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Abstract
The upper-level jet stream is a critical element of atmospheric circulation, driving synoptic systems and extreme weather 
events. This study analyzes the impact of upper-level jets on South American (SA) summer temperature and precipitation 
under different El Niño-Southern Oscillation (ENSO) phases. Using the ERA5 reanalysis dataset from 1979 to 2022, we 
perform a daily multiparametric characterization of the jet stream, considering its spatial and temporal discontinuities. 
Besides latitude and intensity, we find that the departure and number of branches of the subtropical jet (STJ) and the longi-
tudinal extent of the Pacific branch of the polar front jet (PFJ) are needed for their description. An additional parameter is 
required to characterize the STJ due to its absence on around 40% of summer days over SA. Moreover, we observe distinct 
long-term changes in PFJ parameters across different ocean basins. Three synoptic weather types (WTs) of the upper-level 
zonal wind are identified: normal conditions, a prominent STJ pattern, and a PFJ-only pattern. The latter pattern is associated 
with anticyclonic anomalies at 500 hPa in the South Atlantic Ocean and an active SA Convergence Zone, which favors clear 
skies and warm (wet and cold) conditions in southern SA (Brazil). Consistently, the probability of experiencing warm spells 
in central Argentina is increased more than twofold. Finally, we detect that the temperature anomalies associated with the 
WTs are independent of the ENSO phase. However, ENSO modulates the frequency of the WTs: during La Niña (El Niño), 
the PFJ-only (prominent STJ) pattern is more common.

Keywords Subtropical and polar front jet · Multiparametric characterization · Weather regimes · Extreme temperatures · El 
Niño-Southern Oscillation · South American summer climate

1 Introduction

Upper-level jet streams are an essential feature of atmos-
pheric circulation at the synoptic scale, playing a key role 
in the formation and development of mid-latitude cyclones 
(Holton and Hakim 2013). They are associated with extreme 

weather phenomena such as heat waves, droughts, and heavy 
precipitation (Koch et al. 2006; Harnik et al. 2016; Mann 
et al. 2017; Rusticucci et al. 2017; Collazo et al. 2019a, b; 
Barriopedro et al. 2022, 2023; Martinez and Solman 2022). 
Jet streams can be defined as fast and relatively narrow air 
currents that extend for thousands of kilometers, typically 
located near the tropopause level (Pena-Ortiz et al. 2013). 
Upper-level jet streams can be broadly categorized into 
two main types based on their position and development 
mechanism: the subtropical jet (STJ) and the eddy-driven jet 
or polar front jet (PFJ). The STJ typically develops on the 
poleward side of the Hadley cell due to angular momentum 
transport (Held and Hou 1980; Hoskins et al. 1983), and 
the PFJ is commonly located at mid-latitudes, where the 
presence of a sharp temperature gradient creates favorable 
conditions for its formation (Pena-Ortiz et al. 2013). In the 
Southern Hemisphere (SH), the climatology of jet streams 
exhibits seasonal variations. In the warm season, a single 
jet dominates the zonal mean across the entire hemisphere, 
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whereas autumn and winter exhibit a distinct double jet 
structure (Gallego et al. 2005).

The upper-level jet streams can also exhibit zonal asym-
metries caused by stationary waves that result from topog-
raphy and heating (Hoskins and Valdes 1990; Held et al. 
2002; Lee and Kim 2003). These asymmetries can result in 
a fragmented or branched structure of the jet streams that 
can merge again after thousands of kilometers (Pena-Ortiz 
et al. 2013). In South America (SA), the Andean Mountains, 
which extend primarily in a north–south direction along the 
western coast of the continent, significantly perturb the 
atmospheric circulation favoring the disruption of the upper-
level jets (Garreaud 2009). The climatology of the upper-
level zonal wind during the summer in SA shows that the 
mid-latitude zonal flow decelerates over the southern South 
American continent, after passing through the Andes, and 
then accelerates over the Atlantic Ocean, where it reaches its 
maximum intensity (Fig. 1). In addition, a local maximum 
of the zonal wind is also present north of 40ºS east of the 
Andes, particularly over central Argentina, which is compar-
atively weaker in intensity than the mid-latitude jet stream.

Jet-stream research most often involves an analysis of 
characteristics in terms of the latitudinal position of the 
jet and the wind speed on its axis (Blackmon et al. 1977; 
Kidson 1999; Bracegirdle et al. 2018, 2020; Zolotov et al. 
2018). However, recent studies have shown that character-
izing the complex spatial variability of jet streams using only 
latitude and intensity is insufficient. To address this issue, 

researchers have proposed metrics that describe relevant 
aspects of the PFJ in the Northern Hemisphere (NH), such as 
tilt (Woollings and Blackburn 2012; Messori and Caballero 
2015) or the waviness of the associated mid-latitude circu-
lation (Cattiaux et al. 2016; Di Capua and Coumou 2016; 
Chen et al. 2016). Barriopedro et al. (2022) demonstrated 
that a multiparametric approach, incorporating factors such 
as intensity, sharpness, location, edges, tilt, and zonal asym-
metries, can help identify PFJ structures in the NH. On the 
other hand, Manney and Hegglin (2018) emphasize the 
importance of making a 3D characterization of jet cores in 
terms of location (altitude and latitude) and intensity as a 
function of longitude in both hemispheres. They state that a 
regional and seasonal breakdown of the jet configuration is 
necessary to detect changes that may be diluted or masked in 
areal and seasonal averages. This regional approach to ana-
lyzing zonal flow has the advantage of taking into account 
the influence of topography and land mass distribution 
(Hoskins and Valdes 1990; Held et al. 2002).

Upper-level jets also exhibit temporal variability at mul-
tiple scales. Long-term changes since 1979 due to climate 
change and ozone depletion have been associated with 
a poleward shift of the PFJ in the SH (Pena-Ortiz et al. 
2013; Manney and Hegglin 2018; WMO 2018). However, 
Banerjee et al. (2020) found that this trend ceased in the 
December-January–February (DJF) period after 2000. The 
poleward movement of midlatitude jet streams is consistent 
with the expansion of the tropical circulation (Lucas et al. 
2014). Moreover, modeling studies indicate that the pole-
ward shift of the SH edge of the tropics has been increased 
by chemical ozone depletion, especially during austral sum-
mer, and will be somewhat reversed by the recovery of the 
ozone hole (Son et al. 2010; Arblaster et al. 2011; McLan-
dress et al. 2011). Regarding the STJ, wind speed has gen-
erally increased in winter and decreased in summer (Man-
ney and Hegglin 2018). Observations of upper-level winds 
indicate positive trends in the upper troposphere (200 hPa) 
in northern Argentina, and significant positive wind speed 
trends at most levels in Patagonia's wind profile (Merino and 
Gassmann 2022). Altitude shifts in both jets during DJF are 
consistently positive in the SH among different reanalyses, 
except near the date line (Manney and Hegglin 2018). A 
recent study concluded that anthropogenic greenhouse gas 
emissions are the likely driver of the lifting and shifting 
polewards of the jet streams, although natural variability and 
the effects of ozone loss may have played some role in this 
change (Woollings et al. 2023).

On an interannual scale, multiple studies have shown that 
El Niño-Southern Oscillation (ENSO) can influence the 
activity of synoptic disturbances. The ENSO is the dominant 
mode of low-frequency climate variability, typically persist-
ing for several months to a few years. Through Rossby wave 
propagation, it affects the atmospheric circulation around 

Fig. 1  Climatology of the weighted vertically averaged zonal wind 
[m/s] between 400 and 100  hPa during the austral summer in the 
period 1979–2022
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the world (Trenberth et al. 1998; Sarachik and Cane 2010). 
ENSO also has a strong impact on the intensity and location 
of the STJ, as demonstrated by Yang and Webster (1990). 
During an El Niño event, the tropical troposphere experi-
ences warming, which strengthens and contracts the Had-
ley Circulation, resulting in the STJ shifting equatorward 
(Choudhury et al. 2021). Additionally, there is a significant 
correlation between ENSO and the upper-level zonal wind, 
resulting in a stronger Pacific PFJ during La Niña periods 
and a weaker PFJ during El Niño (Ding et al. 2012).

