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Abstract
This study assesses the ability of climate models to represent rainy season (RS) dependent climate indices relevant for 
agriculture and crop-specific agricultural indices in eleven African subregions. For this, we analyze model ensembles build 
from Regional Climate Models (RCMs) from CORDEX-CORE (RCM_hist) and their respective driving General Circulation 
Models (GCMs) from CMIP5 (GCM_hist). Those are compared with gridded reference data including reanalyses at high 
spatio-temporal resolution (≤ 0.25°, daily) over the climatological period 1981–2010. Furthermore, the ensemble of RCM-
evaluation runs forced by ERA-Interim (RCM_eval) is considered. Beside precipitation indices like the precipitation sum 
or number of rainy days annually and during the RS, we examine three agricultural indices (crop water need (CWN), irriga-
tion requirement, water availability), depending on the RS’ onset. The agricultural-relevant indices as simulated by climate 
models, including CORDEX-CORE, are assessed for the first time over several African subregions. All model ensembles 
simulate the general precipitation characteristics well. However, their performance strongly depends on the subregion. We 
show that the models can represent the RS in subregions with one RS adequately yet struggle in reproducing characteristics 
of two RSs. Precipitation indices based on the RS also show variable errors among the models and subregions. The repre-
sentation of CWN is affected by the model family (GCM, RCM) and the forcing data (GCM, ERA-Interim). Nevertheless, 
the too coarse resolution of the GCMs hinders the representation of such specific indices as they are not able to consider land 
surface features and related processes of smaller scale. Additionally, the daily scale and the usage of complex variables (e.g., 
surface latent heat flux for CWN) and related preconditions (e.g., RS-onset and its spatial representation) add uncertainty to 
the index calculation. Mostly, the RCMs show a higher skill in representing the indices and add value to their forcing models.

Keywords Climate indices · Rainy season · Agriculture · Africa · CORDEX-CORE · CMIP5

1 Introduction

Agricultural water supply and use in Africa is mainly rain-
fed (IPCC 2022). Thus, the continent’s food security is 
highly vulnerable to events like droughts (e.g., Meza et al. 
2020; Lottering et al. 2021) and heatwaves (e.g., Teixeira 
et al. 2013; Shew et al. 2020). This vulnerability is likely to 
increase due to climate change (IPCC 2022). This already 
manifests in more frequent extreme events over the last dec-
ades (Masih et al. 2014; Thomas and Nigam 2018). A gen-
eral drying trend caused by higher precipitation uncertainty, 
higher evapotranspiration due to warmer temperatures, and 
increasing drought and heatwave risk are observed in recent 
decades and are likely to intensify in the future over Africa 
(e.g., Kotir 2011; Maidment et al. 2015; Dosio 2017; Weber 
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et al. 2018; Ahmadalipour et al. 2019; Dosio et al. 2021a; 
IPCC 2021). These findings were also made for several 
African subregions: North (Elkouk et al. 2021; Zittis et al. 
2021), East (Haile et al. 2020; Coppola et al. 2021), South-
ern (Abiodun et al. 2019; Mbokodo et al. 2020), Central 
(Fotso-Nguemo et al. 2022; Karam et al. 2022), and West 
Africa (Sylla et al. 2016; Sambou et al. 2021). Africa’s vul-
nerability is further amplified by the rapidly growing popu-
lation and, hence, increased food demand (Cleland 2013; 
Hall et al. 2017).

Climate change can have significant impacts on food 
security (Beltran-Peña and D’Odorico 2022), which declined 
over the past decades (Zhang et al. 2023) as it was also the 
case for crop yields by 5 to 20% recently (Sultan et al. 2019). 
Until 2050, the crop yields are expected to decrease further 
by 11% in West and 8% over entire Africa (Roudier et al. 
2011; Knox et al. 2012). Not all crops and areas are affected 
to the same extent – some even may profit (Waha et al. 2013; 
Awoye et al. 2017; van Oort and Zwart 2018) – but e.g., 
for maize a general yield reduction has to be assumed over 
Africa and in several subregions (Waha et al. 2013; van Oort 
and Zwart 2018).

To investigate future climate changes under different rela-
tive concentration pathways (RCPs, van Vuuren et al. 2011), 
the above mentioned studies used general circulation (GCMs) 
and regional climate models (RCMs). Although these models 
are widely used to assess the impact of climate change on agri-
culture, their ability to reproduce the general circulation and 
precipitation characteristics over Africa is limited (e.g., Zebaze 
et al. 2019; Di Luca et al. 2020; Ayugi et al. 2020; Du et al. 
2022) – as it is the case for the characteristics represented by 
different ETCCDI indices (Expert Team on Climate Change 
Detection and Indices, Zhang et al. 2011) (e.g., Sillmann 
et al. 2013; Ongoma et al. 2019; Sow et al. 2020; Dosio et al. 
2021a; Ayugi et al. 2021). Additionally, model output evalua-
tion is complicated due to the scarcity and/or unavailability of 
ground-based observation data, as well as the large difference 
among existing gridded precipitation products (e.g., Akin-
sanola and Ogunjobi 2017; Dembélé et al. 2020; Satgé et al. 
2020; Dosio et al. 2021b). Nonetheless, it is important to know 
the model’s uncertainties of the past to make valid statements 
on the future development of the climate.

To better understand the future risks and increasing 
vulnerability of Africa’s rainfed agriculture, it is crucial 
to assess the quality of climate models in representing 
indices relevant for agriculture. Here, the onset of the 
rainy season plays an important role as it is the main fac-
tor in defining planting days for many crops (Akinseye 
et al. 2016; Dieng et al. 2018) and relevant for the defini-
tion of the agricultural indices used in this study. Further-
more, the amount and timing of rainfall during the rainy 
season as well as agricultural water needs are fundamental 
for the yield. Currently, crop-specific indices like crop 

water need (CWN), irrigation requirement (IR), or water 
availability (WA) (Allen et al. 1998) are used to estimate 
the water needs and are of major relevance for agricul-
ture. These needs increased over the past decades (Rolle 
et al. 2022) and will enhance further under future climate 
change conditions (Fant et al. 2015; Jones et al. 2015; 
Dieng et al. 2018; Sylla et al. 2018). Most studies dealing 
with the crop-specific indices examined in this work used 
climate model data to force crop or hydrological models 
(e.g., Oettli et al. 2011; Konzmann et al. 2013; Waongo 
et al. 2015; Bonetti et al. 2022). Additionally, although the 
index names are the same, there are studies not using the 
FAO definition of the selected indices (Konzmann et al. 
2013; Dieng et al. 2018; Rolle et al. 2021). Thus, few 
studies remain assessing the FAO-indices based directly 
on climate model data and focusing on a regional or larger 
scale (e.g., Gbode et al. 2022; Incoom et al. 2022) and 
not on small areas (e.g., Gurara et al. 2021). However, 
Dieng et al. (2018) focused on the performance of a single 
RCM in reproducing WA over West Africa, whereas WA 
followed a different definition. Gbode et al. (2022) con-
sidered all indices selected in our study for ensembles of 
GCMs and RCMs over West Africa but ignored the onset 
of the rainy season and different crop stages. Incoom 
et al. (2022) examined an ensemble of RCMs regarding a 
large area in Ghana regarding CWN and IR considering 
crop stages. Thus, information on the ability of climate 
models in reproducing agricultural indices over Africa is 
still rare. Moreover, current information on crop-specific 
indices is incomplete and fragmented over Africa (Rolle 
et al. 2022).

Consequently, this study aims to assess the ability of 
climate models simulating climate indices relevant to agri-
culture against gridded reference data for a historical period 
over Africa. The indices evaluated focus specifically on pre-
cipitation over the year and during the rainy seasons. In 
addition, crop-dependent indices which are determined by 
the onset of the rainy season are investigated. The novelty 
of our study consists of the assessment of CORDEX-CORE 
(Coordinated Regional Climate Downscaling Experiment 
– Coordinated Output for Regional Evaluation, Giorgi et al. 
2022), the latest CORDEX generation, regarding the simu-
lation of agricultural-relevant and crop-specific indices for 
several African subregions over a climatological period. 
The index selection underlying our study is demand-driven 
as the indices were requested by end-users (Weber et al. 
2023b).

This study is organized as follows: Sect. 2 introduces 
the study area, the used data and related processing, calcu-
lated indices, and validation metrics. Section 3 starts with 
a comparison of gridded precipitation data and continues 
with an assessment of the ability of climate models to 
simulate precipitation. Afterwards, the rainy season and 
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related indices are compared and crop-specific indices are 
analyzed. Section 4 discusses the obtained results before 
drawing conclusions.

2  Data, indices, and methods

As the climate and precipitation patterns differ widely over 
the African continent, we examined several subregions 
shown in Fig. 1. Those are selected following Dosio et al. 
(2021a) as this definition is more differentiated than those 
used in IPCC’s AR6 (Iturbide et al. 2020; IPCC 2021). The 
numerical longitudinal and latitudinal boundaries of the sub-
regions are provided in Supplementary 1.

