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Abstract
We investigate the influence of bias correction of Global Climate Models (GCMs) prior to dynamical downscaling using 
regional climate models (RCMs), on the change in climate projected. We use 4 GCMs which are bias corrected against 
ERA-Interim re-analysis as a surrogate truth, and carry out bias corrected and non-bias corrected simulations over the 
CORDEX Australasia domain using the Weather Research and Forecasting model. Our results show that when considering 
the effect of bias correction on current and future climate separately, bias correction has a large influence on precipitation 
and temperature, especially for models which are known to have large biases. However, when considering the change in 
climate, i.e the Δchange (future minus current), we found that while differences between bias-corrected and non-corrected 
RCM simulations can be substantial (e.g. more than 1 ◦ C for temperatures) these differences are generally smaller than the 
models’ inter-annual variability. Overall, averaged across all variables, bias corrected boundary conditions produce an 
overall reduction in the range, standard deviation and mean absolute deviation of the change in climate projected by the 4 
models tested, over 61.5%, 62% and 58% of land area, with a larger reduction for precipitation as compared to temperature 
indices. In addition, we show that changes in the Δchange for DJF tasmax are broadly linked to precipitation changes and 
consequently soil moisture and surface sensible heat flux and changes in the Δchangefor JJA tasmin are linked to downward 
longwave heat flux. This study shows that bias correction of GCMs against re-analysis prior to dynamical downscaling can 
increase our confidence in projected future changes produced by downscaled ensembles.

Keywords Bias correction · Regional climate modeling · Weather research and forecasting model · Dynamical 
downscaling · CORDEX

1 Introduction

Regional climate models (RCMs) are regularly used to pro-
duce high resolution regional climate simulations of past 
climate and projections of future climate over limited areas 
(e.g., Winterfeldt and Weisse 2009; Argüeso et al. 2012; 
Gao et al. 2012; Ma et al. 2015; Andrys et al. 2016). RCMs 
dynamically downscale global climate models (GCMs) and 
reanalysis to higher resolutions (often by an order of magni-
tude). They add value by better resolving the effects of fac-
tors such as topography and land-use on mesoscale weather 
systems, and are able to better simulate short-duration and 
extreme weather events (Rummukainen 2016). However, 
GCMs suffer from systematic biases, which degrade the 
downscaled simulations when GCMs are used as input to 
RCMs via lateral boundary conditions (LBCs, e.g., 6-hourly 
winds, potential temperature, sea surface temperatures, etc), 

 * Karuru Wamahiu 
 k.wamahiu@murdoch.edu.au

 Jatin Kala 
 j.kala@murodch.edu.au

 Jason P. Evans 
 jason.evans@unsw.edu.au

1 Environmental and Conservation Sciences, Harry Butler 
Institute, Centre for Terrestrial Ecosystem Science 
and Sustainability, Murdoch University, Murdoch 6150, WA, 
Australia

2 Australian Research Council Centre of Excellence 
for Climate Extremes, University of New South Wales, 
Sydney, Australia

3 Climate Change Research Centre, University of New South 
Wales, Sydney, Australia

http://orcid.org/0000-0002-8445-9251
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-023-06949-7&domain=pdf


1220 K. Wamahiu et al.

1 3

(Warner et al. 1997; Kim et al. 2000; Rojas and Seth 2003; 
Caldwell et al. 2009). Furthermore, even as GCMs perfor-
mance continues to improve, systematic biases still persist 
(e.g., Grose et al. 2020) and as such there remains a need to 
reduce biases in the LBCs prior to downscaling (e.g., Done 
et al. 2013; Bruyére et al. 2013).

A number of statistical bias correction methods have 
been used to reduce biases in LBCs from GCMs used as 
input to RCMs. A popular approach is the pseudo-global-
warming (PGW) correction, which involves reconstructing 
LBCs by adding projected changes in future climate from 
a GCM ensemble to reanalysis products (e.g., Schär et al. 
1996; Wu et al. 2005; Hara et al. 2008; Kawase et al. 2009). 
However, PGW eliminates diurnal and synoptic effects and 
assumes no change in inter-annual variability at the bounda-
ries. An approach which retains inter-annual variability and 
diurnal and synoptic effects in the LBCs involves removing 
climatological mean biases from the LBC using reanalysis 
as the surrogate truth (e.g., Holland et al. 2010). Xu and 
Yang (2012) extended this mean shift approach to correct 
both the mean and variances in the Community Atmosphere 
Model (CAM, Neale et al. 2010), using the National Oce-
anic and Atmospheric Administrations Centres for Environ-
mental Prediction (NCEP)/National Center for Atmospheric 
Research (NCAR) Reanalysis (NNRP, Skamarock et al. 
2008) as a surrogate truth, and found that the downscaled 
simulations better represented surface air temperatures and 
precipitation. Bruyére et al. (2013), used the method by 
Holland et al. (2010), to bias correct zonal and meridional 
winds, geopotential height, temperature, relative humidity, 
land and sea surface temperature and mean sea level pres-
sure from the Community Climate System Model version 3 
(Collins et al. 2006, CCSM3,) using NNRP reanalysis as a 
surrogate truth prior to downscaling. They found that when 
compared against observations (using IBTracs, Knapp et al. 
2010), the bias corrected GCMs improved tropical cyclone 
representation in their regional climate model simulations. 
An alternative approach is to correct LBC using quantile 
mapping, which has been found to improve simulations of 
surface temperature and precipitation over Europe (Colette 
et al. 2012). White and Toumi (2013) compared the mean 
shift method and the quantile mapping approach and found 
that the former was a more reliable and accurate method for 
correcting LBCs prior to downscaling.