The ENSO is known to have a significant impact on 
temperature and precipitation patterns in SA. During El 
Niño, the Amazon and northeastern SA typically experi-
ence drought, while flooding occurs in the tropical west 
coast and southeastern SA (Montecinos et al. 2000; Bar-
reiro 2010; Cai et al. 2020). Cooler surface-air temperatures 
in southeastern SA coincide with increased rainfall due to 
cloud radiative impacts on insolation, although more rain-
fall often accompanies the enhanced northerly flow of warm 
air, resulting in low-amplitude air-temperature anomalies. 
Rusticucci et al. (2017) found that the impact of El Niño 
events on extreme temperatures in Argentina varies monthly, 
with colder conditions in the austral summer (fewer warm 
and more cold days). La Niña, on the other hand, leads to 
increased frequency of warm days in December, January, 
and February, and fewer cold days in December and Febru-
ary. Moreover, the frequency of extreme precipitation events 
in several regions of SA is significantly influenced by the 
ENSO phases (Grimm and Tedeschi 2009).

Several studies also indicate that the upper-level jet 
streams influence the temperature and precipitation in 
SA during the austral summer. Barros et al. (2002) found 
a strong association between the intensification (reduc-
tion) and the northward (southward) shift of the maximum 
westerly wind over the subtropical latitudes of SA and cold 
(warm) anomalies of surface temperature in practically 
every month of the year, at monthly and seasonal scales. 
Rusticucci et al. (2017) observed significant positive (nega-
tive) correlations between the intensity of the jet and cold 
(warm) extreme indices over several months. A lagged anal-
ysis showed that an above-normal intensity of the STJ in 
November is associated with a lower (higher) occurrence of 
warm days in northeastern (northwestern) Argentina during 
summer (Collazo et al. 2019a). Zamboni et al. (2010) dem-
onstrated the existence of a significant simultaneous correla-
tion between bimonthly mean precipitation anomalies over 
southeastern SA and either the first or the second (depend-
ing on the season) leading mode of interannual variability 
of upper-level wind over SA. More recently, it is identified 
that the presence of a more intense jet stream at the upper 
levels of the atmosphere arises as the common feature of 
extreme rainfall events in southeastern SA (Martinez and 
Solman 2022).

Temperature and precipitation are influenced by a vari-
ety of processes operating at different spatial and tempo-
ral scales. Although several studies have shown that the jet 
streams and ENSO can independently influence these vari-
ables, the interplay between these phenomena, particularly 
in the context of SA, remains a relatively underexplored area 
of research. Among other factors, Bruick et al. (2019) found 
that synoptic and thermodynamic conditions favoring deeper 
storms in SA during El Niño events are associated with a 
stronger upper-level jet stream, often with the equatorward 
entry region of the jet stream directly over convective storm 
regions.

This study aims to analyze the modulation exerted by 
upper-level jets on the South American summer tempera-
ture and precipitation under different ENSO phases, utilizing 
the ERA5 reanalysis dataset from 1979 to 2022. The study 
employs a multiparametric daily characterization of the jets, 
including several parameters that have not been previously 
used in the region. The statistical characteristics of these 
parameters, such as their frequency distributions and trends, 
are explored. A subset of parameters is discerned to establish 
a refined characterization of the jets, leading to the identifi-
cation of synoptic weather types (WTs) associated with the 
zonal wind in the upper troposphere. Furthermore, the influ-
ence of WTs on atmospheric circulation is examined through 
composites of several meteorological variables. Finally, the 
impact of jet stream patterns on warm spell occurrence is 
also evaluated.

2  Data and methods

2.1  2.1 Data

To characterize the upper-level jet over SA during the aus-
tral summer (DJF), we utilize hourly zonal wind data from 
the ERA5 reanalysis datasets (Hersbach et al. 2020), for the 
period 1979–2022 at seven pressure levels ranging from 
100 to 400 hPa. The data are obtained from the Copernicus 
Climate Change Service website (https:// cds. clima te. coper 
nicus. eu/ cdsapp# !/ datas et/ reana lysis- era5- press ure- levels? 
tab= overv iew, accessed in January 2023), and are aggre-
gated into daily values for each pressure level. To facilitate 
large-scale circulation analysis, the original 0.25ºx0.25º 
resolution is re-gridded to 1ºx1º using bilinear interpola-
tion. Furthermore, we estimate the mass-weighted vertical 
mean zonal wind for many of our analyses. As our primary 
interest is to study the impact of the jet on the climate of SA, 
we confine our analysis to a region centered on this continent 
(100º-20ºW, 85-10ºS). We use Climate Data Operator com-
mand lines to perform these data processing steps.

Daily data of geopotential height at 500 hPa, minimum 
and maximum temperature, precipitation, and outgoing 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
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longwave radiation (OLR) from ERA5 are also used to ana-
lyze the relationship of the jet with the SA climate. Daily 
anomalies are estimated as deviations of the climatological 
period 1991–2020 from the corresponding calendar day. In 
addition, the CPC daily gridded observational datasets (Xie 
et al. 2007) are used to contrast the results obtained with the 
reanalysis for maximum and minimum temperature and pre-
cipitation (https:// psl. noaa. gov/ data/ gridd ed/ data. cpc. globa 
ltemp. html, https:// psl. noaa. gov/ data/ gridd ed/ data. cpc. globa 
lprec ip. html, accessed in January 2023). CPC data have a 
longitude-latitude resolution of 0.5ºx0.5º, so the ERA5 data 
are interpolated to this resolution.

To determine the ENSO phase, we utilize the National 
Oceanic and Atmospheric Administration (NOAA) Oce-
anic Niño Index (ONI) for the DJF season (https:// origin. 
cpc. ncep. noaa. gov/ produ cts/ analy sis_ monit oring/ ensos 
tuff/ ONI_ v5. php, accessed in February 2023). The ONI is 
calculated based on the sea surface temperature anomalies 
in the Niño 3.4 region, which is in the equatorial Pacific 
Ocean between 120°W and 170°W longitude and 5°N and 
5°S latitude. An ONI value greater than or equal to + 0.5 °C 
indicates El Niño conditions, while a value less than or equal 
to -0.5 °C indicates La Niña conditions.

2.2  2.2 Multiparametric characterization 
of the upper‑level jets

In this study, we employ a novel daily multiparametric 
approach to effectively characterize upper-level jets. We 
adapt the parameters introduced by Barriopedro et al. (2022) 
for analyzing the NH PFJ to investigate the jet streams in 
the unique context of SA. Moreover, we incorporate valu-
able insights from prior studies conducted by Gallego et al. 
(2005) and Pena-Ortiz et al. (2013), which provide compre-
hensive descriptions of jets in the SH.

The parameters defined in this work to characterize the 
upper levels circulation over SA are shown in Table 1. All 
of them were defined from the vertically averaged zonal 
wind, except for the parameters indicating the jet altitude. It 
is often observed that upper-level jets exhibit zonal asym-
metries (i.e. there are longitudes where the zonal wind 
is weakened) within the study region. This generates the 
presence of several branches in both jets. The presence of 
the Andes Mountain range plays a relevant role in this jet 
behavior by causing stationary waves (Hoskins and Valdes 
1990; Held et al. 2002; Lee and Kim 2003). Therefore, for 
each jet branch, the position of the zonal wind maximum 
on that branch and its intensity are identified. The branches 
are classified as Atlantic (atl) or Pacific (pac) according to 
whether the jet maximum is located east or west of 70ºW 
(longitude where the Andes Mountains are located approxi-
mately) respectively.

As an example, Fig. 2a illustrates the zonal wind field 
for 19 January 1986 and the identification of some of the 
jet parameters. The STJ presents a single branch with a jet 
maximum located in the Atlantic Ocean very close to the SA 
coast. This branch has a slightly negative tilt and a longitu-
dinal extent of 56º. The PFJ has two branches, one located 
in the Pacific Ocean and the other one in the Atlantic Ocean. 
The former has a positive tilt, while the latter has a negative 
tilt. It can also be seen that the Pacific branch has a greater 
longitudinal extension and is slightly more intense than the 
Atlantic branch in this particular day. The zonal mean of the 
zonal wind shows that the 30 m/s threshold is exceeded at 
two different latitudes, one north of 40ºS and the other south, 
close to 55ºS (Fig. 2b). It is also observed that the PFJ has a 
greater latitudinal extent than the STJ, and that lat.pfj (blue 
solid line) is closer to the southern flank (lats.pfj) than to the 
northern one (latn.pfj).

2.3  2.3 Analysis of the upper‑level jet parameters

First, we describe the austral summer daily distributions of 
the jet parameters through probability density functions and 
boxplots. The Kolmogorov–Smirnov test (KS test) is used 
to test whether the data distributions come from the same 
population (Smirnov 1948). A bootstrap version of the uni-
variate KS test is performed to establish the statistical sig-
nificance using 5000 Monte Carlo simulations.