2.1  Climate data

2.1.1  Reference data

The high spatial resolution of CORDEX-CORE (0.22° 
× 0.22°) and some further reanalysis-driven RCM-simula-
tions requires a restriction of the reference data to resolu-
tions of 0.25° × 0.25° or higher. This is necessary as too 
coarse data are a significant source of uncertainty when it 
comes to the evaluation of models having a significantly 
finer resolution (Casanueva et al. 2020; Ciarlo et al. 2021). 
In addition, some of the investigated indices require daily 
data which is a further criterion. To create a recent climatol-
ogy of the observed and modeled data, the common period 
1981–2010 is considered. We have been less strict regarding 
the start year and included datasets beginning in 1983 as 
well (Table 1). A more detailed description of the individual Fig. 1  Topography of Africa and overview of the investigated subre-

gions based on Dosio et al. (2021a)

Table 1  Overview of datasets used in this study. A more detailed 
description of the datasets is given in Supplementary 2. A more com-
prehensive overview of precipitation and temperature datasets availa-

ble for Africa showing the covered period, spatial resolution, and data 
source is provided in Supplementary 3

Dataset Long name Covered Period Spatial resolution Data source Reference

AGERA5 Agrometeorological 
ECMWF ReAnalysis 5

1979-present 0.1° Reanalysis Boogaard et al. (2022)

ARC2 African Precipitation Cli-
matology version 2

1983-present 0.1° Merged product (sta-
tion + satellite data)

Novella and Thiaw (2013)

CHIRPS Climate Hazards Group 
InfraRed Precipitation 
with Stations

1981-present 0.05° Merged product (sta-
tion + satellite data)

Funk et al. (2015)

ERA5 ECMWF ReAnalysis 5 1950-present 0.25° Reanalysis Hersbach et al. (2020)
ERA5Land ECMWF ReAnalysis 5 

Land
1950-present 0.1° Reanalysis Muñoz-Sabater et al. (2021)

GPCC (monthly) Global Precipitation Clima-
tology Centre

1981-present 0.25° Station Schneider et al. (2020)

PERSIANN-CDR Precipitation Estimation 
from Remotely Sensed 
Information using Arti-
ficial Neural Networks 
Climate Data Record

1983-present 0.25° Satellite Ashouri et al. (2015)

TAMSAT Tropical Applications 
of Meteorology using 
SATellite

1983-present 0.0375° Merged product (sta-
tion + satellite data)

Maidment et al. (2017)
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datasets is given in Supplementary 2. Further, a compre-
hensive analysis of existing gridded precipitation datasets 
over Africa has been completed to obtain an overview of 
applicable observational datasets (Supplementary 3).

In contrast to ARC-2, TAMSAT, GPCC, PERSIANN-
CDR, and CHIRPS, the reanalyses data from ERA5 and 
its child products ERA5Land and AGERA5 also provide 
2 m-temperature data (TMIN, TMAX, TMEAN) that are 
required for the computation of some indices. Other satellite 
or station-based temperature datasets fulfilling the necessary 
temporal and spatial criteria for our study are not available 
for the reference period (Supplementary 3). Additionally, 
reanalysis data are crucial when it comes to the considera-
tion of further variables, which are more complex to meas-
ure, for instance the latent heat flux.

There are some studies that already compare some of the 
aforementioned and other observational datasets with a focus 
on subregions like West Africa (e.g., Akinsanola and Ogun-
jobi 2017; Dembélé et al. 2020; Satgé et al. 2020), Ethiopia 
(Degefu et al. 2022), or on entire Africa (e.g., Dosio et al. 
2021b). However, these comparative studies demonstrate 
that the quality of the observational datasets differs with 
study area, temporal resolution, and underlying research 
question (e.g., flood monitoring, drought, extreme events, 
total amount, indices etc.). Therefore, we also undertake a 

thorough comparative analysis of the selected datasets for 
Africa and its subregions.

2.1.2  Model data

In Table 2, selected models from CMIP5 (Climate Model 
Intercomparison Project 5, Taylor et al. 2012) examined in 
this study are listed. The selection is based on the models 
used to force the available CORDEX-CORE simulations 
(Giorgi et al. 2022) shown also in Table 2. CMIP5 has been 
widely used to simulate Africa’s climate over historical and 
future periods. The ensemble or parts of it have undergone 
a manifold evaluation on a global or subregional African 
scale for temperature and precipitation characteristics (e.g., 
Zebaze et al. 2019; Di Luca et al. 2020; Ayugi et al. 2020; 
Du et al. 2022) as well as ETCCDI indices (e.g., Sillmann 
et al. 2013; Ongoma et al. 2019; Sow et al. 2020; Ayugi 
et al. 2021).

In general, the GCMs’ resolution is too coarse to account 
for important processes and simulate land surface hetero-
geneities adequately, which is also true for Africa (Dosio 
et al. 2019). Thus, we also consider RCMs from the recently 
published CORDEX-CORE ensemble (Table 2). This data 
is used instead of the previous and established CORDEX-
AFR ensemble due to its higher spatial resolution (0.22° 

Table 2  Overview of available 
RCMs from CORDEX-CORE 
for Africa in 0.22° resolution 
and the respective forcing 
data from ERA-Interim for 
evaluation runs (red) and 
from GCMs from CMIP5 for 
historical runs (purple). The 
historical ensemble of GCMs 
used is presented in green. 
*HadGEM2-ES and RCMs 
forced by this are not considered 
due to the assumption of 
30 days each month (see 
Sect. 2.1.3)

GCM/Forcing

Reference 
for GCM

Bentsen et al. 
(2012, 2013)

Martin et al. (2011), 
Jones et al. (2014)

Giorgetta et al. (2013)

spatial reso-
lution for 

GCM

2.5° x 
1.894737°

1.85° x 1.25° 1.875°

global pixel 
number for 

GCM

144x96 192x144 192x96

Model name ERA-Interim NCC:
NorESM1-M

MOHC: HadGEM2-
ES*

MPI-M:
MPI-ESM-
LR

MPI-M:
MPI-ESM-
MR

GERICS-
REMO2015_v1

1979-2017 1970-2099 1970-2099* 1970-2100

CLMcom-KIT-
CCLM5-0-15_v1

1979-2016 1950-2100 1950-2098* 1950-2100

ICTP-RegCM4-7_v0 1979-2010 1970-2099 1970-2099* 1970-2099
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instead of 0.44°) and the updated development stage of the 
RCMs.  Dosio et al. (2021a) investigated some daily pre-
cipitation characteristics and showed that CORDEX-CORE 
represents these indices better than CORDEX-AFR in the 
majority of the subregions and seasons compared to an 
ensemble of gridded observational data. Samuel et al. (2023) 
showed that CORDEX-AFR represents extreme precipita-
tion characteristics over four Southern African river basins 
better than CORDEX-CORE. Generally, RCMs need a forc-
ing by either GCMs or reanalysis data to take the general 
large-scale circulation into account. The usage of reanaly-
sis data, like ERA-Interim for CORDEX-CORE, enables a 
valid estimation of the RCMs as the reanalysis act as so 
called “perfect boundary conditions” (Wang et al. 2004). In 
summary, we consider three GCMs (GCM_hist), six RCM-
simulations forced by them (RCM_hist), and three RCMs 
forced by ERA-Interim (RCM_eval).

2.1.3  Data processing

For the data processing, we use the Climate Data Operators 
(CDO) (Schulzweida 2019). All datasets are analyzed using 
the smallest common area covered by TAMSAT. Addition-
ally, the data are processed such that the daily precipitation 
sum [mm] is the basis for further analyses. For spatial com-
parisons of the reference data, a remapping on the coarsest 
resolution of the respective datasets shown in the respective 
figures is done.

For the model data, the historical period of CMIP5 and 
CORDEX-CORE ends in 2005. Thus, we extend the time 
series until 2010 by using data from the RCP8.5 scenario as 
this is closest to recently observed greenhouse-gas emissions 
(Schwalm et al. 2020). With this, we have a recent clima-
tology which is covered by reference data and upon which 
future climatologies and related climate change induced 
impacts can be based and compared to.

As the GCMs have different spatial resolutions, we cal-
culate each index for each individual dataset first and inter-
polate them afterwards on the coarsest resolution to produce 
the ensemble mean. The RCM RegCM does not have the 
standard CORDEX-CORE resolution of 0.22° but approxi-
mately 0.225°, which is caused by the underlying Mercator 
projection. Thus, the RegCM-runs are interpolated to the 
standard resolution. The regridding for precipitation data 
is done using an inverse distance interpolation. For tem-
perature data and for integer values, we perform a nearest 
neighbor interpolation which is more appropriate for the 
underlying variable’s distribution (Casanueva et al. 2020).

Another aspect is the different handling of single models 
regarding leap years. Thus, we decided to dismiss the 29th 
of February in all datasets and for all analyses. In HadGEM, 
a month has 30 days by default. Therefore, the model and 
forced RCMs have been neglected for the ensembles as 

annual daily indices and the calculation of the rainy season 
depend on 365 days. Furthermore, the available CORDEX-
CORE data of RegCM’s evaluation run do not contain the 
December 2010. We took this inaccuracy as given and did 
not perform any processing regarding this aspect.

The quality of single models and their individual rank-
ing within the ensemble strongly depend on the investigated 
variable, region, time period, and season. Consequently, we 
focus on the equal-weighted ensemble mean of the respec-
tive model simulations. This comes along with the advan-
tage that the mentioned inconsistencies between the different 
model outputs have a reduced effect on the results compared 
to the consideration of single models.

The seasonal cycles are calculated by averaging the 
monthly precipitation sum of individual months over the 
overlapping period of the datasets. Further, we show linear 
trends (Wilks 2011) of the reference data. These are calcu-
lated over the overlapping period (1983–2019) of the con-
sidered datasets and multiplied by ten to get information on 
the trend per decade. Regarding individual subregions, the 
respective area is selected and averaged spatially to create a 
single time series for each subregion.

2.2  Rainy season definition and indices

2.2.1  Definition of the rainy season

To define the rainy season and its climatology, its onset and 
cessation have to be identified at a daily scale. There are 
several approaches defining the onset and cessation dates on 
grid-point scale (Bombardi et al. 2020) as required in this 
study. We use the method of Dunning et al. (2016) – with 
some modifications following Weber et al. (2018) – which 
is a more specialized form of Liebmann et al. (2012) since 
it can detect more than one rainy season per year. Further, it 
is a cumulative instead of a threshold-based approach. Thus, 
it avoids the detection of a so-called “false onset” caused 
by a single heavy precipitation event (Dunning et al. 2016; 
Bombardi et al. 2020) – although threshold approaches exist 
to overcome such limitations as well (e.g., Laux et al. 2008). 
Recently, this method has been frequently used to detect 
rainy seasons (Dunning et al. 2018; Weber et al. 2018; Chap-
man et al. 2020; Ferijal et al. 2021).

In a first step, the climatological cumulative sum of the 
daily rainfall anomaly is determined for each grid box and 
afterwards smoothed using a 30-day-running mean. The 
minimum (maximum) of the climatological cumulative 
daily C(d) rainfall anomaly ( Qi−

−

Q ) (Eq. 1) is considered 
as the onset (cessation) day of the climatological rainy 
season if the onset (cessation) day is lower (higher) than 
the four preceding and the four following days. If neither a 
minimum nor a maximum is found, the smoothing period 
is extended by 15 days until an equal number of minima 
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and maxima is detected. Otherwise, a 120-day-running 
mean is achieved. Thereby, we assume that the first maxi-
mum after a preceding minimum defines a rainy season 
(Weber et al. 2018). In the case that more than two rainy 
seasons are detected, we consider only the two longest 
rainy seasons. Furthermore, if the number of days between 
two rainy seasons is less than 40 or if two rainy seasons 
overlap, one rainy season is assumed.

