 and CMEMS-11 data for  Hs and  Tp show an 
overall good performance when compared to the Outer 
Hebrides buoy observations, although CMEMS-11 
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outperforms ERA5-11 in most error metrics (Fig. SM1). 
The highest correlation coefficients (R = 0.98) were found 
for  Hs in both ERA5-11 and CMEMS-11. However, both 
wave models show negative biases for  Hs and  Tp indicat-
ing a systematic underestimation particularly evident for 
the extreme wave conditions (Fig. SM1). For example, 
in the most extreme event on record, which occurred on 
the 1st of February 2016, the buoy records a maximum 
 Hs = 16.4 m, while the modelled values of  Hs were 14.1 m 
and 13.9 m for ERA5-11 and CMEMS-11, respectively. 
The calibration applied to the reanalysis datasets aimed to 
reduce the systematic underestimation, resulting in a bias 
improvement in  Hs of 0.24 m and 0.09 m for cERA5-11 
and cCMEMS-11, respectively (Fig. 3a, b).

The calibration also improved the Root Mean Square 
Error (RMSE) and the Scatter Index (SI) for  Hs and  Tp in 
both ERA5 and CMEMS (Fig. 3). While after calibration the 
cCMEMS-11 dataset statistically outperforms cERA5-11, it 
is apparent that  Hs values above 12 m are better estimated in 
cERA5-11, as these remain underestimated in cCMEMS-11 
(Fig. 3a, b). The calibration also improves the agreement 
between model data and buoy observations for  Tp, including 
extreme  Tp values. As with  Hs, cCMEMS-11 also outper-
forms cERA5-11 in terms of error metrics for  Tp (Fig. 3c, d).

3.2  Storm identification criteria

The storm criteria ST, ID, and IT vary according to the 
dataset and the corresponding analysis period (Table 2). 

A B

C D

Fig. 3  Density scatter plots of calibrated model  Hs (A, B) and  Tp (C, 
D) against buoy measurements, with the transfer function (A, B), and 
angle of rotation (C, D) used for calibration. The inset boxes show the 
number of records (n), the correlation coefficient (R), the Root Mean 
Squared Error (RMSE), the bias, and the scatter index (SI). Note 

that the CMEMS reanalysis as a temporal resolution of 3  h, which 
results in fewer records compared to ERA5 that has a 1-h resolution. 
The density colorbar in A is representative for all subplots. For more 
details on the transfer functions and the statistical parameters see the 
supplementary material
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Moreover,  Hs values for ST and IT also increase between the 
original and calibrated reanalysis data, while ID estimates 
are not affected by the calibration. Relative to the original 
datasets, the increase in ST is lower for cCMEMS (0.40 m) 
than for cERA5 (0.73 m on average for the two analysis peri-
ods). Likewise, IT also increases after calibration but more 
moderately, and differences in ST and IT between cERA5-
40, cERA5-70 and cCMEMS-40 are reduced to less than 
0.25 m.

Considering the different analysis periods, the cERA5-
70 dataset yields ~ 0.2 m lower ST and ~ 0.1 m lower IT 
estimates than either of the 40-year datasets. A similar pat-
tern is observed in ID, which is higher for cERA5-40 and 
cCMEMS-40 with 59 h and 54 h, respectively, compared to 
48 h for the cERA5-70 dataset. In summary, the calibration 
reduced the differences in the storm identification criteria 
between the two reanalyses datasets, with the length of the 
analysis period (70 or 40 years) leading to a more significant 
variation in ST, ID, and IT.

As a result of the different storm definition, based on the 
70-year period (cERA5-70), the total storm count is reduced 
from 1653 storms using the POT approach to 941 storms 
(43% reduction) using the storm identification algorithm 
(Fig. 4A). The vast majority of the reduction is associated 
with the inclusion of ID which merges  Hs exceedance clus-
ters in close temporal proximity into a single storm. Con-
trary to counts, duration is increased using the storm iden-
tification algorithm compared to using the POT approach 
(Fig. 4B). The total storm duration in the 70-year  Hs dataset 
using the POT is 1278 days (5% of the time series length, 
ST is set to the 95th percentile of  Hs) and 1650 days when 
using the storm identification algorithm (6.45% of the time 
series length). Thus, the implementation of the storm criteria 
ID, IT, and MSD increases the overall storm duration by 
29%. This pattern of change between the POT and the storm 
identification algorithm is also evident in the storm count 
and duration for the cERA5-40 and cCMEMS-40 datasets. 
It evidences that storm counts and duration strongly depend 
on the storm identification criteria used, with ID having the 
largest influence on total storm metrics, while the contribu-
tion of IT and MSD is much lower.