We also study long-term changes in the jet parameters 
over the period 1979–2022. The non-parametric Mann–Ken-
dall trend test (Mann 1945; Kendall 1975), and Sen’s slope 
estimator are employed to estimate the magnitude of the 
trend (Sen 1968). Later, we filter these trends by subtract-
ing the linear regression from the original parameters. From 
the detrended parameters, Spearman's correlation coefficient 
between all parameters is estimated (Spearman 1904). It is 
expected that many of these parameters are associated (e.g., 
lat and latn), so we can retain only a subset of parameters 
according to their correlation matrix. To accomplish this, we 
apply the Partitioning Around Medoids (PAM) algorithm 
(Kaufman and Rousseeuw 1990). PAM is a non-hierarchical 
algorithm that works by iteratively optimizing the selection 
of medoids, which are representative objects that minimize 
the average dissimilarity between themselves and the other 
objects within a given cluster. The number of medoids must 
be defined by the user prior to applying the algorithm. PAM 
is more robust than other clustering algorithms to noise and 
outliers in the data, and it can handle a variety of dissimi-
larity measures. In our study, the input data for the PAM 
algorithm is the dissimilarity matrix obtained from the cor-
relation matrix of the detrended upper-level jet parameters 
following the Eq. (1). The Calinski-Harabasz metric, also 
known as pseudo-F statistic (Calinski and Harabasz 1974), 
is used to determine the optimal number of clusters (Eq. 2). 

https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
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Milligan and Cooper (1985) establish that the pseudo-F sta-
tistic is one of the more effective procedures for determining 
the number of clusters according to a comprehensive evalua-
tion of more than 30 methods. This metric has already been 
used to determine the number of clusters of meteorological 
data (Bettolli et al. 2010; Penalba et al. 2013).

(1)Dissimilarity = 1 − abs(correlation)

where B is the between-cluster sum of squares, W is the 
within-cluster sum of squares, k is the number of clusters, 
and n is the total number of observations.

We also employ the PAM algorithm to identify the recur-
rent synoptic WTs of the zonal wind at upper levels. This 
algorithm is applied to the daily parameters that are iden-
tified as medoids, allowing us to group together days that 

(2)PseudoF =
B(n − k)

W(k − 1)

Table 1  Definition of the jet parameters used in this work

Parameter Acronym Definition Units

From the 
zonal mean 
of the zonal 
wind [U]

Latitudinal position Lat lat is the latitude where a local maximum of [U] is found. The local 
maximum must satisfy that:

1. [U] > 30 m/s
2. The distance between two local maxima is at least 15º
3. Two local maxima are allowed in order to represent the STJ and PFJ
If there is only one local maximum, it is classified as STJ or PFJ 

considering 40ºS as the latitude limit (Gallego et al. 2005; Pena-Ortiz 
et al. 2013). Pena-Ortiz et al. (2013) found a minimum of the zonal 
integral of the probability of occurrence of jet cores at this latitude in 
the SH and observed that this value is independent of the season

º

Wind speed Int int is simply [U] at lat m/s
Sharpness Shar shar is defined as the difference between int and the meridional mean 

of [U]
m/s

Poleward latitude Lats Southern flank of the jet defined as the latitude south of lat where the 
[U] values have decreased by half the shar

º

Equatorward latitude Latn Northern flank of the jet defined as the latitude north of lat where the 
[U] values have decreased by half the shar

º

Without the 
estimation 
of zonal 
means

Tilting Tilt tilt is defined as the slope of the linear regression between latitudes 
meeting the same criteria as lat and longitudes. Additionally, it is 
required that between two consecutive longitudes, the latitude does 
not vary by more than 2° (or twice the resolution of the data) and that 
the longitude extension of the jet branch is greater than 10° to avoid 
calculating a regression with too little data

º / º

Departure Dep dep is then computed as the root mean squared difference of the lati-
tude at which the maximum of the jet is located at each longitude and 
lat. The departure parameter measures the degree of complexity of 
the jet in the latitudinal direction

º

Branches branches number of STJ and PFJ divisions
Longitude position in the Pacific lon.pac Longitudinal position of the zonal wind maximum in the Pacific branch º
Longitude position in the Atlantic lon.atl Longitudinal position of the zonal wind maximum in the Atlantic 

branch
º

Latitude position in the Pacific lat.pac Latitudinal position of the zonal wind maximum in the Pacific branch º
Latitude position in the Atlantic lat.atl Latitudinal position of the zonal wind maximum in the Atlantic branch º
Wind speed in the Pacific int.pac Intensity of the zonal wind maximum in the Pacific branch m/s
Wind speed in the Atlantic int.atl Intensity of the zonal wind maximum in the Atlantic branch m/s
Longitude extension in the Pacific ext.lon.pac Extension in the longitudinal direction of the Pacific branch and over 

which the tilt is estimated
º

Longitude extension in the Atlantic ext.lon.atl Extension in the longitudinal direction of the Atlantic branch and over 
which the tilt is estimated

º

Height in the Pacific hei.pac Pressure level at which the maximum zonal wind is located at (lon.pac, 
lat.pac)

hPa

Height in the Atlantic hei.atl Pressure level at which the maximum zonal wind is located at (lon.atl, 
lat.atl)

hPa



1036 S. Collazo et al.

1 3

exhibited similar conditions in terms of these central param-
eters. The use of only these central parameters to cluster 
summer days with similar jet configurations allows us to 
reduce the complexity of the problem and the number of 
dimensions involved. By utilizing this approach, we aimed 
to uncover distinct clusters of synoptic patterns that can 
provide valuable insights into the underlying dynamics and 
variability of the zonal wind. The assignment of each day 
to a cluster is accomplished using a dissimilarity metric. 
The selection of a distance measure should be based on the 
specific objectives of the study and the types of variables 
involved since different measures capture different aspects 
of similarity or dissimilarity between variables. In this case, 
we utilized the versatile Gower distance (Gower 1971) to 
obtain the dissimilarity matrix, as it can handle various types 
of variables, missing data, and scale variables based on their 
range to give them equal weight in the distance calculation. 
Therefore, the Gower distance relies on different types of 
information from n variables to measure the similarities 
between two individuals.

2.4  2.4 Influence of Upper‑Level Jets and ENSO 
on South American weather

Days grouped based on upper-level jet synoptic patterns 
are used to create composites of anomalies in several vari-
ables, including geopotential height at 500 hPa, minimum 
and maximum temperature, precipitation, and OLR. The 
anomalies are assessed for statistical significance using a 
Student's test at a 95% confidence level. Additionally, com-
posite analyses of these variables are performed, consider-
ing not only the zonal wind pattern but also the phase of 

the ENSO. Significance tests with a Student's test are also 
applied to evaluate if these composites significantly differ 
from the ENSO climatology in the region.

Finally, the relationship between the WTs of the zonal 
wind and the occurrence of warm spells (WS) is analyzed. 
A WS is defined when the maximum temperature exceeds 
the daily 90th percentile of its distribution (warm day) for 
at least three consecutive days. To estimate this percentile, 
a 5-day window centered on each calendar day and the base 
period 1991–2020 is considered. In this period, by defini-
tion, the number of warm days is expected to be 10%. How-
ever, in our work we used this threshold to detect warm days 
over a longer period, 1979–2022. Due to the non-stationarity 
of the climate, the value of 10% of days can be significantly 
modified.

The probability of occurrence of a day with WS condi-
tioned to a specific WT of the upper-level jet is compared 
to the climatological probability of its occurrence. The 
Z-statistic (Eq. 3) is used to quantify the difference in prob-
abilities (Infante Gil and Zárate de Lara 1984).

where p
1
 is the conditional probability of occurrence of a 

day with WS conditioned to a given synoptic pattern of the 
upper-level jet, and p

2
 is the climatological probability esti-

mated as the ratio between the total number of days with 
WS and the total sample size. This analysis is repeated by 
comparing against the climatological probability of WS in 
each ENSO phase.