Equation 1: Cumulative daily precipitation anomaly.

In a second step, the onset and cessation of the rainy 
seasons are determined for each individual year. This is 
done by calculating the cumulative rainfall anomaly (daily 
rainfall minus climatological daily mean rainfall over the 
period) and searching for the absolute minimum/maximum 
20 days prior to the climatological onset date to 20 days 
past the climatological cessation date for each year.

A limitation is that the algorithm detects a rainy season 
independent of the absolute precipitation amount. To avoid 
a misleading detection in arid climates, we solely consider 
grid points with an annual precipitation ≥ 100 mm for the 
final rainy season masks. The masks display the binary 
behavior of the presence or absence of the rainy season on 
each day of the year averaged over a climatological period.

C(d) =

d∑
i=1stJan

Qi − Q

2.2.2  Climate and agricultural relevant indices

Table 3 gives an overview of the indices used in this study. 
Most indices focus on precipitation characteristics, which 
are defined by the ETCCDI (Zhang et al. 2011), on annual 
scale or during the rainy season. This enables a comparison 
of these characteristics over the year as well as a separa-
tion between the rainy and the dry seasons. Additionally, 
characteristics defining the rainy season are defined as rainy 
season-related indices. Precipitation also is the basis for the 
agricultural indices. However, information on either the 
actual or potential evapotranspiration is required as well. 
Thus, these are dealt with in detail in Sect. 2.2.3.

2.2.3  Agricultural indices

The Crop Water Need (CWN) is the amount of water needed 
for the optimal growth of individual crops. This index depends 
on the temperature variables required by the applied potential 
evapotranspiration scheme, precipitation, and time dependent 
plant properties. There are different approaches available to 
derive CWN. We use the potential evapotranspiration ( ET0 ) 
based on the Hargreaves scheme (Hargreaves and Samani 
1985) requiring the mean, minimum, and maximum tempera-
ture. We build the mean of ET0 over the days of the corre-
sponding plant phase weighted by a specific crop factor ( Kc ) 
(Eq. 2). The length of each phase, also called stages, and the 
Kc s are plant specific. A common characteristic of the plant 

Table 3  Climate indices used in this study. Indices marked by * can 
be calculated based on other indices from the table. The calculation 
of precipitation-based indices depend on the considered time period 

(annual, rainy season (appended “_rs”)), the rainy season-related indi-
ces define the rainy season. Per definition, the agricultural indices are 
calculated over the rainy season as well (see Sect. 2.2.3)

Category of climate indices Abbreviation Definition Input variables

Precipitation-based indices RTOT Total precipitation from wet days over period (a wet 
day with precipitation ≥ 1 mm)

Daily precipitation data in mm

Rd Number of rainy days over period (days with precipita-
tion ≥ 1 mm)

Daily precipitation data [mm]

Dd* Number of dry days over period (days with precipita-
tion < 1 mm)

Daily precipitation data [mm]

CWD Maximum number of consecutive wet days over period Daily precipitation data [mm]
CDD Maximum number of consecutive dry days over period Daily precipitation data [mm]
nCDD Number of at least five consecutive dry days over 

period
Daily precipitation data [mm]

Rainy season-related 
indices

Ons Starting day of rainy season Daily precipitation data [mm]
Ces Ending day of rainy season Daily precipitation data [mm]
dur* Duration of rainy season Daily precipitation data [mm]

Agricultural indices CWN Water needed during the crop stages Daily potential evapotranspiration [mm]
IWR Water balance of the root zone (difference between 

the reference evapotranspiration (ET0) and effective 
precipitation)

Daily CWN and precipitation data [mm]

WA Water available for crop growth (difference between 
actual precipitation and actual evapotranspiration)

Daily precipitation [mm] and actual 
evaporation [mm] or latent heat flux 
 [Wm−2] data
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stages is that the initial stage (IS) starts with the onset of the 
first rainy season. We used the coefficients published by the 
FAO (Allen et al. 1998) and chose 12 prominent African crops 
for our analysis. However, as this would be beyond the scope 
of this paper, we solely focus on Maize (grain) of the long 
growing season due to its widespread use in entire sub-Saharan 
Africa (Cairns et al. 2013). The corresponding Kc s for each 
growing stage are given in Table 4.

Equation 2: CWN per plant phase.

The second index is the irrigation requirement (IR, Eq. 3). 
It is defined as the amount of water that is required in addition 
to precipitation in order to satisfy the CWN. We calculate IR 
as the difference between CWN and the effective precipitation, 
which is a value derived from precipitation as follows (Ali and 
Mubarak 2017):

CWNp =
1

ep − sp

ep
∑

i=sp

CWNi =
1

ep − sp
ep
∑

i=sp

(

ET0i ∗ Kcp
)

= Kcp
⎛

⎜

⎜

⎝

1
ep − sp

ep
∑

i=sp

ET0i
⎞

⎟

⎟

⎠

i = day of year

p = phase (IS, CDS, MSS, or LSS)

CWNp = cropwater need per plant phase [mm]

CWNi = daily cropwater need [mm]

Kcp = crop factor per plant phase

sp =day of year when the p
th plant phase starts

=for IS it is the start day of the rainy season and e(p−1)+1

for other phases

ep = day of year when the pth plant phase ends

ET0i = daily potential evapotranspiration [mm]

Equation 3: IR per plant phase.

This equation indicates that for daily precipitation amounts 
below 6.5 mm, the daily values for IRi equal the daily CWNi . 
However, we present IR as the mean of the daily difference 
values per plant phase because this leads to differences com-
pared to CWN.

As a third index we consider WA (water availability). It is 
calculated as the mean daily values per plant phase which are 
derived from the difference between daily precipitation and the 
actual evapotranspiration ET . ET is based on the daily surface 
latent heat flux [in  Wm−2] (Eq. 4, Allen et al. 1998). If the soil 
water storage is neglected this index is analogous to the surface 
runoff (Sylla et al. 2018).

Equation 4: WA per plant phase.

IRp =
1

ep − sp

ep∑
1=sp

(
CWNi−efftpi

)

efftpi =

⎧
⎪⎨⎪⎩

0 for tpi < 6.5mm

75 for tpi ≥ 75mm

else tpi

tpi = daily precipitation [mm]

efftpi = daily effective precipitation [mm]

WAp =
1

ep − sp

ep∑
1=sp

(
tpi−ETi

)

ETi =

hflsi

1000000

2.45
MJ

kg

ETi = daily actual evapotranspiration [mm]

hflsi = surface latent heat flux [
W

m2
]

Table 4  Plant-specific 
properties per plant phase of 
Maize (grain) (Allen et al. 
1998)

Plant: Maize (grain) Initial Stage 
(IS)

Crop Development 
Stage (CDS)

Mid-Season Stage 
(MSS)

Late-Season 
Stage (LSS)

Crop Factor (Kc) [-] 0.4 0.8 1.15 0.7
Phase Length [days]
 Long 30 50 60 40
 Short 20 35 40 30
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2.3  Validation metrics

To validate the performance of the agricultural indices based 
on the different model ensembles compared to the reference 
data, we use three different metrics: (1) the mean absolute 
error (MAE), (2) the Kling-Gupta-Efficiency (KGE), and (3) 
the Taylor Skill Score (TSS). The MAE describes the aver-
age of the absolute differences between the model and the 
reference data with lower values referring to a higher model 
quality (Wilks 2011).

The KGE (Gupta et al. 2009) considers the correlation, 
the bias, and the variability of the model and the validation:

Equation 5: Kling-Gupta-Efficiency.

With this, the three components are weighted equally. The 
KGE can represent positive and negative values [−∞;1] with 
higher values showing a better representation.

The TSS (Taylor 2001) is based on the correlation coef-
ficient and the variability and covers values between 0 and 
1. The higher a value the better.

Equation 6: Taylor Skill Score.

We use these scores as MAE prevails the unit and value 
range of the indices while KGE and TSS combine several 
characteristics of the model and reference data. The skill 
scores are applied on the agricultural indices presented in 
Sect. 3.4. First, we assess the mean temporal evolution over 
the period 1981–2010 for precipitation and CWN. For this, 
we use the absolute instead of the accumulated values shown 
in the respective figure and remove the seasonal cycle before 
calculating the skill scores. Second, we validate the spatial 
representation of the agricultural indices by remapping the 
climate models to the resolution of ERA5Land acting as 
reference data. This has the advantage that the number of 
grid points is the same for all model ensembles. Further, 
it preserves the added value of high spatial resolution and 
the corresponding spatial variance – which becomes more 

KGE = 1 −

√
(r − 1)

2 +

(
�m

�v

− 1

)2

+

(
�m

�v

− 1

)2

r = Pearson correlation coefficient

� = standard deviation of model (m) and validation (v)

� = arithmeticmean of model (m) and validation (v)

TSS =
4(1 + r)4(

�m

�v

+
1
�m

�v

)2(
1 + r0

)4

r0 = maximum correlation attainable, here 0.999999

smoothed with coarser model resolutions – of the reference 
data. A limitation of this procedure is the creation of infor-
mation on the fine grid without the related fine-scale spatial 
information, e.g., orography, which is considered in dynami-
cal and statistical downscaling approaches.

3  Results

3.1  Comparison of reference data

The first assessment of the eight precipitation datasets 
listed in Table 1 is based on the respective time series 
generated by the spatial mean of annual precipitation sums 
(Fig. 2). For entire Africa (AFR, bottom left), the previ-
ously mentioned large spread among the data becomes 
clear. This spread is not only related to the absolute 
amount of annual precipitation, but also to the interan-
nual variations and the trends in the time series. Exem-
plarily, ARC2 consistently shows lower values than the 
other considered data yet has an increasing trend. This 
behavior is caused by the number of missing values which 
decreases over time and a remarkable high precipitation 
amount in 2020. Due to these limitations, ARC2 is not 
suitable for detailed analyses of subregions and further 
aspects, regardless its long time series and high spatial 
resolution. Generally, it can be observed that the spread 
decreases over time and the data are more in line with each 
other in recent years.