A period with a rapid succession of storms between 
December 1992 and February 1993 illustrates the perfor-
mance of the storm identification algorithm as well as the 
differences to the POT approach (Fig. 5A). In this example, 
the storm criteria were estimated based on the cERA5-70 
data, with storms identified when  Hs exceeds 6.31 m (ST) for 
a minimum of 6 h (MSD) (Fig. 5A). The first exceedance of 
 Hs (10/12/1992) is not identified by the storm identification 
algorithm because MSD is less than 6 h.

The following storm (14/12/1992) is identified and char-
acterised identically by the storm identification algorithm 
and the POT approach because  Hs is below ST until the 
next storm (17/12/1992), which is longer than the ID of 
48 h. Major discrepancies between the two storm identifica-
tion methods occur between 02/01/1993 and 18/01/1993, 

Table 2  Storm identification criteria for the Outer Hebrides based on 
the original and calibrated reanalysis datasets

Dataset ST (m) ID (hours) IT (m)

Original ERA5-70 5.59 48 3.45
ERA5-40 5.74 59 3.57
CMEMS-40 6.13 54 3.73

Calibrated cERA5-70 6.31 48 3.80
cERA5-40 6.50 59 3.94
cCMEMS-40 6.53 54 3.89

A

B

Fig. 4  Influence of storm criteria on the total storm count (A) and 
storm duration (B). Each bar group represents the progression of the 
storm identification algorithm  (StormID) by introducing an additional 
storm criterion highlighted in bold. ST storm threshold, ID independ-
ence duration, IT independence threshold, and MSD minimum storm 
duration
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when  Hs varies considerably but remains high throughout 
the 16 day period. While the POT approach individualises 
10 storms for this period, the storm identification algorithm 
identifies this period as one storm because  Hs is never below 
IT and ID is never exceeded. In fact, this was the most pow-
erful storm since 1950 in the Outer Hebrides based on the 
storm identification algorithm and cERA5-70 data. This also 
demonstrates that during a storm event,  Hs can fall below 
ST for considerable periods of time. Through the imple-
mentation of IT, this storm ends on 18/01/1994 instead 
of being extended until 26/01/1993. This occurs because 
 Hs down-crosses IT on 19/02/1993, although the duration 
between ST exceedances is always below ID. This period 

of rapid storm succession is reflected by the number and 
path of extratropical cyclones in the North Atlantic during 
the same period (Fig. 5B). During the high-energy period 
(02/12/1992–26/01/1993), there is a sequence of deep extra-
tropical cyclones with similar track orientations. The stacked 
cyclone tracks suggest the occurrence of serial clustering 
of extratropical cyclones (Dacre and Pinto 2020), which is 
likely to be caused by secondary cyclogenesis. The resulting 
family of extratropical cyclones drives a prolonged period 
of  Hs higher than ST, with occasional short-lived down-
crossings, but can be interpreted as a single storm event, 
with high-energy wave conditions continuously impacting 
the coastal area.

A

B

Fig. 5  A Illustration of the storm identification algorithm  (StormID) 
adapted to high wave energy environments (A). The four thresholds 
embedded in the storm identification algorithm are illustrated on an 
example period from the cERA5-70  Hs data. The blue rectangles 
indicate the storm events determined using the POT approach (n = 22) 
and the orange rectangles when using  StormID (n = 6). ST storm 

threshold, MSD minimum storm duration, ID independence dura-
tion, IT independence threshold. B All extratropical cyclones tracks 
(ECTs) that occurred in the North Atlantic during the period consid-
ered in A obtained from Lodise et  al. (2022), highlighting the deep 
extratropical cyclones (minimum pressure below 980  hPa along the 
track) that occurred during Storm 1 and Storm 2 in A
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3.3  Storm analysis