(3)
Z =

p
1
− p

2

√

p
1(1−p1)

n
1

+
p
2(1−p2)

n
2

Fig. 2  Example of the diagnosis 
of jet parameters for 19 January 
1986. Vertically averaged zonal 
wind between 400 and 100 hPa 
(a). The points indicate the 
location of the maximum zonal 
wind and lines linear regression 
representing the tilting the at 
each branch (white: subtropi-
cal jet, gray: polar front jet). 
Zonal mean of the zonal wind 
(b). Dashed vertical line is the 
threshold to determinate the jet 
presence. The horizontal solid 
line identifies the latitude (lat) 
and dashed lines correspond to 
the northern and southern flanks 
(latn and lats) of the subtropical 
jet (magenta) and polar front jet 
(blue)
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3  Results

3.1  3.1 Analysis of the jet parameters

First, we describe the daily summer distributions of the 
jet parameters obtained from the zonal mean of the zonal 
wind. The intensity and sharpness distributions of the 
PFJ exhibit significant differences compared to the STJ. 
The PFJ displays higher intensities, occasionally reaching 
or surpassing 50 m/s (Fig. S1). Regarding the latitudinal 
parameters, lat and latn, the STJ shows relatively less vari-
ability, with a mean latitude of approximately 35ºS, while 
its northern edge is situated around 29ºS. In contrast, the 
central latitude of the PFJ displays greater variability and 
elevated values of dep. On the other hand, the southern 
edge of the STJ shows a higher variability compared to 
the PFJ.

The distributions of the parameters characterizing the 
jet branches in the ocean basins are shown in Fig. 3. The 
definition of this new set of parameters allows us to reveal 
and quantify in more detail some of their properties. Many 
seasonal and hemispheric averaging studies observe the 
presence of a single summer jet in the SH (Nakamura and 
Shimpo 2004; Gallego et al. 2005); however, the analysis 
on a daily scale and focused on the South American region 
shows that the STJ is present on approximately 60% of the 
summer days, while the PFJ is consistently present and 
typically exhibits one or two branches (Fig. 3a,b).

As observed in the zonal averages, both branches of 
the PFJ tend to be more intense and with greater vari-
ability in their latitudinal position than the STJ branches 
(Fig. 3c–f). Furthermore, we find that the intensity of the 
Atlantic branch of the STJ (int.atl.stj) presents a distribu-
tion that differs significantly from the Pacific branch, with 
int.atl.stj reaching higher velocities (Fig. 3c). Note that the 
Atlantic sector encompasses the continental region east of 
the Andes, where substantial thermal gradients can arise, 
thereby intensifying the STJ. This is not observed for the 
PFJ as the continental area in mid and high latitudes is 
considerably reduced.

In terms of longitudinal locations, the maximum wind 
speed of the Pacific branch of the STJ shows a clear prefer-
ence just west of the Andes (Fig. 3g). This mountain range, 
with an elevation surpassing 2000 m.a.s.l. in the subtrop-
ics, acts as a physical barrier that obstructs the eastward 
flow and forces it upwards, resulting in a local acceleration 
of the zonal wind. On the other hand, the Pacific branch of 
the PFJ shows two preference locations: one in the west-
ern boundary of the study region and the other near the 
Andes (Fig. 3h). Regarding the Atlantic branch of both 
jets, the longitudinal position of the maximum wind speed 
presents more variable locations than the Pacific branch. 

However, it is observed that the STJ has a slightly higher 
frequency between 60º and 50ºW on the east coast of the 
continent where thermal contrasts are favored, while the 
PFJ reaches maximum velocities over the Atlantic Ocean 
(at the eastern limit of the studied region) which coincides 
with what is observed in the climatological field (Fig. 1). 
The longitudinal extent of both branches is usually greater 
in the PFJ (Fig. 3i, j) because it is less influenced by the 
presence of the continent.

The jet stream forms meanders that occur between 
alternating high-pressure ridges and low-pressure troughs 
(Janach 2015), which favors the tilting of the jets. A negative 
tilt implies a NW–SE orientation of the jet branches and is 
compatible with the expected inclination at the front of the 
trough. As observed by Barriopedro et al. (2022) for the NH 
PFJ, the tilt displays a near-Gaussian distribution for all the 
branches, with frequency maxima at slightly negative values, 
especially for STJ (Fig. 3k,l).

Finally, it is found that the STJ is located at higher alti-
tudes than the PFJ because the thickness of the troposphere 
increases as we move towards the equator (Fig. 3m, n). As 
we have seen, the PFJ presents a large latitudinal variability 
that will also be accompanied by a greater variability in the 
jet altitude. The behavior of this parameter does not usually 
show marked differences between the Atlantic and Pacific 
branches.

To continue with the statistical description of these jet 
stream parameters, an analysis of the trends of the sum-
mer aggregate values of these parameters for the period 
1979–2022 is carried out. The results indicate significant 
changes at the 5% level mainly for the PFJ parameters 
(Table 2). The PFJ shows a poleward shift and an ascent 
into the upper levels of the atmosphere in SA, which is 
robust to results previously obtained for other reanalyses 
(Pena-Ortiz et al. 2013; Manney and Hegglin 2018; WMO 
2018). Climate warming favors an expansion of the tropical 
circulation (Lucas et al. 2014) and an increase in the alti-
tude of the tropopause (Santer 2003; Lorenz and DeWeaver 
2007; Seidel and Randel 2007; Archer and Caldeira 2008; 
Xian and Homeyer 2019). The introduction of newly defined 
parameters allows us to make significant additional observa-
tions on the changes in the PFJ over the last decades. Distin-
guishing differences emerge between the Atlantic and Pacific 
branches. We observe a substantial poleward displacement 
exclusively within the Pacific branch of the PFJ. Conversely, 
the Atlantic branch exhibits a prominent acceleration of the 
jet exceeding 0.5 m/s per decade—approximately twice the 
observed trend in zonal mean wind speed. Regarding the jet 
altitude, substantial changes are observed in both branches, 
but the Atlantic branch stands out with a more pronounced 
ascent. Moreover, our analysis reveals an amplified vari-
ability in the latitudinal position of the PFJ within the stud-
ied region. This is attributed to the contrasting behavior 
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observed between the Atlantic and Pacific branches. While 
the Atlantic branch exhibits no significant change in its lati-
tudinal position, the Pacific branch demonstrates a notewor-
thy poleward shift, contributing to the overall increased spa-
tial variability. Finally, it is highlighted that the weaker and 
more discontinuous conditions of the STJ, both spatially and 
temporally, lead to the STJ having less consistent changes 
than the PFJ during the austral summer. Among all the STJ 
parameters, we only find an increase in the longitudinal 
extension of the Pacific branch. This extension could poten-
tially be associated with localized changes in the Hadley cell 
response to variations in sea surface temperature (Fatmasari 
2021). However, further comprehensive studies are required 
to better understand and explore this phenomenon.

We have gathered a wide range of parameters to char-
acterize STJ and PFJ; however, many of them are likely to 
show an association. To ensure an accurate estimation of 
linear associations and avoid spurious correlations, we pro-
ceeded to filter the linear trends of the parameters. Numer-
ous significant associations are evident among the defined 
parameters (Fig. S2). It is noteworthy that these associa-
tions extend beyond solely the latitudinal parameters. For 
instance, the parameters of intensity and sharpness exhibit 
a positive association, while the departure and tilting of 
the STJ display a negative correlation. As observed earlier, 
negative values of inclination are highly favored in the STJ 
(Fig. 3k), thus a more pronounced NW–SE tilt corresponds 
to a greater fluctuation in the latitudinal position of the jet.

Therefore, the parameters are not independent and may 
provide redundant information. The correlation matrix 
allows us to visualize certain groups of variables that are 
associated with each other; however, it is difficult to group 
them directly from this matrix. To achieve this in an objec-
tive way, we apply the PAM algorithm to the distance matrix 
estimated from the correlation matrix. The optimal num-
ber of clusters, determined by the Pseudo-F criterion, is 
found to be 7, as it exhibits a maximum at this value (Fig. 
S3a). Table 3 presents the central parameter of each cluster 
(medoids) along with the corresponding parameters encom-
passed within each cluster. Clusters 1 and 5 predominantly 
group characteristics associated with the position of the STJ 
and PFJ, respectively. Clusters 2 and 6 are dominated by 
parameters linked to wind speed, while Cluster 3 presents 
several parameters related to tilt. Cluster 4 only consists 
of branches.stj and hei.atl.stj, which exhibit a significant 
positive correlation. Finally, Cluster 7 is characterized by 

parameters associated with the longitudinal position of the 
PFJ.