Based on this, only ERA5Land, CHIRPS, and TAMSAT 
are considered for the time series of the subregions and sub-
sequent analyses. ERA5Land provides all variables required 
for the agricultural indices. CHIRPS and TAMSAT have 
a high spatial resolution and proofed reliability (Dembélé 
et al. 2020; Satgé et al. 2020).

These three time series have similar annual peaks 
within most subregions, leading to high correlation coef-
ficients among each other (not shown). Regarding the lin-
ear trends (colored numbers in the subfigures of Fig. 2 and 
1983–2019), the picture is more complicated. CHIRPS and 
TAMSAT have the same magnitude and direction in most 
subregions. However, more complex areas like Central 
Africa or ETP_H show different magnitudes or even signs 
(CAF_S). ERA5Land consistently shows the highest pre-
cipitation sum of the selected datasets in ETP_H, SAF_W, 
and SAF_E, although some peaks are outbid by the spread of 
the other datasets. For GN_C, CAF_N, CAF_S, and SAH_E, 
the first half of the period of ERA5Land (and ERA5, not 
shown) is marked by the highest precipitation amount as 
well. This behavior changes around the year 2000 when the 
sum decreases and better corresponds with the other two 
datasets. This “abrupt transition” (Hersbach et al. 2020) 
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is caused by the assimilation of different satellite data and 
underlines data inhomogeneity as a general issue of reanaly-
ses. Consequently, the linear trends are affected substantially 
resulting in negative, and thus diverging, signs over most 
subregions compared to CHIRPS and TAMSAT. Solely the 
trends in ATL and Southern Africa show the same sign in 
all three datasets. The inconsistency of precipitation trends 
has been highlighted, e.g., for West (Paeth et al. 2011; Dosio 
et al. 2020) and entire Africa (Zebaze et al. 2019).

Figure 3 shows the spatial climatologies and differences 
of CHIRPS, ERA5Land, and TAMSAT. Although the time 
series in Fig. 2 and the overall patterns of the yearly precipi-
tation sum show a good match among each other, there are 
large differences in some areas. Considering the different 
origins (station, satellite, and/or reanalysis) of the datasets 

and their processing methods, it is reasonable that there 
are some interpolation fragments (e.g., near Marrakech, 
Morocco) caused by individual stations. Especially the dis-
crepancy between subtropical and tropical regions, where 
the climatological difference between the datasets reaches 
more than 300 mm, is remarkable and has already been 
noted. While CHIRPS and TAMSAT are, apart from EAF, 
in good accordance, ERA5Land shows large differences in 
Central Africa (CAF_N and CAF_S) and ETP_H. This is 
partially caused by the mentioned inhomogeneity that is 
pronounced in these regions. Further, the representation of 
the Intertropical Convergence Zone (ITCZ) (Quagraine et al. 
2020) and parameterizations of subgrid processes (Sun et al. 
2018) can cause these differences. Consequently, ERA5 as 

Fig. 2  Time series of yearly precipitation sums for Africa and the 
respective subregions for different gridded precipitation datasets. 
While AFR (bottom left) contains all selected datasets (Sect. 2.1.1), 
the other plots are limited to CHIRPS, ERA5Land, and TAMSAT. 
Numbers show the linear trend [mm/decade] over the period 1983–

2019. The gray-shaded area shows the spread (minimum and maxi-
mum) of all eight datasets in the subregions and during their over-
lapping period (1983–2019). Furthermore, the subregional plots use 
a logarithmic scale
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the parent product of ERA5Land has shown to be less skill-
ful in the tropics than in the extratropics (Lavers et al. 2022).

Focusing on the mean seasonal cycle of rainfall aver-
aged over the subregions (Fig. 4), the three observational 

datasets exhibit differences among each other that strictly 
depend on the individual subregions. These differences 
are also underlined by the spread of all considered data-
sets. However, all three highlighted datasets are in line 

Fig. 3  Climatologies of annual precipitation sums over Africa of CHIRPS, ERA5Land, and TAMSAT for their overlapping period (1983–2010) 
and their respective differences. The data is remapped to ERA5Land (0.1°) as this dataset has the coarsest resolution
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with each other with CHIRPS and TAMSAT being more 
similar. Solely ETP_H with its complex topography 
shows larger discrepancies. Having the spatial differ-
ences in mind, it is shown that there are some differ-
ences among the datasets that balance out each other 
by calculating the spatial mean – especially within the 
tropical subregions. Additionally, it can be stated that for 
most subregions the inconsistency between the datasets 
as well as their standard deviation increases with wet-
ter conditions during the seasonal cycle. The former is 
not the case for CAF_N and EAF where differences are 
larger before and after the precipitation peak than during 
the peak.

From Fig. 4 it also becomes clear that there are three 
classes of subregions: Regions with one rainy season (e.g., 
ATL, SAH_E/W, ETP_H, and SAF_W/E); regions with 

two separate rainy seasons over the year (e.g., HRN); and 
regions representing a mixture of these classes (especially 
CAF_N/S, and GN_C). In the latter, the spatial mean is built 
over regions with one and two rainy seasons. This is shown 
as an example in Fig. 8 for CHIRPS and is treated in more 
detail in Sect. 3.3.1.

In summary, the interannual behavior of the precipita-
tion time series and their annual cycle is in good accord-
ance with CHIRPS, TAMSAT, and ERA5Land. Consider-
ing the spatial pattern, CHIRPS and TAMSAT also match 
well. Due to the combination of station and satellite data 
used to generate CHIRPS, its longer time period, and a 
couple of validation studies within Africa approving its 
high quality in different subregions (e.g., Dinku et  al. 
2018; Harrison et al. 2019; Dembélé et al. 2020; Satgé 
et al. 2020; Tarek et al. 2021), we define CHIRPS as our 

Fig. 4  Mean seasonal cycles of monthly precipitation sums from CHIRPS, ERA5Land, and TAMSAT for the period 1983–2010 for the different 
subregions. The gray-shaded area shows the spread (minimum and maximum) of all eight datasets plotted for entire Africa (bottom left)
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baseline for precipitation and precipitation-based indices 
in the subsequent analyses. As the reanalysis of ERA5Land 
contains the variables that is necessary to calculate the 
agricultural indices and has the advantage of physical con-
sistency between these, its precipitation characteristics are 
shown in the results as well to have an idea of its deviations 
from CHIRPS’ characteristics.

3.2  Evaluation of CMIP5 and CORDEX‑CORE

Subsequently, an evaluation of the precipitation charac-
teristics of the climate models’ ensemble means is done. 
In Fig. 5, their annual cycles are compared with CHIRPS 
and ERA5Land for the African subregions. To account 
for the spread of CORDEX-CORE, the shaded areas 

represent the minimum and maximum of the respective 
RCM ensembles.

With exception of a strong underestimation of RCM_eval 
at GN_C between July and September, all model ensembles 
are able to represent the general monthly precipitation char-
acteristics well. For the historical ensembles, this is also 
shown by Dosio et al. (2021a). However, the authors did 
not consider the evaluation ensemble. Further, the selection 
of reference data differs between our study and the work by 
Dosio et al. (2021a). Therefore, we justified that showing the 
seasonal cycle of CORDEX-CORE together with the refer-
ence data used in our study is important. As RCM_hist is not 
showing this behavior at GN_C and not even the ensemble 
minima and maxima are overlapping in July and August, the 
drop might be induced by the forcing data of ERA-Interim as 
indicated by Nikulin et al. (2012). Additionally, Quagraine 
et al. (2020) found a too narrow northward propagation of 

Fig. 5  Mean seasonal cycle of rainfall for the ensemble means from 
the GCMs (GCM_hist), RCMs forced by ERA-Interim (RCM_eval) 
and the GCMs (RCM_hist), respectively, and from CHIRPS and 

ERA5Land for AFR and its subregions over the period 1981–2010. 
For RCM_eval and RCM_hist, the ensemble minimum and maximum 
is shown by the shaded areas
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the monsoonal precipitation in ERA-Interim. This results in 
overestimated precipitation amounts along the Guinean coast 
and underestimated ones in the Sahel zone. However, this 
cannot be observed in the comparison of the RCM ensem-
bles conducted here.

The GCMs show a strong underestimation of precipita-
tion in ETP_H which is caused by the complex topography 
of the region that cannot be represented by the coarse reso-
lution of the GCMs. As RCM_hist’s annual cycle is much 
closer to the reference data, an added value of the dynami-
cal downscaling is detected for that region. The overestima-
tion of GCM_hist in SAF_W, SAF_E, CAF_S, and – to a 
smaller extent – EAF is in accordance with Zebaze et al. 
(2019). Both RCM ensembles perform better than GCM_
hist. However, as the historical run is closer to the GCMs 
than the evaluation run, the effect of the forcing data on the 
RCM quality can be seen. Interestingly, this overprinting 
effect of the forcing GCMs on the RCMs is not present in 
the Sahel. On the one hand, the GCMs show an underesti-
mation in SAH_W. However, both RCM ensembles are in 
good accordance with the reference data. On the other hand, 
the GCMs match the reference data well in SAH_E while 
the RCM ensembles show a systematic overestimation. As 
a consequence, the RCMs’ behavior has to be a result of the 
rainfall-related model physics, which improves the GCM-
forcing over the Western part but fail in the Eastern part.

To compare the spatial differences in Fig. 6, all data-
sets have been interpolated to the resolution of GCM_hist. 
The GCMs show an overestimation in Southern Africa and 
CAF_S and an underestimation in EAF. This behavior is 
in line with Fig. 5 and the findings of Zebaze et al. (2019). 
As indicated in Sect. 3.1, the model biases with regard to 
CHIRPS are stronger than to ERA5Land. Interestingly, the 
differences in SAH_W show a different sign compared to 
ERA5Land and CHIRPS. This is a notable example of the 
non-uniform representation of precipitation in available 
datasets and the resulting challenges for model evaluation.