According to the cERA5-70 data, 87% of the total storms in 
the Outer Hebrides occur during the extended winter sea-
son (Fig. SM2) with an average of 12 storms per winter. 
The winter month with the highest total storm occurrence is 
December with 19% followed by January (16%) and Febru-
ary (14%). The average storm conditions are characterised 
by  SHs = 7.21 m  (SHs

98 = 11.21 m) and  STp = 14.10 s with 
a dominant westerly direction. Storms last on average 42 h, 
with a mean storm power of 15.84  MWhm−1. The most 
powerful storms since 1950 were recorded in January of 
1993 and 1994, with total storm powers above 162  MWhm−1 
and storm duration in excess of 2 weeks (Table SM1). The 
‘Great Storm’ of January 2005 (e.g., Dawson et al., 2007) is 
recorded as the third most powerful storm since 1950 but has 
the second longest duration (16 days) and  SHs

98 of 14.8 m, 
which is over 1 m higher than the storms in January 1993 
and 1994.

In terms of return periods of extreme wave conditions, 
these are underestimated by more than 3 m for the 50 and 
100-yr Hs return periods based on uncalibrated wave rea-
nalyses (ERA5-11 and CMEMS-11) in comparision to the 
buoy data, but improve substantially following calibration 
(Fig. 6A). While cERA5-11  Hs return periods are similar to 
those determined with the buoy data,  Hs return periods based 
on cCMEMS-11 data remain underestimaned by more than 
1.5 m for return periods > 20 years. The 40 and 70-year rea-
nalysis  Hs datasets show a similar pattern in the correction 
after calibration, yielding slightly lower  Hs return periods to 
those determined with the 11-year dataset (Fig. 6B). There 
is only a minor difference between the 70-year and 40-year 
datasets in terms of  Hs return periods. In the case of cERA5-
40 and cERA5-70, the 100-year  Hs return period is 17.28 m 

and 16.85 m, respectively, while based on the cCMEMS-40 
 Hs dataset it is 15.12 m. Return values based on the POT 
approach were not displayed because the  Hs return periods 
are unrealistic high, which is considered to be due to the 
violation of the statistical independence requirement for the 
extreme value dataset.

Winter storm counts, cumulative storm duration and 
power show clear multiannual variability and are remark-
ably consistent across datasets (Fig. 7). There are, however, 
differences between the storm identification approaches. 
The storm identification algorithm produces a lower win-
ter storm count compared to the POT approach, while for 
the latter total storm duration and storm power are lower 
(Fig. 7). Despite the differences in value for the different 
storm metrics, the temporal variability in winter storminess 
is similar between both approaches. However, storm count 
variability determined with the POT approach is more pro-
nounced, while variability in storm duration and power are 
slightly suppressed in the POT compared to the storm iden-
tification algorithm.

Considering specifically the winter storminess metrics 
in the Outer Hebrides determined using the cERA5-70 
data and the storm identification algorithm proposed in this 
work, the winter storm counts range between a minimum 
of 3 storms (2013) and a maximum of 19 storms (1983 and 
1992). Cumulative storm duration over the extended win-
ter season ranges from a total of 106 h in 2001 to 1243 h 
in 2015, which corresponds to the least and most energetic 
winters with 38  MWhm−1 and 502  MWhm−1, respectively.

In general, the storm wave climate in Western Scotland is 
characterised by a high multiannual variability. Compared 
to winter storm duration and storm power, the storm counts 
according to the storm identification algorithm are less vari-
able throughout the studied period. In the early 1990’s, there 

A B

Fig. 6  Hs return periods for the various datasets. A Return period for the buoy and the calibrated/uncalibrated wave models using the reference 
time of the buoy record (11 years)). B Return periods for the calibrated datasets with extended analysis periods (40 and 70 years)
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is a cluster of energetic winters evidenced by the maximum 
in the decadal moving average of the winter storm power 
with ~ 330  MWhm−1 and winter storm duration with ~ 750 h. 
Aside from a few energetic winters, the period between 1950 
and 1980 is less energetic when compared to the period from 
1980 to 2020.