The preceding analysis has led us to identify seven key 
parameters for characterizing the summer jets in SA. Four 
parameters are needed to effectively describe the STJ, 
whereas three parameters are sufficient for the PFJ. While 
the traditional parameters of latitude and intensity hold sig-
nificance for both jets, they do not provide a complete pic-
ture. To enhance the characterization of the PFJ, we include 
the longitudinal extent of the Pacific branch, which exhibits 
considerable variability, as depicted by the frequency distri-
butions (Fig. 3j). To capture the complexities of the STJ, it is 
crucial to consider the dep and the number of branches. The 
number of branches enables a comprehensive analysis of the 
temporal and spatial discontinuity observed within the STJ 
during the austral summer, while the dep parameter quanti-
fies the latitudinal complexity. An additional parameter is 
required to accurately capture and quantify its intermittent 
nature during the summer days (unlike PFJ, which is consist-
ently present).

3.2  3.2 Weather types derived the jets parameters 
and its influence on the atmospheric 
circulation.

Based on this new characterization of the jets using four 
parameters to describe the STJ and three parameters for the 
PFJ, we can derive synoptic weather types of the zonal wind 
at upper levels during the summer over SA. These patterns 
will enable the grouping of summer days that exhibit similar 
configurations in the jets, facilitating the identification of 
common atmospheric conditions. The optimum number of 
WTs is determined to be three from the Pseudo-F statistic 
(Fig. S3b). For each of these WTs, we can obtain compos-
ites of the zonal wind to visualize their spatial configuration 
(Fig. 4).

WT1 encompasses just over 50% of the summer days, 
making it the designated "Normal" pattern for the season. In 
this weather type, the PFJ is characterized by two branches, 
with one extending over the Atlantic and the other over the 
Pacific, with the former displaying higher intensity (Fig. 4a). 
Additionally, a branch of the STJ is observed over central 
Argentina and Uruguay. This pattern most closely resembles 
the zonal wind climatology shown in Fig. 1.

WT2 comprises approximately 11% of the summer days 
and represents a distinctive weather pattern characterized 
by the prominent influence of the STJ. In this pattern, the 
STJ is positioned over central Argentina and gradually tilts 
southeastward over the Atlantic Ocean, attaining its peak 
intensity. Accompanying this pronounced tilt, the dep.STJ 
exhibits higher values compared to the "Normal" pattern, 
with significantly different distributions (Fig. 4b). Addition-
ally, the circulation of both jets over the Pacific remains 

Fig. 3  Frequency bar plot of the number of branches of the jets (a, b) 
and climatological mean frequency distributions of the austral sum-
mer jet parameters (c-n) for the 1979–2022 period. The left (right) 
column shows the parameters for the subtropical (polar) jet. The solid 
(dashed) lines are used to represent the jet parameters of the Pacific 
(Atlantic) branch

◂
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relatively weak in WT2. In particular, the int.PFJ is lower 
in WT2 and displays a distribution that significantly differs 
from that observed in WT1 (Fig. 4c).

Finally, WT3, accounting for approximately 37% of sum-
mer days, represents a distinct weather pattern where only 
the PFJ is present, i.e., the STJ is absent. In this WT, the 
PFJ exhibits a more continuous zonal structure, positioned 
around 48ºS. WT3 stands out as the most distinctive among 
the three WTs. This differentiation stems from the absence 
of the STJ and significant differences in the frequency dis-
tributions of all parameters used to describe the PFJ when 
compared to the other two patterns. It is characterized by a 
PFJ that tends to have a narrower latitudinal range, higher 
intensity, and greater longitudinal extent in comparison to 
the other weather types (Fig. 4c).

An example of the zonal wind field at upper levels for a 
given day of each WT is shown in Fig. S4. The selected days 
corresponds to the day with the lowest L1-norm of the dif-
ference between the median of the main standardized param-
eters for each WT and the specific values of these parameters 
on each day (this measure is called the Manhattan distance).

We now inquire about the persistence and prevailing tran-
sitions of these configurations. For each WT, we conduct 
an identification process for events, characterized as one or 
more consecutive days classified within that specific WT. 
To evaluate persistence, we examine the frequency of occur-
rence of events that have durations equal to d days. Analysis 
of the persistence of the WTs reveals important differences 

among them (Fig. 5). WT2 has the lowest persistence with 
no event lasting more than 5 consecutive days and most fre-
quently lasting only one day. In contrast, WT3 shows that 
several events can persist for more than 5 days, including 
two record events lasting 17 days. This discrepancy in per-
sistence can be partially attributed to favorable blocking con-
ditions over the Atlantic associated with WT3, as will be 
presented later in this section. Finally, WT1 presents events 
that on average have a persistence between 1 and 6 days.

To quantitatively assess the probability of persistence and 
transitions between the WTs, we calculate the absolute fre-
quencies of evolving from group i to group j over consecu-
tive days. Using these values, we estimate the conditional 
probabilities (Table 4). WT1 and WT3 have a probability 
of remaining in the same cluster of approximately 65%, 
which is consistent with the higher persistence observed in 
Fig. 5, while WT2 has only a 31% probability of persistence. 
In contrast, the most probable transition between patterns 
occurs from WT2 to WT1, indicating a decrease in the dep 
of the jet stream over the Atlantic and its movement towards 
higher latitudes. Consequently, only a residual portion of 
the STJ persists over central Argentina and Uruguay. On the 
other hand, the probability of a transition from WT3 to WT2 
is exceptionally low, estimated at only 3%. This low likeli-
hood arises from the fact that such a transition would involve 
a sudden emergence of a prominent STJ from a state where 
it is initially absent. Moreover, the probability of transitions 
between WT1 and WT3 is higher compared to transitions 
between WT1 and WT2. This observation indicates that a 
weakening of the STJ is more likely than an increase in its 
inclination in the South Atlantic Ocean during the austral 
summer.

In addition to obtaining the WTs of the upper-level zonal 
wind, it is possible to derive composites of other meteoro-
logical variables to analyze the associated atmospheric 
circulation and weather conditions. The composite of the 
500 hPa geopotential height anomalies for the days in each 
WT is depicted in Fig. 6a. WT1 and WT2 exhibit cyclonic 
anomalies in the Atlantic, typically associated to the devel-
opment of cold fronts to the east of the cyclonic systems 
(Fig. 6a). Moreover, WT2 demonstrates a more intense 

Table 2  Jet parameters with significant trends at 5% in the period 
1979–2022 and the Sen’s slope estimator

Parameter Trend Parameter Trend

lat.PFJ − 0.59º per decade int.PFJ 0.24 m/s per 
decade

lat.pac.PFJ − 0.55º per decade int.atl.PFJ 0.51 m/s per 
decade

dep.PFJ 0.18º per decade hei.pac.PFJ − 3.96 hPa per 
decade

ext.lon.pac.STJ 0.69º per deacade hei.atl.PFJ − 4.50 hPa per 
decade

Table 3  Grouping of jet 
parameters and their associated 
central parameter according to 
the PAM algorithm

Central parameters Cluster

1 lat.STJ lat.STJ, latn.STJ, lats.STJ, lon.pac.STJ, lat.pac.STJ, lon.atl.STJ, lat.atl.STJ, 
ext.lon.atl.STJ, ext.lon.atl.PFJ

2 shar.STJ int.STJ, shar.STJ, int.pac.STJ, int.atl.STJ, hei.pac.STJ, tilt.pac.PFJ
3 dep.STJ dep.STJ, ext.lon.pac.STJ, tilt.pac.STJ, tilt.atl.STJ, tilt.atl.PFJ
4 branches.STJ branches.STJ, hei.atl.STJ
5 lat.PFJ lat.PFJ, latn.PFJ, lats.PFJ, lat.pac.PFJ, lat.atl.PFJ, hei.pac.PFJ, hei.atl.PFJ
6 int.PFJ int.PFJ, shar.PFJ, dep.PFJ, int.atl.PFJ
7 ext.lon.pac.PFJ branches.PFJ, lon.pac.PFJ, ext.lon.pac.PFJ, int.pac.PFJ, lon.atl.PFJ
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configuration due to the presence of anticyclonic anomalies 
in the Antarctic Peninsula region, which channels the south-
erly flow and results in larger cold anomalies (Fig. 6a–c). 