Mostly, RCM_eval is in better accordance with CHIRPS 
than with ERA5Land in most parts of Africa. An exception 
of this is Southern Africa. However, the sign of the bias 
is the same at most grid points. For RCM_hist, the same 
difference patterns as for GCM_hist can be detected. This 
is highlighted by the general overestimation in Southern 
Africa. Compared to CHIRPS, this behavior is present along 
the western coast and even north of the equator. The over-
estimation in Southern Africa might be caused by a warm 
sea surface temperature bias which occurs in MPI-ESM-LR 
(Weber et al. 2023a). However, EAF and Central Africa are 
simulated closer to the reference data by RCM_hist than by 
GCM_hist and RCM_eval. This is also true in West Africa 
compared to RCM_eval.

We can conclude two major issues regarding the model 
performance. First, the quality of the model ensemble 

strongly depends on the subregion considered. Second, 
the forcing data can have a significant effect on the RCM 
simulations. This is a known issue (Wang et al. 2004; Di 
Luca et al. 2016; Sørland et al. 2021) and has been inves-
tigated for Southern Africa by Karypidou et al. (2022) in 
more detail. The authors state that the RCMs are acting 
more independently at the beginning of the rainy season 
where precipitation is a small-scale process and mainly 
coupled to land surface-atmosphere interactions. Dur-
ing the rainy season, when precipitation is governed by 
large-scale effects, the GCM forcing plays a stronger role. 
Finally, the authors conclude that RCMs are able to coun-
teract GCM-induced biases and add value to the simula-
tions in Southern Africa.

3.3  Representation of the rainy season and related 
indices

3.3.1  Rainy season

We now focus on the occurrence of one and two rainy 
seasons and their respective onset and cessation. Figure 7 
shows the number of rainy seasons based on CHIRPS. The 
Sahara and Namib deserts as well as some parts of HRN are 
not characterized by a rainy season as these regions show 
arid conditions (see Sect. 2.2.1). HRN is the only subre-
gion which is clearly dominated by two rainy seasons while 
GN_C, Central Africa, EAF, and ETP_H show larger areas 
where one as well as two rainy seasons occur. The other 
subregions show only small areas or single grid points with 
a second rainy season (e.g., SAH_E and SAF_W). Some of 
these local occurrences are caused by the high resolution of 
CHIRPS (0.05°). This can be concluded from a comparison 
with the results of Dunning et al. (2016) and Chapman et al. 
(2020), who also consider CHIRPS but in coarser resolu-
tions (0.25°) and over other periods. However, the areas of 
one and two rainy seasons agree well with the results of 
these two studies. As the precipitation between various data-
sets differs (Sect. 3.1) the rainy seasons mostly differ as well, 
as found in Chapman et al. (2020).

To be consistent when comparing the datasets, we use 
the rainy season mask of CHIRPS for all subsequent rainy 
season-related analyses. For this purpose, the CHIRPS mask 
is remapped to the respective dataset’s resolution using a 
nearest neighbor interpolation. Figure 8 shows the spatial 
mean of the onset and cessation dates in four selected sub-
regions. The selection has been made to cover all described 
rainy season types across Africa. For SAH_W with its one 
rainy season, the datasets are very similar in representing 
the onset (rs1_ons) and cessation (rs1_ces). They show a 
higher standard deviation for the onset than for the cessa-
tion days. However, all model ensembles indicate an earlier 
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onset which results in a longer rainy season compared to the 
reference data.

In the area of GN_C having one rainy season, its dura-
tion is longer than in SAH_W. This is reasonable due to the 

northward monsoonal propagation. While the reference data 
are quite similar as well, the models show a larger spread 
of the onset and cessation dates than in SAH_W. Compared 
to the reference data, this is expressed in an earlier onset in 

Fig. 6  Spatial differences of annual precipitation sums between the reference data and the model ensembles (1981–2010). For the absolute val-
ues, the dataset’s individual resolution is conserved, for the differences, all datasets are interpolated to the coarsest resolution (NorESM1-M)
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GCM_hist and RCM_eval compared to the reference data, 
but the latest onset in RCM_hist. As a consequence, the lat-
ter has the shortest rainy season while its driving models 
simulate the longest. Thus, the forcing is not overruling the 
dynamical downscaling since this represents small-scale 
processes more adequately as it has also been stated by 
Karypidou et al. (2022) for Southern Africa. A too short 
rainy season in GN_C in CORDEX-CORE, being the suc-
cessor of CORDEX-AFR, is in line with the results of Chap-
man et al. (2020). Most datasets show a higher standard 
deviation of the onset compared to the cessation. A notably 
different behavior is present in RCM_eval where the cessa-
tion’s uncertainty is much higher than in the other datasets. 
This could be related to the already mentioned inadequate 
representation of precipitation in ERA-Interim over West 
Africa which has been improved with ERA5 (Quagraine 
et al. 2020). However, considering solely grid points with 
two rainy seasons in GN_C (GN_C rs2), it seems that 
ERA5Land (like ERA5 and AGERA5, not shown) is not 
able to depict the rainy season dates in an adequate way as 
the differentiation between the first and second rainy sea-
son is not possible. This behavior is caused by the usage 
of CHIRPS’s rainy season mask which differs noticeably 
from the rainy season mask of the ERA5-products. In fact, 
ERA5Land shows a smaller area with two rainy seasons 
(map not shown). This leads to an overweight of the first 
rainy season as the grid points with one rainy season in 

ERA5Land are attributed to the CHIRPS-area with two 
rainy seasons. However, the areas with a common second 
rainy season agree well in both reference datasets regarding 
the onset (rs2_ons) and cessation (rs2_ces) dates. The onset 
of the first rainy season is also shown in an adequate way. 
GCM_hist and RCM_hist also show one long rainy season 
but are not able to simulate a second rainy season. One could 
argue that this is due to the fact that the rainy season masks 
of the ensembles do not show an overlap with CHIRPS. This 
also shows the inability of these models to represent the 
second rainy season. Actually, the rainy season masks of 
GCM_hist and RCM_hist do not represent an area with two 
rainy seasons in GN_C. This is in line with the results of 
Chapman et al. (2020), who examined the rainy seasons’ 
representation in CMIP5 and CORDEX-AFR. On the other 
hand, RCM_eval is able to represent the second rainy season 
at GN_C. Hence, it demonstrates that the RCMs depend on 
the ability of the forcing data when it comes to simulating 
two rainy seasons. The problem that both rainy seasons are 
too short is also occurring in the area of GN_C.

Regarding the rainy season dates, CHIRPS and 
ERA5Land are in line with each other for the first rainy 
season in HRN. The second rainy season begins later in 
ERA5Land but shows a comparable duration. RCM_eval 
agrees well with ERA5Land apart from a later onset of the 
first rainy season. This onset is delayed in GCM_hist which 
also has a higher standard deviation regarding the first rainy 
season. The onset of the second rainy season is represented 
well but the cessation is delayed. Interestingly, the standard 
deviation of the second rainy season is very small compared 
to the high uncertainty of the first rainy season. RCM_hist is 
not able to adequately simulate the first rainy season since 
its onset date lies around the cessation date of the reference 
data and RCM_eval. As the second rainy season is simulated 
slightly better than in GCM_hist, this results in a very short 
break between the two rainy seasons. From these three sub-
regions, we can conclude that the comparison of reference 
data in regions with a bimodal seasonal cycle is challeng-
ing. However, as the onset dates of the first rainy season 
are quite similar, this shortcoming is not affecting the agri-
cultural indices considered later-on since the first onset is 
the relevant factor for these. The performance of the model 
ensembles strongly depends on the considered subregion, 
rainy season and – for the RCMs – forcing data.

3.3.2  Precipitation‑related indices

Subsequently, we examine the precipitation-related indices 
introduced in Sect. 2.2.1 on a climatological scale. As it 
is noted previously, the rainy season shows a high spatial 
variability which was balanced by using the spatial mask 
of CHIRPS to calculate onset and cessation of the rainy 
season of the individual datasets. To calculate the indices 

Fig. 7  Mask of the occurrence of one or two rainy seasons in Africa 
based on CHIRPS’ climatology (1981–2010). Ocean and arid areas 
are excluded
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over their “own” rainy season, the temporal occurrence of 
the rainy season also adds variability, depending on the 
examined region. Hence, we decided to apply the tempo-
ral rainy season mask of CHIRPS as well. This leads to 
an increased comparability of the models with CHIRPS 
and, thus, allowing a more stringent assessment of their 
ability to reproduce the indices. Nevertheless, the spatio-
temporal differentiation between one or two rainy seasons 

is not done subsequently as we calculate the spatial mean 
of each subregion.

Figure 9 displays the total precipitation sum over the 
year (RTOT) and during the rainy season (RTOT_rs) 
over the three selected subregions. The respective rela-
tive contribution of RTOT_rs to RTOT is noted in the 
bars. Focusing on SAH_W, the relative contribution of 
the rainy season is similar in all five datasets. This is 

Fig. 8  Spatial mean of onset (ons) and cessation (ces) dates of the 
rainy seasons in the subregions SAH_W, GN_C, and HRN for the 
reference data and the model ensembles. The center of an arrow rep-
resents the median of all grid points belonging to either one or two 

rainy seasons. The bars represent the spatial standard deviation over 
the area. The horizontal line represents the mean of the five datasets. 
If a subregion contains two rainy seasons, the first is marked by black 
and the second by gray symbols
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true despite the different absolute amounts of RTOT and 
RTOT_rs. Here, RCM_hist is closest to CHIRPS while 
RCM_eval shows an over- and ERA5Land an underes-
timation. However, the case of SAH_W is comparably 
simple as the entire area is marked by one rainy season 
and the onset and cessation dates of the data are quite 
similar (see Fig. 8).

GN_C with its two rainy seasons has a better agreement 
among the datasets regarding the absolute values while the 
relative contribution of the rainy season to annual rainfall 
totals differs more strongly. This is particularly the case for 
GCM_hist which simulates only one rainy season. Conse-
quently, GCM_hist has nearly the entire annual precipita-
tion in this period although it starts significantly later than 
CHIRPS. Having this in mind, the behavior of RCM_hist 
must be pronounced as it is much closer to CHIRPS in all 
aspects despite the overestimation of the driving models. 
This reveals an added value of the RCMs compared to their 
driving data. The underestimation of RCM_eval might be 
caused by the shorter second rainy season.