The cumulative winter storm duration and power dis-
play statistically significant increasing trends (p < 0.05) 
since 1950 regardless of the storm identification approach 
(Table 3). Likewise, a significant increasing trend is found 
for the winter  STp, while no statistically significant trend 
is identified for  SHs and storm counts determined using 
the storm identification algorithm (Table 3). For the storm 
datasets covering the last 40 years, none of the trends for 
the various parameters are statistically significant, although 
these display a tendency for negative trends in duration, 
power and ST98

p
 , and positive for the other storm metrics. 

The change in direction and statistical significance of the 
trends, when considering different analysis periods, results 
from the grouping of very energetic winters around 1990, 
which affects the linear trend estimation (Fig. 7).

The storminess trends determined using the different cali-
brated datasets display a general agreement, but there is a 
significant positive  SHs trend (6.5 mm/yr, p < 0.1) according 

to the cCMEMS-40 dataset, while for cERA5-40 or cERA-
70 there are no statistically significant trends for the same 
variable. In contrast to the winter  SHs, mean winter  Hs has 
a significant long-term (70-year) increasing trend (7 mm/
yr, p < 0.05), while no statistically significant trends are 
present in the shorter, 40-year datasets (cERA5-40 and 
cCMEMS-40) (Table 4). The winter  Tp and  Tp

98 trends are 
only significant and positive when considering the longer 
70-year dataset and winter  Hs

98 show contrasting not statisti-
cally significant magnitudes for the two different analysed 
periods.

Considering the temporal variability of the NAO as the 
dominant mode of climate variability in the NE Atlantic, 
from 1950 to 2020 the extended winter NAO shows both a 
significant positive linear long-term trend (Fig. 8A) and a 
positive correlation with winter storm parameters (Table 5). 
Negative NAO conditions are related to shorter cumulative 
storm duration and lower storm power, while positive NAO 
conditions are linked to more energetic winters in the Outer 
Hebrides (Fig. 8B, C, D). Winter storm counts, cumula-
tive duration, and power are all strongly correlated with 
the NAO, regardless of the storm identification approach 
(Table 5). For the mean and extreme storm parameters  (SHs, 
 SHs

98,  STp and  STp
98) correlation with the NAO is mostly 

A

B

C

Fig. 7  Temporal variability in winter storm count (A), cumulative 
storm duration (B), and cumulative storm power (C) based on two 
different storm data sets (cERA5-70 and cCMEMS-40) and using 

the storm identification algorithm and the POT approach (only for 
cERA5-70). Decadal moving average is indicated by thick lines
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weak and not statistically significant, while winter mean  Hs 
and  Tp are strongly correlated with the NAO (R ≅ 0.9), reaf-
firming the role of the NAO as the overwhelming climato-
logical control in interannual storm wave variability in the 
west of Scotland.

4  Discussion

4.1  Storm identification and characterisation

The identification of coastal storms can differ substan-
tially according to the scope of analysis, and the choice of 
storm criteria, which is often arbitrary. This has been high-
lighted by Harley (2017) and Martzikos et al. (2021a), who 
reviewed the broad-scale application of statistical storm 
analyses and the accompanying challenges in defining a 
generalised storm identification approach. Both reviews 
concluded that ST, MSD, and ID are the most commonly 
used criteria to identify storms from  Hs records. There is 
a broad consensus that ST can be determined based on 
the 95th percentile of the  Hs time series, while a MSD 
of either 6 or 12 h appropriately represents the minimum 

duration of a coastal storm event. However, the mete-
orological independence between consecutive storms is 
poorly defined.