This circulation pattern leads to the irruption of cold air 
in the southern region of SA east of the Andes (Fig. 6b, 
c). The occurrence of strong and long-lived cold surges 

Fig. 4  Synoptic Weather Types (WT) of the weighted vertically aver-
aged zonal wind between 400 and 100  hPa and percentage of days 
corresponding to each group [m/s] (a). Boxplots of the STJ medoid 
parameters for the WTs with the jet present (b). Boxplots of the 
PFJ medoid parameters (c). The boxplots show the median and the 

first and third quartiles, their whiskers extend from the hinge up to 
a distance of 1,5 * IQR (where IQR is the interquartile range), and 
the data beyond the end of the whiskers are the outlier points and are 
plotted individually
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in subtropical SA is closely related to the presence of an 
upper-level jet entrance (Garreaud 2000). This jet entrance 
induces an ageostrophic direct circulation that reinforces the 
near-surface southerly flow and leads to an intensification 
of the cold air incursion (Marengo et al. 1997; Hamilton 
and Tarifa, 1978; Garreaud 2000; Lanfredi and de Camargo 
2018). Regions other than southern SA east of the Andes 
show significant temperature and precipitation anoma-
lies: in southern Chile, cyclonic anomalies in the Pacific 
Ocean in WT2 trigger increased convection and wet condi-
tions (Fig. 6a, d, e); conversely, inhibition of convection in 
northern and eastern Brazil leads to drought conditions and 
the occurrence of warm maximum temperature anomalies 
due to soil moisture-atmosphere feedback (Fig. 6b, d, e). 
This region has a strong soil moisture-atmosphere coupling 
throughout the year, which has been shown to partially drive 
temperature variability (Menéndez et al. 2019).

Unlike the other two patterns, WT3 displays anticyclonic 
anomalies in the South Atlantic Ocean and cyclonic anoma-
lies in the north of SA (Fig. 6a), which could lead to atmos-
pheric blocking in the region (Rodrigues and Woollings 

2017). The cyclonic anomalies in northern SA, with a center 
over southern Brazil, promote convergence and enhanced 
convection and precipitation (Fig. 6b, d, e). Summer rain-
fall in tropical and subtropical SA is associated with two 
convergence zones: the Intertropical Convergence Zone 
(ITCZ) and the South Atlantic Convergence Zone (SACZ), 
respectively. Both convergence zones may benefit from the 
cyclonic conditions observed during this WT3 and show 
increased activity. The ITZC plays an essential role in the 
northern tropical SA climate (Vasconcellos et al. 2020). In 
summer, the southward migration of the ITCZ triggers the 
rainy season in northeastern SA (Michot et al. 2018). In sub-
tropical SA, SACZ enhancement promotes increased precip-
itation in Brazil (Carvalho et al. 2004; Gan et al. 2004; Vera 
et al. 2006; da Silva and de Carvalho 2007; Vasconcelos 
Junior et al. 2018; Fialho et al. 2023; Pezzi et al. 2023). The 
SACZ is commonly defined as an extended convective band 
that typically originates from the Amazon basin, stretches 
towards the southeast of Brazil, and protrudes into the south-
eastern subtropical Atlantic Ocean (Kodama 1992, 1993; 
Carvalho et al. 2002, 2004). Several previous studies have 
observed that the SACZ induces a dipolar pattern of precipi-
tation anomalies (Casarin and Kousky 1986; Kousky 1988; 
Kayano and Kousky 1996; Nogués-Paegle and Mo 1997; 
Herdies 2002; DÍaz and Aceituno 2003; Silva and Berbery 
2006; Marengo et al. 2012). The compensatory subsidence 
branch is located in southeastern SA (Cerne and Vera 2011), 
resulting in warm anomalies in the region due to clear skies 
and adiabatic warming (Fig. 6b, c, e). On the other hand, 
the presence of an anticyclonic center in the South Atlan-
tic Ocean may contribute to warm advection over central 
Argentina and clear skies over Patagonia.

3.3  3.3 Modulation of the ENSO signal

ENSO exerts a significant influence on the climate patterns 
of SA, leading to pronounced variations in rainfall, temper-
ature, and atmospheric circulation across the region. Due 
to this significant impact, we have undertaken an examina-
tion of the modulation of ENSO on the WTs obtained in 
the preceding sections. First, we estimate the frequency 
of occurrence of each zonal wind pattern (Fig. 4) based 
on the ENSO phase (Fig. 7). WT1 displays nearly equal 
probabilities across all ENSO phases, suggesting its inde-
pendence from ENSO conditions. In contrast, WT2, char-
acterized by a prominent STJ, exhibits a higher probabil-
ity during the El Niño phase, indicating a potential link 
between the two. Furthermore, approximately 40% of the 
days featuring WT3, solely characterized by the PFJ, occur 
during the La Niña phase. Zooming out to the seasonal 
scale, we observe that the El Niño phase is associated 
with a strengthening of the STJ and a deceleration of the 
PFJ (Fig. S5). This observed correlation aligns with the 
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Fig. 5  Percentage frequency of the persistence of each synoptic WT 
of the weighted vertically averaged zonal wind between 400 and 
100 hPa

Table 4  Percentage of 
permanence and transition 
between the synoptic WT of the 
weighted vertically averaged 
zonal wind between 400 and 
100 hPa 

From WT

To WT 1 2 3
1 65% 59% 30%
2 13% 31% 3%
3 22% 9% 67%
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Fig. 6  Composites of the anomalies of: geopotential height at 
500  hPa [gpm] (a), maximum temperature [ºC] (b), minimum tem-
perature [ºC] (c), precipitation [mm/day] (d), and OLR [W  m−2] (e) 
for each of the synoptic patterns obtained from the weighted verti-

cally averaged zonal wind between 400 and 100 hPa. Only anomalies 
significantly different from zero according to a t-test with a 95% con-
fidence level are shown
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frequencies of occurrence obtained for each of the zonal 
wind patterns, further supporting the consistency between 
the ENSO phases and the respective zonal wind behaviors.

The resemblance between the expected climatologi-
cal patterns of temperature and precipitation anomalies 
for the El Niño and La Niña phases (Fig. S6) and those 

Fig. 6  (continued)

Fig. 7  Frequency of occurrence of each of the synoptic WT according to ENSO phase
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derived for these variables within WT2 and WT3 (Fig. 6), 
respectively, prompted us to investigate whether the zonal 
wind configuration significantly contributes to these 
anomalies, or if they predominantly arise as a response 
to the ENSO signal across the region. For this purpose, 
we generated composites of meteorological variables by 
classifying days according to their zonal wind WT and 
ENSO phase. We then evaluated whether the composites 
obtained from these variables significantly differed from 
the ENSO climatology (Fig S5). Figure 8 presents these 
differences for the maximum temperature anomalies. In 
WT1 and during El Niño, the zonal wind pattern inten-
sifies the cold anomalies typically expected during this 
ENSO phase in central and northern Argentina. Simul-
taneously, it promotes warm conditions in eastern Brazil 
through the inhibition of convection. During the ENSO 
neutral phase, significant differences are obtained over an 
even larger area. In the case of La Niña, anomalies of the 
opposite sign to those expected according to the ENSO 
climatology are recorded in central Argentina and Uru-
guay. However, no significant differences are observed in 
the rest of the regions.

When El Niño coincides with WT2, it reinforces the 
effects of the STJ, resulting in unusually cold conditions 
in Argentina and Uruguay. During the ENSO neutral 
phase, the prominent STJ primarily affects central and 
northeastern Brazil. In this configuration, warm anoma-
lies associated with WT2 prevail due to the suppression of 
precipitation (Fig. S7). Lastly, under La Niña conditions 
in conjunction with WT2, a distinct signal emerges where 
anomalies contrary to ENSO climatology are observed in 
central Chile and Argentina, and central-eastern Brazil. 
This deviation from expected patterns is primarily influ-
enced by the pronounced jet stream associated with WT2.

Composites of the maximum temperature anoma-
lies under the PFJ-only pattern (WT3) and discrimina-
tion based on the ENSO phase reveal that the synoptic 
signal is dominant over the low-frequency variability 
signal. This implies that the absence of the STJ leads 
to warm (cold) conditions in southern South America 
(Brazil), irrespective of the ENSO phase, because of 
the presence of anticyclonic anomalies in the Atlantic 
and cyclonic anomalies over Brazil. Similar results are 
found for minimum temperature anomalies (not shown). 
Regarding precipitation, significant results are observed 
only in localized areas of the continent (Fig. S7), mainly 
in central-eastern Brazil and Paraguay under WT2 and 
WT3. It is worth noting that in the northwest region of 
South America, ENSO tends to be the primary driver of 
temperature and precipitation anomalies. In this area, the 
configuration of zonal wind at upper levels does not sig-
nificantly contribute to these anomalies.