The applied temporal rainy season mask of CHIRPS has a 
strong effect on the relative contributions in HRN where the 
first rainy season of CHIRPS and RCM_hist are not overlap-
ping. As a consequence, RCM_hist has a significantly lower 
contribution of RTOT_rs to RTOT. However, this shows that 
the overestimation of RTOT is caused by too much precipi-
tation during the second rainy season leading to RTOT_rs 
showing the same amount as CHIRPS. The relative contribu-
tion’s underestimation of RCM_eval – despite its ability to 
simulate the temporal characteristics of both rainy seasons 

– reveals that there is a lack of water during this important 
period. In contrast, GCM_hist shows a high ability to repro-
duce CHIRPS.

Subsequently, we focus on the number of rainy days per 
year (Rd), the rainy days during the rainy season (Rd_rs), 
and their relative contributions to the total annual number of 
days with rainfall. A common observation is that CHIRPS is 
consistently showing the lowest number of Rd that peak in 
less than 50% of the rainy days in ERA5Land. As RTOT in 
CHIRPS is in a comparable range with the other data, this 
means that the precipitation intensity of CHIRPS is gener-
ally higher – at least compared to ERA-Interim but well 
within the range of observations over Africa (Dosio et al. 
2021a). Nevertheless, the relative contribution is compara-
ble with ERA5Land leading to an agreement between the 
two datasets in this regard. Considering SAH_W, all data-
sets have comparable contributions with RCM_eval and 
RCM_hist being in between CHIRPS and ERA5Land but 
showing higher and lower absolute values, respectively. In 
GN_C, the absolute amounts of Rd lie between CHIRPS 
and ERA5Land while the relative contributions are overes-
timated compared with the reference data. Here, RCM_eval 
is closest to the reference data. While GCM_hist shows a 
strong overestimation of Rd_rs compared to Rd, RCM_
hist performs somewhat better. As this is also the case in 
SAH_W we argue that RCM_hist is adding value compared 
to its forcing data in West Africa.

The most complex situation prevails in HRN as the refer-
ence as well as the model data differ the most in that subre-
gion. Regarding the absolute amount, the model ensembles 

Fig. 9  Spatial climatology (1981–2010) of the annual precipitation 
(RTOT) and the amount of precipitation that fell during the rainy 
season (RTOT_rs) in the upper row. The number of rainy days (Rd 
and Rd_rs) over the two periods is displayed in the bottom row. The 

three subregions SAH_W, GN_C, and HRN are considered for refer-
ence and model data. The temporal rainy season mask of CHIRPS is 
applied to all datasets
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are closer to ERA5Land with the lowest values for RCM_
eval. GCM_hist is closest to ERA5Land regarding the 
absolute amount and to both reference datasets regarding 
the proportions. Both RCM ensembles are underestimating 
the relative contributions. However, RCM_eval is closer to 
the reference data while RCM_hist shows a strong underes-
timation which originates from applying the temporal rainy 
season mask of CHIRPS. This behavior is similar to RTOT. 
Having this in mind, both indices are strongly overestimated 
during the original RCM_hist rainy season. Consequently, 
RCM_hist is not able to represent the considered precipita-
tion characteristics in HRN which is caused by the interac-
tion of RCM behavior and the forcing. The RCM behavior is 
visible in the general underestimation of the relative contri-
butions, the forcing effect can be deduced from the delayed 
onset of the rainy season in RCM_hist where the behavior 
of GCM_hist is enhanced.

We further examine the occurrence of wet (CWD_rs) and 
dry (CDD_rs) spells during the rainy season. The behavior 
of the datasets generally follows the already described pat-
terns – CWD_rs is related to Rd_rs and CDD_rs behaves 
vice versa. In Fig. 10, the focus lies on the maximum length 
and the number of such dry spells, defined as at least five 
days without precipitation, in the subregions SAH_W, 
GN_C, and HRN. As it is also the case for Fig. 9, the general 
quality of the datasets depends on their ability to represent 
the rainy season mask of CHIRPS adequately. Further, it 
should be mentioned that the y-axes in Fig. 11 are not the 
same for the subregions to prevail readability as the values 
differ strongly between the subregions.

In SAH_W, ERA5Land and the RCM ensembles repre-
sent CDD_rs and nCDD_rs from CHIRPS well. ERA5Land 
and RCM_eval tend to have slightly more and longer dry 
spells while RCM_hist behaves vice versa. In contrast, 

GCM_hist shows much drier conditions as represented by 
these two indices with CDD_rs being twice as high com-
pared to CHIRPS. Thus, the largest difference between the 
examined datasets is represented by GCM_hist and RCM_
hist which is not the case for the earlier studied rainy season 
indices where the two ensembles showed a similar behavior. 
Thus, RCM_hist is able to reduce the bias of CDD_rs and 
nCDD_rs present in its forcing data in SAH_W.

Focusing on GN_C, CHIRPS represents the dataset with 
the longest dry conditions during the rainy season. This is in 
line with Rd in Fig. 9 where rainfall is more seldom but does 
not result in a reduction of the total precipitation amount in 
CHIRPS meaning that precipitation events are more intense. 
ERA5Land shows the strongest deviation from CHIRPS 
with nearly no dry spell and the shortest CDD_rs. This also 
is in line with the results of Fig. 9. The model ensembles 
are between these reference datasets with GCM_hist being 
closest to CDD_rs and RCM_eval being closest to nCDD_rs 
of CHIRPS, respectively. In total, one can argue that the 
models generally are good in representing dry spells dur-
ing the rainy season in GN_C. In comparison to SAH_W, 
the nCDD_rs is solely slightly lower in GN_C. CDD_rs is 
of a similar amount in CHIRPS and RCM_hist but doubles 
in GCM_hist and RCM_eval and is even the threefold in 
ERA5Land. This behavior underlines the differences in the 
rainy season masks of the second rainy season as represented 
by the other datasets compared to CHIRPS and, thus, high-
lights the complexity of precipitation processes in the region 
as well as.

When looking at the y-axes of HRN, CDD_rs is way 
longer than in the other subregions. While CHIRPS and 
ERA5Land show approximately 25 days as maximum 
duration, RCM_eval is around 30 days. The strongest dif-
ference is represented in GCM_hist with CDD_rs of 60 

Fig. 10  Spatial climatology (1981–2010) of the maximum number 
of consecutive dry days during the rainy season (CDD_rs, circle, left 
y-axis) and the number of periods of consecutive dry days during the 
rainy season (nCDD_rs, triangle, right y-axis) for the three subre-

gions SAH_W, GN_C, and HRN. The value range of the y-axes differ 
between the subregions. The temporal rainy season mask of CHIRPS 
is applied to all datasets
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days. In contrast, RCM_hist shows the shortest duration 
of 10 days. However, this is caused by the generally bad 
representation of the first rainy season in HRN (Fig. 8). 
Further, the differences between the forcing GCMs and 
the RCMs are highlighted again. Regarding nCDD_rs, 
CHIRPS has the highest number of dry spells followed 
by GCM_hist. Having Figs. 8 and 9 in mind, this is not 
intuitive as the rainy season overlap of GCM_hist with 
CHIRPS is worse than of ERA5Land and RCM_eval and 
Rd in GCM_hist is way higher than in CHIRPS. Addition-
ally, the reduction of nCDD_rs by RCM_hist is notable 
and is mainly caused by the short overlap of the first rainy 
season.

From the indices we can conclude that the overlap of 
the rainy season masks is the dominant factor determin-
ing whether a dataset is representing the indices calculated 
from CHIRPS well or not. A further aspect is the temporal 
distribution of precipitation during the rainy season as it is 
highlighted by Rd and the consideration of dry spells. Here, 
it is shown that RCM_hist is able to change the boundary 
conditions from its forcing GCMs making these two ensem-
bles the most diverging ones in SAH_W and HRN.

The investigation of the change of these indices in the 
future is an important and interesting aspect that is planned 
for the follow-up study.

3.4  Representation of agricultural indices

To assess the representation of the three agricultural indices 
CWN, IR, and WA by the model ensembles, we solely con-
sider ERA5Land as reference because temperature and radi-
ation are necessary to calculate CWN and WA, respectively 
(see Sect. 2.2.1). All three indices are based on four stages 
(IS – Initial Stage, CDS – Crop Development Stage, MSS 
– Mid Season Stage, and LSS – Late Season Stage) whose 
individual length and crop factor depends on the respective 
crop considered (Table 4). The initial stage begins with the 
onset of the first rainy season for which we consider the 
CHIRPS-mask for all four examined datasets to be tempo-
rally consistent. However, the higher uncertainty of the first 
rainy season’s onset among the datasets might have a strong 
effect on the planting days when considering the datasets 
individually. The cessation date of the rainy season or the 
existence of a second rainy season is irrelevant for the three 

Fig. 11  Cumulative sum of the climatology of daily precipita-
tion (tp) and crop water need (CWN) over the crop stages of maize 
(grain, long) in the three subregions SAH_W, GN_C, and HRN for 

ERA5Land and the model ensembles. The vertical lines represent the 
regional mean of the four crop-specific stages. The skill scores of the 
variables’ temporal evolution are shown in Supplementary 4
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agricultural indices as the plant processes are solely consid-
ered from the onset onwards.

Figure 11 shows the daily cumulative sum of the climatol-
ogy (1981–2010) of precipitation (tp) and CWN for the field 
mean of the three subregions studied previously. Addition-
ally, the four crop-specific stages affecting the crop factor Kc 
(see Sect. 2.2.3) are included as vertical lines. In SAH_W, tp 
is higher than CWN during the first two stages and until the 
second half of MSS meaning that there is enough water to 
match the crop’s need. ERA5Land is the first dataset where 
the need exceeds the precipitation followed by RCM_hist 
and GCM_hist in the LSS. Solely RCM_eval simulates 
higher tp than CWN for all four crop stages. Hence, the 
historical simulations are representing the relation between 
the two variables better than the evaluation runs. The strong 
difference between RCM_eval and ERA5Land originates 
from the overestimation of precipitation as CWN is on a 
comparable level. While both historical ensembles overesti-
mate precipitation, GCM_hist underestimates and RCM_hist 
overestimates CWN. Additionally, the temporal occurrence 
of tp over the year is different in the historical simulations. 
Here, GCM_hist is generating more precipitation in the 
beginning due to the earlier onset of the rainy season while 
RCM_hist has higher values later-on.