Independence duration can be determined based on the 
minimum or average time between distinct extratropical 
cyclones. As such, ID can display high variability accord-
ing to location, ranging from 6 h on the Dutch coast (Li 
et al. 2014) to 336 h in Durban, South Africa (Corbella and 
Stretch 2012). For western Europe, Priestley et al. (2017a, b) 
reported that during the exceptional 2013/14 winter season, 
on average, one intense extratropical cyclone affected the 
British Isles every 60 h. Such intense cyclones are consist-
ently associated with extreme waves in the North Atlantic 
(Gramcianinov et al. 2023a), supporting the use of 60 h as an 
upper bound for the minimum time window between storm 
wave events in the higher latitudes of the North Atlantic. 
Importantly, the higher ID estimated by the extremal index 
based on the Outer Hebrides winter wave datasets indicates 
values close to 60 h (Table 2). A separation of 2.5-days (i.e., 
60 h) between independent extreme windstorms affecting 
western Europe in 1990 and 1999 was identified by Hanley 
and Caballero (2012). On the other hand, the lower bound 
of the ID determined with the extremal index for the Outer 
Hebrides wave datasets indicates a minimum separation of 
48 h, which aligns with the declustering window applied by 
Barton et al. (2022) to study extreme precipitation events 
over Europe. This indicates that wintertime wave, wind 
and precipitation extremes in western Europe driven by 
synoptic-scale processes can be consistently individualised 
by considering ID of 2–2.5 days (48–60 h). Therefore, the 
statistical determination of ID using the extremal index to 
obtain independent coastal storms from wave time series 
provides results that are in agreement with the meteorologi-
cal timescales of extratropical cyclones in the eastern North 
Atlantic.

Table 3  Winter storm trends in 
the Outer Hebrides

Trends are based on different wave data (calibrated ERA5 and CMEMS reanalysis), analysis periods (40 
and 70  years), and storm identification approaches (Storm identification algorithm  (StormID) and POT). 
Statistically significant trends for 0.05 and 0.1 significance levels are indicated in bold and underlined, 
respectively

SHs(mm/yr) STp(ms/yr) ST98

p
(ms/yr) Counts (n/yr) Duration (h/yr) Power 

 (MWhm−1/
yr)

cERA5-70
 POT 1.77 9.22 10.44 0.13 3.03 1.43
  StormID − 0.62 5.38 8.84 0.00 4.81 1.82

cERA5-40
 POT 0.38 1.68 – 11.18 – 0.05 – 1.61 – 0.86
  StormID 3.32 3.93 – 8.07 0.00 – 2.85 – 1.00

cCMEMS-40
 POT 2.97 0.54 – 0.76 0.00 – 1.23 – 0.78
  StormID 6.50 0.08 – 0.21 0.00 – 2.88 – 0.87

Table 4  Winter wave trends in the Outer Hebrides

Trends are based on different wave data (calibrated ERA5 and 
CMEMS reanalysis) and analysis period (40 and 70 years). Statisti-
cally significant trends for 0.05 and 0.1 significance levels are indi-
cated in bold and underlined, respectively

Hs(mm/yr) TP(ms/yr) H98

s
(mm/yr) T98

P
(ms/yr)

cERA5-70 7 8.4 9.9 8.4
cERA5-40 – 3.2 5.7 – 16.8 – 0.9
cCMEMS-40 – 5.9 0.4 – 13.7 3.7
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Implementing ID in high-energy wave environments can 
lead to storms lasting for several weeks, with repeated peri-
ods where  Hs is below ST. The occurrence of serial cyclone 
clustering in the NE Atlantic and affecting the Outer Heb-
rides, causes rapid succession of winter storms, resulting in 
events characterised by multiple  Hs peaks with intermediate 
 Hs throughs (Fig. 5). Serial cyclone clustering is often the 

result of secondary cyclogenesis creating cyclone families 
that are constrained by large scale flows (jet stream and 
Rossby wave breaking) (Dacre and Pinto 2020). As each 
cyclone in the same family is not truly meteorologically 
independent, consecutive  Hs peaks can be considered as a 
single storm event, even though  Hs may fall below ST. In 
terms of coastal impacts, storms with aggregated  Hs peaks 

A

B

Fig. 8  Temp or al variability of the extended winter NAO (A) and its 
correlation with winter storm counts (B), cumulative winter storm 
duration (C), and mean winter storm  Hs  (SHs) (D). Note that the 

storm parameters are based on different datasets and different storm 
identification approaches. The value of R and statistical significance 
of the correlations is listed in Table 5

Table 5  Correlation between 
winter storm parameters and 
the NAO for different datasets 
and the two storm identification 
approaches

Statistically significant correlations for p-values below 0.05 and 0.1 are indicated in bold and underlined, 
respectively