3.4  3.4 Influence of the upper‑level jets on warm 
spells

The remarkable impact of zonal wind patterns on maximum 
temperature has motivated us to explore their influence on 
the warm extremes of this variable. The analysis of the cli-
matology of the WS occurrence probability in SA reveals 
that the southeastern region of the continent and Colombia 
exhibit the highest likelihood of experiencing WS. In these 
regions, approximately 10% of summer days are classified 
as belonging to a WS (Fig. S8). Conversely, the central-
western region of Brazil demonstrates a lower probability 
of encountering such extremely warm events.

To quantify the relationship between the occurrence of a 
day in a WS and the upper-level zonal wind patterns, we esti-
mate the percentage increase in the conditional probability of 
WS occurrence for each of the three WTs with respect to the 
WS climatology (Fig. 9). The WT1 significantly decreases 
the probability of WS occurrence by approximately 50% 
compared to the climatology in central Argentina. In con-
trast, in the central-eastern region of Brazil, it contributes 
to an increase in the WS probability by around 45%. For the 
other two patterns, the effects are even more intense. The 
conditional probability of a WS occurrence in southern SA 
is consistent with the findings mentioned earlier regarding 
maximum temperature anomalies. The occurrence of WT2 
inhibits the possibility of WS occurrence in a significant por-
tion of southern SA. However, in regions such as northern 
SA, northern Chile, the Peruvian coast, parts of Bolivia, and 
Brazil, the occurrence of this pattern more than doubles the 
probability of WS compared to the climatological average. 
Identifying the occurrence of this specific zonal wind pattern 
yields valuable insights into temperature extremes across 
the region. The absence of the STJ (WT3) almost doubles 
the probability of WS in southern SA, while resulting in a 
reduction of about 75% of this probability in tropical SA.

Continuing from our previous analysis, it is worth explor-
ing how these results are influenced by the various phases 
of the ENSO. Firstly, we examine the climatological prob-
ability of the occurrence of WS in each ENSO phase (Fig. 
S9). As expected, the interaction between soil and atmos-
phere plays a crucial role, and we observe that regions where 
drought conditions are most likely in each ENSO phase (Fig. 
S6) tend to have the highest probabilities of experiencing 
WS (Fig. S9). These regions are the northern SA during the 
El Niño phase and the southeastern SA during La Niña. It 
is important to note that in northern SA during the La Niña 
phase, no WS occurs because wet conditions are favored.

Subsequently, we examine how the climatological prob-
ability of WS occurrence during different ENSO phases is 
modified by considering the zonal wind pattern at upper lev-
els (Fig. 10). As observed in the previous section regarding 
maximum temperature anomalies, the synoptic WT signal 
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outweighs the influence of ENSO at the warm extremes, 
particularly in central and northern Argentina. In this region, 
the combination of any ENSO phase with WT1 and WT2 

results in an average reduction in the probability of WS 
occurrence compared to the expected frequency based on 
ENSO climatology. In particular, when a prominent STJ 

Fig. 8  Mean difference between the maximum temperature anomalies 
obtained for each synoptic pattern and ENSO phase and the expected 
for this variable according to ENSO climatology. Only anomalies sig-

nificantly different from zero according to a t-test with a 95% confi-
dence level are shown
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coincides with the La Niña phase, no instances of WS are 
observed. In contrast, the PFJ-only pattern, regardless of the 
ENSO phase, promotes a higher frequency of WS. Notably, 
in central Argentina, the likelihood of WS is three times 
higher than expected based on El Niño climatology when 
this phase is combined with WT3.

4  Discussion

Our study has made substantial advancements in understand-
ing upper-level jets in SA by introducing new parameters 
that provide valuable insights into their behavior. These 
parameters uncover novel properties and enhance our abil-
ity to interpret and disentangle different aspects of the jet 
configuration, including temporal and spatial discontinuities 
during the austral summer. Hemispheric-scale studies have 
traditionally shown that, on average, only one jet exists in 
the SH during the austral summer (Nakamura and Shimpo 
2004; Gallego et al. 2005). However, our focused investiga-
tion on SA has revealed more details. We have observed 
the presence of the STJ on approximately 60% of summer 
days in the region. The preferred locations of the STJ are 
upstream of the Andes Mountain range or over the east coast 
of the continent, with the latter (Atlantic branch) capable 
of reaching higher wind speeds. In addition, we have found 
that the northwest-southeast tilt of the STJ is more frequent, 
which is consistent with the inclination at the front of the 
trough (Janach 2015). The PFJ is constantly present during 
the summer with generally one or two branches. In addition, 
its latitudinal variability is higher when compared to the 
more stable STJ latitudes. This difference between the two 
jets can be attributed to their distinct formation mechanisms 
(Pena-Ortiz et al. 2013; Simmons 2022).

We have identified a poleward shift of the PFJ that is 
consistent with previous studies from different reanalyses 
(Pena-Ortiz et al. 2013; Manney and Hegglin 2018; WMO 
2018; Waugh et al. 2020). This general poleward movement 
of midlatitude jet streams is consistent with the expansion 
of the tropical circulation (Lucas et al. 2014) and is related 
to the annular modes of variability and ozone depletion 
(Son et al. 2010; Arblaster et al. 2011; Polvani et al. 2011; 
McLandress et al. 2011; Banerjee et al. 2020). The accelera-
tion of the PFJ and the increase in height are also consistent 
across studies (Pena-Ortiz et al. 2013; Manney and Hegglin 
2018). However, our analysis focused on the jet branches 
allowed us to uncover differences between the ocean basins. 
We observed that the acceleration of the PFJ in the Atlantic 
basin is approximately twice as high as that derived from 
zonal mean analysis. Conversely, no significant changes are 
observed in the acceleration of the PFJ in the Pacific basin. 
On the other hand, the poleward shift of the PFJ is found 
to be significant only in the Pacific basin. This difference 
between the two basins results in an increase in the latitu-
dinal spread of the PFJ and a more pronounced elevation in 
the Atlantic branch of the PFJ.

While employing a wide range of parameters enables us 
to provide a comprehensive characterization of the jets, it 
is important to consider that many of them are not inde-
pendent of each other. Hence, it is possible to identify a 
subset of parameters to facilitate a more concise analysis 
of the jets. Traditionally, jet investigations focus on analyz-
ing the latitudinal position and the maximum wind speed 
of the jets (Blackmon et al. 1977; Kidson 1999; Bracegir-
dle et al. 2018, 2020; Zolotov et al. 2018). However, our 
study reveals that for a more complete description of STJ 
during the austral summer in SA, it is relevant to consider 
not only its latitude and intensity but also the latitudinal 

Fig. 9  Percentage increase in the conditional probability of occurrence of a WS for each synoptic pattern respect the probability of WS expected 
by climatology [%]. Only significant differences according to Z-statistic at 95% confidence level are shown



1048 S. Collazo et al.

1 3

fluctuations and temporal discontinuity. On the other hand, 
the PFJ only requires three parameters—latitude, intensity, 
and longitudinal extent of the Pacific branch—since it con-
sistently manifests during the summer. The ext.lon.pac.
PFJ is a distinct characteristic that exhibits considerable 

variability and is not adequately represented by the other 
two parameters.

From this new description of the jets, we can obtain 
three WTs of the zonal wind at upper atmospheric levels, 
which are characteristic of summer days. The first pattern 

Fig. 10  Percentage increase in the conditional probability of occurrence of a WS for each synoptic pattern respect the probability of WS 
expected by ENSO climatology [%]. Only significant differences according to Z-statistic at 95% confidence level are shown
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represents normal jet conditions during the summer as it 
groups approximately 50% of the days and is similar to the 
climatological field. The second pattern presents a promi-
nent STJ over central Argentina and the Atlantic Ocean with 
latitudinal fluctuations. Finally, the third pattern groups 
the days where only the PFJ is present. These patterns are 
obtained from a set of parameters that characterize the jets 
and from clustering techniques and they provide physically 
based partition that is not obtained with classical methods 
such as Empirical Orthogonal Functions (EOFs). By uti-
lizing jet parameters and employing the PAM clustering 
technique, we successfully obtained meaningful patterns 
that are easily interpretable. Additionally, this approach 
enabled us to classify each of the summer days into specific 
clusters, facilitating composite analysis of multiple mete-
orological variables. We performed an exploratory analysis 
of the patterns obtained with EOF of the upper-level zonal 
wind anomalies (Fig. S10). In contrast with our results, we 
observed that none of the EOFs explain a large percentage of 
variance and the patterns are difficult to interpret. This is not 
surprising, recent research has highlighted that EOF analysis 
can sometimes yield patterns that lack physical significance 
(Fulton and Hegerl 2021). Dommenget and Latif (2002) find 
that EOF is susceptible to identifying dipoles even when 
they do not exist, and Monahan et al. (2009) show that the 
principal components do not correspond to distinct dynami-
cal modes. Furthermore, in situations where true modes exist 
but are nonorthogonal to each other, even the first EOF is 
unable to capture a genuine underlying mode.