At the GN_C, all datasets simulate significantly higher 
tp than CWN. Nevertheless, the temporal occurrence of 
the precipitation differs between the models. During the 
first two stages, GCM_hist and RCM_eval are much closer 
to ERA5Land than RCM_hist which underestimates pre-
cipitation. With the beginning of MSS, RCM_eval shows 
a decrease of CWN resulting in a consistent underestima-
tion while RCM_hist is quite close to ERA5Land. On the 
other hand, GCM_hist exhibits consistently higher values 
than ERA5Land. The different qualities of the models have 
already been seen in terms of the onset of the rainy seasons 
and complicates the assessment of climate models.

In HRN, the CWN is solely fulfilled by ERA5Land dur-
ing IS. The later onset in the historical simulations and the 
high precipitation amounts during the second rainy season 
are not able to compensate the early precipitation deficit. 
RCM_eval is closest to ERA5Land in this regard.

The skill scores validating the temporal evolution over 
the year (Supplementary 4) do not give a clear idea of which 
model ensemble has the best representation. Considering 
CWN, it is clearer that RCMs have an added value compared 
to GCMs in GN_C and HRN. RCM_eval show a lower KGE 
and TSS than GCM_hist in SAH_W. Generally, the qual-
ity of the models firstly depends on the subregion and only 
afterwards on advantages of individual ensembles.

Figure 12 displays the spatial patterns of CWN, IR, and 
WA per day during the four crop stages for ERA5Land. 
This shows that CWN has the highest values during 

MSS and in subtropical regions as the higher tempera-
tures compared to the tropics increase the input factor of 
potential evapotranspiration there. IR is creating a rela-
tion between CWN and precipitation by subtracting the 
latter from CWN. Thus, negative values show no irriga-
tion need while required irrigation is marked by positive 
values. It becomes clear that irrigation is necessary in 
large parts of the Sahel as well as in HRN and Southern 
Africa for all crop stages of maize (grain). Especially in 
the MSS – when CWN is highest (see Fig. 12), but the 
ITCZ is already propagating southward and, thus, leading 
to the cessation of the rainy season in the northern parts 
of sub-Saharan Africa – a strong irrigation need of the 
same amount of the CWN is present. The cessation dur-
ing MSS is also visible in the maps of WA which consid-
ers the actual evapotranspiration based on the latent heat 
flux. The maps of IR reveal the spatial differentiation that 
was missing in the spatial means. With this information 
it becomes clear that the higher tp in SAH_W during the 
early stages originates from the West Coast but does not 
occur further inland, like in Burkina Faso. Additionally, 
GN_C has regions where IR is positive. This is true for the 
early stages as well as for the break between the two rainy 
seasons in coastal areas.

Figure 13 displays the absolute differences of CWN 
between the model ensembles and ERA5Land during the 
four stages in the respective model resolution. It becomes 
clear that the coarse resolution of the GCMs is not appro-
priate for such a specific indicator as strong differences 
with different signs occur in heterogeneous regions like 
ETP_H or around Lake Victoria. South of the equator, 
a general underestimation is present while the patterns 
north of the equator are changing in West Africa and 
HRN with the growing stages. In contrast to the GCMs, 
RCM_eval displays a strong overestimation of CWN during 
all stages in EAF. Southern Africa is in good agreement 
with ERA5Land in most areas while its northern parts are 
marked by overestimations In all stages, yet are less promi-
nent during IS and CDS. Too high values in HRN in the 
beginning are reduced and show a good agreement with 
ERA5Land towards later growing stages. In West Africa, 
CWN is generally underestimated during all stages with 
regional exceptions. For example, GN_C is showing too 
high values in IS and around Senegal overestimations are 
present during all stages. The patterns of RCM_hist display 
a composite of GCM_hist and RCM_eval. This is demon-
strated by the underestimation in SAF_W and Southern 
Africa as well as the patterns in West Africa during CDS 
and MSS rising from the GCM-forcing. The overestimation 
in EAF originates from the RCMs’ own model physics. 
Generally, one can observe that there is a different behav-
ior south- and northward of the equator between the RCM 
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ensembles: While the values of RCM_hist are lower south-
wards, they are higher northwards. As a consequence, a 
reduced overestimation in EAF and SAF is simulated in 
RCM_hist compared to RCM_eval and the overestimation 
in Western Africa is more pronounced. These behaviors are 
another example of the complex and interactive effects of 
forcing and model physics on the model output in different 
subregions. However, for HRN e.g., the temporal develop-
ment of the sign is consistent in all models.

In Fig. 14, the three validation metrics applied to the 
absolute values of CWN and the four stages are shown 
for AFR and its subregions. They represent the quality 
of CWN’s spatial distribution as simulated by the model 
ensembles based on the high resolution of the reference data. 
AFR is simulated in a comparable quality throughout the 
stages by all ensembles with GCM_hist being slightly the 

best due to the lowest MAE. Considering subregions, both 
RCM-ensembles show lower MAEs and higher KGEs and 
TSSs in most of them. Additionally, the RCM-ensembles 
are much closer to each other than RCM_hist to its forc-
ing of GCM_hist in most subregions and throughout most 
stages. This highlights the general ability in reducing errors 
introduced by the forcing. The clearest difference between 
RCMs and GCM_hist prevails in ETP_H with its complex 
terrain and demonstrates the ability of RCMs to take small-
scale land surface characteristics into account. However, not 
all subregions and stages are consistently better simulated 
by the RCMs. This especially is the case in EAF but also 
in some combinations of ensemble, subregion, stage, and 
applied metric (e.g., SAH_E or GN_C).

Figure 15 shows the absolute differences of IR of the 
model ensembles to ERA5Land. Generally, the difference 

Fig. 12  Absolute values of the climatological (1981–2010) CWN (top row), IR (middle row), and WA (bottom row) for the four crop stages of 
maize (grain) based on ERA5Land. The indices are represented in mm/day
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patterns are similar to CWN in most areas and stages. This 
is reasonable as IR is a function of CWN and creates a rela-
tion to precipitation. The underestimation by GCM_hist 
south of the equator originates from the combined effect 
of underestimating CWN and overestimating precipitation 
which favors lower IR values. For areas which show no or 
small IR like CAF, an underestimation is neglectable for irri-
gation purposes as there either is no need to irrigate or the 
need lies within the uncertainty. Underestimation becomes 
more critical in SAF or parts of GN_C as these regions are 
marked by an irrigation need over all stages in ERA5Land 
but show consistently lower values in the GCMs. This can 
result in a misleading interpretation on the level of decision 
making. The underestimation is present in the Sahel as well 
but to a lower extent.

In RCM_eval, IR is simulated slightly too low in SAF. 
Opposing to that and to GCM_hist, the underestimation in 

the Sahel is stronger in this model ensemble. In CAF and 
EAF, generally higher values and thus overestimations are 
present while the Congo basin is marked by various changes 
in sign over the growing stages. The overestimations might 
lead to a simulated irrigation need although enough water 
is available. Underestimations in GN_C during CDS might 
lead to a wrong decision regarding the general need of irri-
gation as this shows a high spatio-temporal variability in that 
area. This is also true for RCM_hist where IR is even lower. 
Especially the diverging behavior of the RCM-ensembles 
during MSS reveals large uncertainties. Thus, the differences 
among the historical RCM-scenario relate to a combination 
of the forcing data and the RCMs’ model physics, depending 
on the region as it can be seen at the western coast of CAF 
as well. Like GCM_hist, RCM_hist leads to an underesti-
mation of IR in SAF. However, its extent is lower, hence 
demonstrating the RCMs’ added value.

Fig. 13  Absolute differences of the model ensembles’ CWN to ERA5Land over the four crop stages in the respective model resolution
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WA is strongly and systematically underestimated by all 
models in all subregions (not shown). The relative underes-
timation around the equator and in South Africa is around 
40% and more while the subtropical regions of Sahel and 
Southern and East Africa show underestimations of more 
than 100% which leads to negative WA values. The under-
estimation results from too high actual evapotranspiration 
values based on the latent heat flux at the surface, which 
are subtracted from the precipitation to calculate WA. The 
overestimation of the latent heat flux over Africa is a known 
issue in some GCMs, including NorESM1-M (Bentsen et al. 
2013) and MPI-ESM (Dosio and Panitz 2016). This bias is 
also present in RegCM, forced by reanalysis data (Sylla et al. 
2012), and CLM, forced by GCMs (Dosio and Panitz 2016), 
although Dosio and Panitz (2016) showed that the RCM 
reduces the bias compared to the forcing GCM. This leads 
to the urgent necessity to improve land surface-atmosphere 
interactions in climate models.