SHs
SH98

s STP
ST98

P
Count Duration Power

cERA5-70
 POT 0.29 0.27 0.23 0.32 0.81 0.79 0.77
  StormID – 0.16 0.23 0.13 0.29 0.67 0.80 0.79

cERA5-40
 POT 0.18 0.12 – 0.15 – 0.02 0.83 0.82 0.78
  StormID – 0.15 0.09 – 0.15 – 0.02 0.81 0.83 0.8

cCMEMS-40
 POT 0.12 0.09 – 0.11 0.08 0.83 0.82 0.78
  StormID – 0.28 0.03 – 0.35 – 0.01 0.81 0.82 0.79
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can cause cumulative erosional impacts over extended 
periods, as there is not enought time for beach recovery 
in between  Hs peaks (Ferreira 2005; Splinter et al. 2014). 
However, it is also possible that rapidly succeeding storms 
are meteorologically unrelated events, possibly leading to a 
significant reduction in  Hs between storm events. This can be 
captured by implementing IT as proposed in the storm iden-
tification algorithm, which assumes that if waves reach  Hs 
values below the seasonal average, even if ID is not exceeded 
the following ST exceedance is considered an independent 
event. It is therefore strongly recommended that for statis-
tical based climatological assessments appropriate statisti-
cally estimated ID values are considered and implemented 
to identify coastal storms that are associated with the driving 
storm meteorological mechanisms for a given coastal area.

The POT approach is a common method to define storms 
in coastal areas (e.g., Ciavola et al. 2014; Masselink et al. 
2014, 2016; Flor-Blanco et al. 2021; Vieira et al. 2021; 
Celedón et al. 2022), probably due to its simplicity. However, 
the POT alone only defines peaks of ST exceedances without 
considering their independence or association with the rel-
evant meteorological forcing. The inclusion of ID and IT can 
improve the ability to aggregate and distinguish exceedances 
of ST, improving the representation of the meteorological 
dynamics of coastal storm events (Harley 2017). This allows 
integrating knowledge of storm-driving meteorological pro-
cesses and linking their changes to possible shifts in storm 
wave climatology (e.g., Lodise et al. 2022; Gramcianinov 
et al. 2023a). In addition, the subsequent storminess analysis 
is physically and statistically more robust than if performed 
with the POT approach alone. This is particularly important 
for assessing long-term trends and correlating storm param-
eters with large scale climatic indices such as the NAO to 
better understand and predict coastal hazards. Compared to 
the POT approach, the storm identification algorithm pro-
posed in this work has the advantage of identifying storms 
that better represent natural extreme events especially in 
storm-dominated environments and, therefore, more cor-
rectly consider their potential consequences.

The characterisation of coastal storms is fundamental for 
understanding the potential impacts of storms and ultimately 
key to coastal risk reduction. For this purpose, wave reanaly-
ses are an important tool, as they allow to extend observa-
tional time series in space and time, and the confidence in 
climatological analyses improves significantly with longer 
time series (e.g., Feser et al. 2020). In this work, buoy obser-
vations were compared with two wave reanalyses. ERA5, a 
global reanalysis, and CMEMS, a regional reanalysis with 
higher spatial resolution but lower temporal resolution. Both 
reanalyses showed very good performance for mean wave 
energy conditions, but underestimated observations of  Hs 
and  Tp during more energetic conditions. The systematic 
underestimation of extreme waves is a common limitation 

of several wave reanalyses, due to uncertainties in the wind 
forcing (Baordo et al. 2020). However, this can be improved 
by applying a number of calibration methods (Fanti et al. 
2023). In the case of ERA5 and CMEMS, the calibration for 
the Outer Hebrides resulted in a significant improvement of 
reanalysis datasets (Fig. 3 and Fig. SM1). ERA5 was found 
to outperform CMEMS for storm conditions, resulting in 
improved agreement with the estimates of  Hs return periods 
obtained from buoy observations (Fig. 6), possibly due to 
the higher temporal resolution. Compared to its predeces-
sor, ERA-Interim, the increase in temporal resolution from 
6-h to a 1-h in ERA5, is reported to substantially improve 
the quality of the reanalysis product, including the repre-
sentation of storm events (Hersbach et al. 2020). The very 
good agreement of the reanalysis datasets with the buoy 
observations allowed to extend the analysis period to the 
last 70 years and to obtain a robust assessment of the storm 
climatology in the Outer Hebrides, as well as to compare 
storm identification approaches in terms of climatological 
storm characterisation.