In this study, we have examined the connection between 
WTs and atmospheric circulation, as well as their impact on 
temperature and precipitation patterns over SA. To ensure 
greater robustness of our findings, we have replicated the 
composite analyses of minimum and maximum tempera-
tures, as well as precipitation, using both the ERA5 reanaly-
sis and the CPC observational dataset. The results obtained 
from both datasets exhibit a high degree of similarity, high-
lighting a prevalence of cold anomalies in southern SA and 
warm anomalies in eastern Brazil when the STJ is present 
(not shown). Conversely, an opposite pattern emerges when 
the STJ is absent. By employing these two distinct datasets, 
we enhance the reliability and validity of our results.

Due to the significant influence of ENSO on the climate 
of SA, we conducted a thorough exploration of the sensi-
tivity of our results to the different ENSO phases. ENSO 
impacts manifest through the anomalous circulation of the 
Walker cell, descending from its typical position and affect-
ing the tropical region. Additionally, extratropical effects are 
observed through Rossby wave trains via the Pacific-South 
American pattern (Cai et al. 2020; Reboita et al. 2021; and 
references therein). Our study revealed that ENSO plays a 
role in modulating the frequency of zonal wind patterns, 
particularly with a higher occurrence of the PFJ-only pattern 

during the La Niña phase and a prominent STJ during El 
Niño events. However, when examining the daily tempera-
ture response, it becomes evident that synoptic jet condi-
tions dominate over the ENSO phase across much of SA. 
The exception to this pattern is observed in the northwestern 
region of the continent, where the dominant signal is attrib-
uted to ENSO.

The impacts of ENSO, through its teleconnections, 
are subject to the influence of numerous factors, resulting 
in high event-to-event variability. Previous studies have 
revealed nonstationary behavior in the occurrence of warm 
ENSO events over the past few centuries (Garcia-Herrera 
et al. 2008), as well as in the strengths of Australasian tel-
econnections (Mullan 1995; Nicholls et al. 1996; Verdon and 
Franks 2006; Risbey et al. 2009; Gallant et al. 2013). This 
non-stationarity arises partially from changes in the large-
scale state of the coupled atmosphere–ocean system, lead-
ing to fluctuations in the amplitude and spatial patterns of 
ENSO-related sea surface temperature anomalies (Cai et al. 
2020). But in addition, other studies have suggested that tele-
connections can be modified by the effects of synoptic-scale 
weather systems (Meyers et al. 2007; Fogt et al. 2011). Our 
study shows that the synoptic variability of the jet stream can 
modulate the ENSO response, primarily affecting tempera-
ture patterns in southern SA and the precipitation in local-
ized regions. Moreover, we find that the synoptic weather 
patterns of the zonal wind exert a notable influence on the 
frequency of warm extremes in maximum temperature. This 
influence significantly alters the probability of occurrence of 
these extremes compared to the climatological probability 
in each ENSO phase and explains part of the nonstationary 
ENSO teleconnections.

5  Summary and conclusions

In this study, we aim to investigate the influence of upper-
level jets on temperature and precipitation patterns in SA 
during the austral summer, while also accounting for the 
ENSO impact. To achieve this, we utilize the ERA5 reanaly-
sis dataset from 1979 to 2022. Through a comprehensive 
daily characterization of jet streams using multiple param-
eters, we obtain synoptic weather patterns that capture the 
zonal wind dynamics. By employing composites of multi-
ple meteorological variables, we delve into the associated 
atmospheric circulation patterns and examine the influence 
of different jet stream configurations on warm spells. The 
main conclusions are summarized as follows:

• Analysis of jet parameters: The parameters introduced 
in this study for jet characterization provide us with the 
means to quantify the daily variability of the STJ dur-
ing summer, as it is absent in approximately 40% of the 
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days. Furthermore, these parameters have proven valu-
able in capturing the spatial discontinuities of the jets 
over SA, which are often influenced by the presence of 
the Andes Mountain range. In particular, we note that 
the maximum intensity of the Pacific branch of the jets 
tends to be located just west of the mountain range, 
especially for the STJ. Additionally, we have observed 
that the STJ tends to display a preferential inclina-
tion in a northwest-to-southeast (NW–SE) direction. 
Regarding the PFJ, it maintains a persistent presence 
and displays greater intensities, as well as a broader 
latitudinal range, in comparison to the STJ.

• Long-term changes in jet parameters: Examining the 
trends of these newly defined parameters over the 
period 1979–2022 enables us to discern notable dis-
tinctions between the ocean basins, which would other-
wise remain unnoticed if only zonal averages of the jet 
properties are analyzed. Significant long-term changes 
have been observed in the PFJ, revealing a poleward 
shift of its branch in the Pacific basin, an accelera-
tion of its Atlantic branch, and an elevation of both 
branches (with a greater rise observed in the Atlantic 
branch). Consequently, these changes have led to an 
increase in the latitudinal deviation of the jet, indicat-
ing a widening spread of its position.

• A new characterization of the jet streams: To obtain a 
concise description of the jet streams, and considering 
that many of the defined parameters exhibit interde-
pendence, we identify a subset of relevant parameters. 
Our findings indicate that for a comprehensive charac-
terization of the summer jets over SA, it is insufficient 
to solely rely on information about the latitude and 
intensity of the jets. The departure and branch number 
of the STJ and the longitudinal extent of the Pacific 
branch of the PFJ are also necessary for a thorough 
understanding. The requirement for four parameters to 
describe the STJ and three parameters for the PFJ arises 
from the inherent variability of the STJ, which is not 
consistently present on all summer days.

• Weather Types based on jet configuration: Synoptic 
weather patterns of the upper-level zonal wind are 
obtained from this new characterization of the jets. 
We find that the summer days can be classified into 
three WTs: normal conditions, prominent STJ, and 
PFJ-only. In the latter, anticyclonic anomalies are 
observed in the South Atlantic Ocean and increased 
convection is favored over Brazil. Consequently, this 
leads to clear skies and warm advection over southern 
SA and increased precipitation over Brazil with cold 
anomalies. In addition, we observe that this WT has 
the longest persistence, while prominent STJ patterns 
are of shorter duration and tend to evolve to normal 
conditions.

• Role of ENSO: We find that the temperature anomalies in 
southern SA and east-central Brazil associated with WTs 
are not dependent on the ENSO phase. In other words, 
the dominant factor influencing these anomalies is the 
synoptic signal, rather than the low-frequency variability 
signal. However, we observe that ENSO does influence 
the frequency of occurrence of these patterns. During 
La Niña events, the PFJ-only pattern tends to be more 
prevalent, whereas during El Niño, a prominent STJ pat-
tern is observed more frequently.

• Warm spells occurrence: The occurrence of warm maxi-
mum temperature extremes is also influenced by jet pat-
terns in many regions of SA, including most of Argen-
tina, Uruguay, central and northern Chile, and eastern 
Brazil. These regions show significant changes in the 
climatological occurrence probability of these events 
according to the jet configuration. Even a complete inhi-
bition of WS is observed in central Argentina due to the 
presence of the prominent STJ.

The climate of SA is influenced by several teleconnec-
tions operating on various time scales (Reboita et al. 2021). 
This study focuses on analyzing the influence of ENSO on 
upper-level zonal wind patterns, as ENSO represents one 
of the primary modes of climate variability with significant 
impacts across the entire continent. However, other modes 
of variability, ozone hole, greenhouse gases, and strato-
spheric sudden warmings can influence the jet configura-
tions (Thompson et al. 2011; Gerber and Son 2014; Young 
et al. 2014; Haase et al. 2020; Domeisen and Butler 2020). 
The new jet stream characterization and WTs obtained in 
this study have the potential to serve as a valuable tool for 
advancing future research in these fields within the unique 
context of the SA region. Understanding the relationship 
between the identified synoptic patterns and these processes 
can provide valuable insights into how the atmosphere 
responds to large-scale climate variability, and how these 
patterns may change under future climate scenarios.
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