4  Discussion and conclusion

This study examined the ability of CMIP5 and CORDEX-
CORE models to simulate climate indices related to the 
rainy season and to agricultural issues in Africa during 
the historical period of 1981–2010. As a precondition, we 
compared various gridded precipitation datasets. We found 
a notable spread between individual datasets regarding their 
precipitation sums, trends, plant phase relation, and over 

different subregions. The three selected datasets represent 
the upper range of the spread in most regions which could 
be caused by their high spatial resolution and the result-
ing consideration of the topography. These findings are in 
line with other studies comparing gridded precipitation data 
over Africa (e.g., Akinsanola and Ogunjobi 2017; Dembélé 
et al. 2020; Satgé et al. 2020; Dosio et al. 2021b). How-
ever, the first three studies focus on African subregions and 
do not compare a climatological period. Thus, the long-
term trends of datasets, e.g., the erroneous positive one of 
ARC2, and the reduction of the spread among the datasets 
with time due to the incorporation of more advanced satel-
lite products since the beginning of this millennium are not 
detected.  Dosio et al. (2021b) investigated a climatologi-
cal period and a wider range of datasets compared to our 
study. However, the authors include coarser resolved ones 
but no ERA5-products. For the ERA5-products, we observe 
a strong negative and erroneous trend (“abrupt transition”, 
Hersbach et al. 2020) in most subregions. The inhomogene-
ity over time due to the assimilation of different satellite 
data is a general limitation of reanalyses. Additionally, there 
are limitations in representing the ITCZ and, thus, tropical 
precipitation (Lavers et al. 2022) caused by an underrepre-
sentation of the northward propagation of the rainy season in 
West Africa (Quagraine et al. 2020). A further limitation of 
reanalyses – which is true for climate model data as well – is 
that processes on a subgrid scale have to be parameterized 
(Sun et al. 2018). This can introduce errors which can affect 

Fig. 14  MAE (top), KGE (middle), and TSS (bottom) of CWN in AFR and its subregions. The stages are represented by the shifted symbols of 
above each subregion. Their order follows the chronology of the stages and, thus, shows IS, CDS, MSS, and LSS from left to right
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several variables of the system as highlighted for ERA5 by 
Lavers et al. (2022). However, ERA5Land is assumed to be 
more adequate than ERA5 due to its consideration of more 
advanced parameterizations of the land surface (Muñoz-
Sabater et al. 2021). Furthermore, the broad range of avail-
able variables and its consistency among each other is a 
strong benefit and makes reanalysis data a valuable source 
for process understanding and model assessment. Regarding 
the station data, it has to be highlighted that the decreas-
ing number of in situ measurements in Africa (Bliefernicht 
et al. 2022; Kaspar et al. 2022) is problematic for the genera-
tion and validation of gridded precipitation products (e.g., 
Prein and Gobiet 2017). Focusing on the spatial distribu-
tion, TAMSAT and CHIRPS are representing the occurrence 
of precipitation well, although there are larger differences 
in EAF. ERA5Land shows a strong overestimation around 

coastal areas and mountain ranges which is typical for mod-
eled data.

When it comes to the comparison of the model ensembles 
with the reference data, we observe that RCM_hist is able to 
add value to GCM_hist as the higher resolution represents 
more land surface features and allows for a better representa-
tion of related processes (e.g., in ETP_H and West Africa). 
In this study, this is especially true for parameterized con-
vective (e.g., Rummukainen et al. 2015; Prein et al. 2016) 
and large-scale, i.e., monsoonal (Dosio et al. 2015, 2019) 
precipitation. On the one hand, this enables the RCMs to 
reduce systematic errors introduced by the GCM-forcing 
(e.g., Di Luca et al. 2016; Sørland et al. 2021; Karypidou 
et al. 2022). On the other hand, this is not true everywhere 
to the same extent. In some cases, the forcing overrules the 
dynamics of the RCMs (e.g., SAH_E and Southern Africa) 
(e.g., Panitz et al. 2014; Sørland et al. 2021). Generally, the 

Fig. 15  Same as Fig. 13 but for IR. The skill scores from Fig. 14 but for IR are shown in Supplementary 5
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RCM ensembles are closer to the reference data than the 
GCMs.

Considering the representation of the rainy season using 
the method by Dunning et al. (2016), the spatial occurrence 
of one and two rainy seasons differs strongly among the 
datasets as it also was shown by Chapman et al. (2020). 
Thus, we use the mask from CHIRPS to be spatially consist-
ent. Because of this constant assumption, we are not able to 
examine spatio-temporal changes associated with climate 
change. However, this limitation plays a minor role con-
sidering this study solely focuses on the historical period 
and does not aim to detect temporal changes. These will be 
investigated in a follow up study.

We showed that the timing of the rainy season at loca-
tions with solely one rainy season is reproduced quite well 
by the climate models (e.g., SAH_W). At locations with two 
rainy seasons, the discrepancies among the models as well 
as among the reference data (not shown) are higher. This 
increases the uncertainty on the model side which is partly 
introduced by applying the CHIRPS mask to all datasets. 
However, we consider CHIRPS to be of high accuracy due 
to its various data sources. Hence, we argue that, if a dataset 
does not overlap with that mask, it has limitations in this 
regard. A good example for this is ERA5Land which does 
not represent the two rainy seasons in GN_C in an appropri-
ate way. This is the case for all ERA5 products (not shown) 
although there are improvements compared to ERA-Interim 
(Quagraine et al. 2020; Nogueira 2020). Focusing on the 
models, RCM_eval shows a generally good agreement in 
terms of the onset of the two rainy seasons (e.g., in GN_C 
and HRN), yet with some delay. The historical simulations 
are not able to capture two rainy seasons (GN_C) or show 
a strong delay regarding the onset of the first rainy season 
(GN_C and HRN). The delay of GCM_hist is increased by 
RCM_hist so that there is no overlap of the first rainy season 
with CHIRPS in HRN. Consequently, we state that RCM_
hist is not able to reproduce the rainy season adequately 
in this region. This is caused by the forcing GCMs, since 
RCM_eval is in line with the reference data.

As a consequence, this inadequacy is also shown in the 
rainy season-dependent precipitation indices (e.g., RTOT) 
where the relative contribution of the rainy season to the 
annual precipitation is strongly underestimated. SAH_W and 
GN_C show a much better representation by the models. In 
GN_C, the RCM_hist models are more adequate than their 
forcing GCMs. The timing of precipitation during the rainy 
season differs strongly among the datasets and depends on 
the examined data and subregions as shown for CDD_rs and 
nCDD_rs. A limitation of our approach is the temporal rainy 
season mask of CHIRPS which is applied to all datasets but 
assumed to be a reasonable baseline.

Regarding the agricultural indices, we considered maize 
(grain) of the long growing season as an exemplary crop. 

We show that the timing of the precipitation occurrence 
differs between the models which has effects on the match 
of the CWN. However, in SAH_W and GN_C the histori-
cal simulations are able to represent CWN and tp in an 
adequate way. This is also found by Gbode et al. (2022). 
While RCM_eval strongly overestimates precipitation in 
SAH_W and, hence, overestimates the available amount 
of water for maize (grain). This is also underlined by the 
validation metrics. The underestimation of tp in HRN by 
all model ensembles is more stringent and only ERA5Land 
provides enough precipitation to fulfill the CWN at least 
until the middle of the CDS. A view on the absolute values 
shows that the CWN is highest during MSS. With the ces-
sation of the rainy season during that phase, the irrigation 
requirement becomes highest compared to the other stages. 
Especially the Sahel, HRN, and Southern Africa depend 
on high irrigation amounts for maize in that stage. For the 
CWN, we compared the models with ERA5Land, reveal-
ing that the models’ quality differs between subregions and 
that RCM_hist is partially dominated by the forcing data. 
Nevertheless, the difference between the GCMs and RCMs 
is remarkable and highlighted by the validation metrics 
indicating an added value RCM_hist brings to GCM_hist. 
While for some subregions GCM_hist is even closer to 
ERA5Land, it shows strong differences in SAF. In general, 
the coarse resolution is not able to represent important 
features and processes in an adequate way, especially in 
ETP_H, which, in our opinion, should be a strong argu-
ment against the consideration of GCMs for agricultural 
applications.

The considered agricultural indices show some limita-
tions as well. E.g., constant factors like the Kc and the 
lengths of the growing stages for CWN are very strict and 
do not consider local variations of plant stages or land 
surface characteristics like the soil and contained nutrients 
that have strong effects on crop yield. Per definition, IR 
has the disadvantage that abundant precipitation events 
can create strong negative values anticipating that there is 
no irrigation need. However, at most locations this addi-
tional amount of water cannot be stored to bridge subse-
quent shortcomings. Additionally, most climate models are 
not able to simulate a potential storage in reservoirs. This 
can only be integrated by forcing a hydrological model 
with the climate model’s output. Hence, high resolution 
earth system models considering more land surface and 
hydrological processes are required. This is also high-
lighted by the inability of the climate models to simulate 
WA due to the systematic overestimation of the latent heat 
flux (Sylla et al. 2012; Bentsen et al. 2013; Dosio and 
Panitz 2016). A further weakness of climate models is the 
general underestimation of the temperature range (Lind-
vall and Svensson 2015; Wang and Clow 2020; Top et al. 
2021) – defined by the difference between maximum and 
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minimum temperatures – affecting the potential evapotran-
spiration considered for the calculation of CWN. Further-
more, aside from climate models, reanalyses like ERA5 
show a bias in the surface heat fluxes as well (Martens 
et al. 2020). This bias also persists in ERA5Land (Muñoz-
Sabater et al. 2021). However, they are an indispensable 
source due to their spatio-temporal and intervariable con-
sistency which is not possible using observational data. 
While the size of the considered model ensembles should 
be larger to produce more robust results, it is currently 
limited by the available and usable data in the framework 
of CORDEX-CORE.

Despite the ability of the models to represent the inves-
tigated indices in most situations, we want to underline the 
uncertainties of the model assessment in this study and for 
Africa in general:

(1) The spread of reference data.
(2) The coarse resolution of GCMs does not consider land 

surface features and processes.
(3) The RCMs’ dependence on the forcing data.
(4) The uncertainty added by different parameterizations 

of individual models.
(5) The spatially heterogeneous pattern of model biases and 

quality.

Taking these limitations and biases into account, it is 
now possible to analyze the indices’ behavior and spa-
tio-temporal changes under climate change considering 
different emission scenarios. Moreover, a more detailed 
analysis of the rainy season’s representation in individual 
datasets is important because this is a prerequisite for the 
assessment of indices relevant for agricultural issues. For 
the rainy season representation within climate models, a 
process-based investigation of precipitation is important to 
understand and reduce individual model biases, like it has 
been done by Tamoffo et al. (2022, 2023) for Central and 
Western Africa, respectively. However, this is beyond the 
scope of the current study. Our results have shown that the 
RCMs are able to represent most indices well depending 
on the respective subregion. Nevertheless, before using the 
simulated indices for impact models and studies, a thor-
ough bias correction is still required to reduce the sys-
tematic model biases (e.g., Dieng et al. 2022; Steininger 
et al. 2023) and avoid the transmission of these biases 
and potentially misleading conclusions on adaptational 
needs in the agricultural sector. Furthermore and despite 
the added value provided by state-of-the-art RCMs, addi-
tional model development is necessary since hydrological, 
biological, and oceanic processes are underrepresented in 
RCMs although they play key roles in the climate system. 
Therefore, their incorporation would lead to improved cli-
mate simulations and more reliable input to impact and 

adaptation studies (e.g., Guimberteau et al. 2014; Zhang 
et al. 2019; Drüke et al. 2021; Weber et al. 2023a).
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