4.2  Long‑term storm trends in the outer Hebrides

In the North Atlantic, there are inconsistencies in extreme 
wave trends between models, buoy observations and sat-
ellite data, particularly due to the use of different analy-
sis periods (Bricheno et al. 2023). Based on a 7-member 
ensemble of different global wave products covering the 
period from 1980 to 2014, Erikson et al. (2022) found 
a decreasing but not statistically significant trend in the 
area of the Outer Hebrides for  Hs

90 and high wave days, 
which are defined as the annual number of daily maxi-
mum  Hs exceeding 6 m. However, when considering a 
longer period between 1950 and 2008, there is a significant 
increasing trend in  Hs

90 and  Tp
90 for the west of Scotland 

(Dodet et al. 2010; Bromirski and Cayan 2015). According 
to the cERA5-70 dataset, winter  Hs and  Hs

98 show a long-
term significant increasing trend since 1950 with 13.6 and 
8.3 mm/yr, respectively, which are consistent with the 
trend magnitudes reported by Castelle et al. (2018) for the 
study area. The cERA5-40 winter  SHs determined using 
both storm identification approaches show no significant 
trend, and the cCMEMS-40 data shows an increasing trend 
but only at the lower confidence level (p < 0.1) (Table 3). 
The contrasting trends between the analysed periods 
(1950–2020 versus 1980–2020) demonstrate that linear 
trends depend strongly on the time frame of analysis due 
to multiannual and decadal variations in storm wave activ-
ity in the North Atlantic (Feser et al. 2020; Bricheno et al. 
2023). Besides affecting linear trends, the strong variabil-
ity of the wave climate in the North Atlantic challenges 
the selection of representative past reference periods for 
comparison with future wave climate projections or wave 
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energy resource assessments (e.g., Santo et al. 2015). This 
reinforces the need for long-term wave time series from 
reanalysis that have been carefully validated and calibrated 
against buoy observations.

The correlation of the interannual and multidecadal varia-
bility in storm activity in the west of Scotland with the NAO 
is well established (e.g., Dawson et al. 2004; Santo et al. 
2015). The cluster of winter seasons with increased storm 
activity in the 1990s (Fig. 7) is mirrored by a prolonged 
and consistently positive phase of the NAO (Fig. 8). The 
1990s are characterised by frequent and intense cyclones 
with anomalous extreme wind speeds and shortening of the 
North Atlantic storm track (Feser et al. 2020). The increased 
storm activity between 1980 and 2020 contrasts with the 
less intense winters between 1950 and 1980 (Fig. 7), which 
are associated with fewer and less intense positive NAO 
phases (Fig. 8) and are consistent with a reduced winter 
storm power for this region (Santo et al. 2015). Therefore, 
the winter storm variability in the Outer Hebrides evidences 
a strong climatic control and can be confidently linked to 
changes in the NAO.

The increase in winter storm activity is mainly deter-
mined by changes in storm duration and storm power, rather 
than by changes in winter storm counts (Fig. 7). It is impor-
tant to note that the trend is unaffected by the method used 
to identify the storms, as this was applied consistently for 
all winters. While the number of winter storms determined 
by the POT approach shows similar patterns to the storm 
power calculated by the storm identification algorithm, 
it is possible that some spurious trends emerge from the 
POT approach, as this approach is still frequently used but 
lacks the robust independence between events obtained 
by the storm identification algorithm. Furthermore, both 
winter storm counts and duration determined by the storm 
identification algorithm are strongly correlated with the 
NAO index, which reinforces the confidence in the results 
obtained by this approach. The POT approach also captures 
the increasing trend in winter storm duration, but also an 
increasing trend in the number of winter storms, thus mask-
ing the increase in storm duration. This is a shortcoming 
of the POT approach, questioning its ability to adequately 
assess storminess variability and reinforcing the need for 
an improved storm identification as a basis for more robust 
storminess trend analysis. Bromirski and Cayan (2015) 
found no increasing trend in storm duration in the NE Atlan-
tic and attributed an increasing trend in storm power to the 
higher frequency of winter storms. However, their analysis 
did not consider an independence duration to identify storm 
events, highlighting the different results that can be obtained 
by using different storm identification approaches. Impor-
tantly, Amaroche et al. (2022) used a storm identification 
approach similar to the storm identification algorithm pro-
posed in this work and found that changes in storm intensity 

in the western Mediterranean are mainly driven by changes 
in storm duration.

Based on the storm identification algorithm, the winter 
of 2015 was the most energetic during the analysis period, 
coinciding with the longest winter storm duration (Fig. 7). 
Similarly, Loureiro and Cooper (2018) reported that this 
winter was the most energetic in the northwest of Ireland 
since 1950 due to exceptionally high  SHs. However, the POT 
approach does not identify the 2015 winter as the most ener-
getic on record. Changes in storm duration have been asso-
ciated with shifts in the extratropical cyclone track (Dolan 
et al. 1988), but recently longer storm duration has been 
more closely associated with the intensity of extratropical 
cyclones, which is controlled by the cyclone displacement 
speed (Gramcianinov et al. 2023a). For the North Atlantic 
region between 55°N and 70°N where the Outer Hebrides 
are located, Gramcianinov et al. (2023a) demonstrates that 
slower extratropical cyclone displacement speeds relative 
to its long-term climatology lead to longer storm duration. 
As storm duration is a fundamental parameter for determin-
ing the magnitude of storm impacts (e.g., Backstrom et al. 
2022; Masselink et al. 2022), a robust assessment of regional 
changes in storm duration is crucial for coastal management. 
This can only be achieved by implementing robust statistical 
methods for identifying and characterising coastal storms.

5  Conclusions

A storm identification algorithm based on statistically 
defined criteria was developed to identify independent 
storms from  Hs records of the Outer Hebrides (Western 
Scotland), a storm-dominated, high wave energy coastal 
environment exposed to intense, frequent and rapidly suc-
ceeding winter storms. Storms are defined by a threshold 
based on the  95th percentile of  Hs, but the independence of 
consecutive storm events is determined by a minimum dura-
tion between storm threshold exceedances or by reduction of 
 Hs to values below the winter average  Hs. To avoid arbitrar-
ily selecting the independence duration between consecu-
tive storms, the proposed approach implements a minimum 
duration between storms based on the clustering tendency 
of the  Hs exceedances above the storm threshold determined 
by the extremal index. The criteria for storm independence 
determined by the statistical analysis are consistent with 
regional meteorological processes and timescales for extra-
tropical cyclones in the eastern North Atlantic. Crucially, 
they allow the separation of independent winter storm 
events, even when they occur in rapid succession, but allow 
the aggregation of storm peaks associated with serially 
clustered extratropical cyclones, enabling an objective and 
robust storm characterisation. The identification algorithm 
is particularly suitable for high-energy, storm-dominated 
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coastal environments, such as those located along the main 
global extratropical storm tracks.

To assess its performance, the storm identification algo-
rithm was compared to the common POT approach using 
40 and 70-year-long calibrated wave reanalyses datasets 
for Western Scotland. Whilst the POT approach captures 
changes in extreme  Hs, it can lead to spurious trends in 
storminess changes, as it lacks the robust independence 
between events that is achieved with the storm identification 
algorithm. The improved physical and statistical robustness 
of the storms identified by the storm algorithm is critical for 
understanding storm hazards and associated coastal risks. 
In addition, changes in the storm climatology determined 
using the storm identification algorithm can be linked to 
the driving meteorological dynamics, thereby improving the 
predictability of storm impacts.

The storminess analysis identified a significant increase in 
storm duration, contributing to an increasing trend in storm 
power in the west of Scotland. It also shows that multiannual 
and decadal variability in storm wave activity in the region is 
strongly related to the North Atlantic Oscillation. The results 
of this work highlight that regional assessments of storm 
climate variability, based on robust statistical approaches, 
are essential to complement basin and global-scale studies 
by providing deeper insights into changes in coastal stormi-
ness that are fundamental to coastal management planning.

Supplementary Information The online version contains supplemen-
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