While it is well established that downscaled simulations 
are sensitive to biases from LBCs, few studies have investi-
gated the value of dynamically downscaling bias corrected 
versus non-bias corrected GCMs over the Coordinated 
Regional Downscaling Experiment framework Australa-
sian region (CORDEX Australasia). Rocheta et al. (2017) 
evaluated the impact that downscaling bias corrected Com-
monwealth Scientific and Industrial Research Organization 
(CSIRO) MK3.5 GCM (Gordon et al. 2010) had on low 

frequency rainfall variability, using the mean shift method 
(Holland et al. 2010), a more complex variance correction 
(Xu and Yang 2012) and low frequency variability bias cor-
rection (Johnson and Sharma 2012). Overall they found that 
the mean shift method produced the largest improvements 
in low frequency rainfall, and similar to White and Toumi 
(2013), the more complicated techniques led to incremen-
tally more skillful simulations.

Using this mean shift method Wamahiu et al. (2020) 
bias corrected and dynamically downscaled outputs from 
4 GCMs over the CORDEX Australia domain under cur-
rent/historical climate. They evaluated the performance 
of the non-bias corrected and bias corrected simulations 
against observations and found that, overall, large precipi-
tation and temperature biases were removed. However, in 
some instances, small biases were either introduced where 
there were none or there was a slight deterioration in biases 
in some regions over the domain. Nevertheless, due to its 
potential to reduce large systematic biases, Wamahiu et al. 
(2020) found that there was value in using this mean shift 
method to correct biases in the GCMs prior to downscaling 
over the CORDEX-Australasia domain.

The above studies demonstrate that using bias corrected 
GCM boundary conditions produce RCM simulations with 
lower biases. To the best of our knowledge, no studies have 
evaluated the impact of using bias corrected GCM boundary 
conditions in RCM simulations in relation to the projected 
change in climate—i.e., what is the difference in the change 
in climate (future minus current climate) between bias cor-
rected and non-corrected simulations? Furthermore, we 
investigate whether bias-correction of the lateral boundary 
conditions reduces the uncertainty in the projected changes 
in climate. We answer these questions by building on our 
previous study (Wamahiu et al. 2020), in order to examine 
the impact on future changes projected.

2  Methods

2.1  Model configuration

Following our previous study (Wamahiu et al. 2020), histori-
cal and future regional climate simulations, using 4 CMIP3 
GCMs as boundary conditions, were carried out between 
1970–1999 and 2030–2059 from a single initialization with 
a 3 model month spin up. Historical (and similarly future cli-
mate simulations) consisted of 4 control simulations, using 
non-bias corrected GCMs and 4 simulations that were bias 
corrected using ERA-Interim re-analysis (Dee et al. 2011) as 
the surrogate truth. Following our previous studies (Andrys 
et al. 2016; Wamahiu et al. 2020) the 4 GCMs were: Max 
Planck Institute ECHAM5 model (ECHAM) (Roeckner 
et al. 2003), Center for Climate System Research Model 
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for Interdisciplinary Research on Climate 3.2 (MIROC) 
(Hasumi and Emori 2004), National Center for Atmos-
pheric Research Community Climate System Model ver-
sion 3 (CCSM) (Collins et al. 2006) and the Commonwealth 
Scientific and Industrial Research Organization (CSIRO) 
MK3.5 (Gordon et al. 2010), and we used the A2 scenario 
for future climate.

All WRF simulations utilized a single 50 km horizontal 
resolution domain covering the CORDEX Australasia region 
as shown in Fig. 1, with 30 vertical levels spaced more closely 
within the boundary layer; and further apart in the upper 
atmosphere. The WRF parameterization options used were 
identical to Andrys et al. (2015, 2016), which were based on a 
previous sensitivity study by Kala et al. (2015). This includes 
the single-moment 6-class microphysics scheme (Hong and 
Lim 2006), RRTM long-wave radiation model (Mlawer et al. 
1997), Dudhia short-wave radiation (Dudhia 1989), Yonsei 
University planetary boundary layer scheme (Hong and Lim 
2006), the MM5 surface layer scheme (Grell et al. 2000), con-
vective parameterization from Kain Fritsch (Kain 2004) and 
Noah land surface model (Chen and Dudhia 2001). Similar 
to Andrys et al. (2015), simulations were carried out over the 
period 1970–1999 and spectral nudging was used to avoid 
model drift to ensure the retention of the large scale features 
in the GCM, a common practice for regional climate simula-
tions (e.g., Argüeso 2011). In particular an x and y wavenum-
ber of 5 and 4 were chosen and all variables (U and V winds, 
geopotential height and potential temperature) above the 

planetary boundary layer for wavelengths exceeding 1000 km 
were nudged.

2.2  Bias correction

Following Holland et al. (2010), temperature, geopotential 
height, meridional and zonal winds, and relative humidity lat-
eral boundary conditions, as well as sea level pressure and sea 
surface temperature (SST) lower boundary conditions from 
ERA-Interim were used to correct the GCMs. The mean cli-
matological components are defined over a 20 year base period 
(1980–1999) for both ERA-Interim and the GCMs.

To correct the GCMs, 6 hourly GCM and ERA-Interim rea-
nalysis data was first broken down into a mean climatological 
component plus a perturbation term:

For any considered period of interest, i.e,. 1970–1999 for 
current climate and 2030–2059 for future climate, the bias 
corrected LBCs for the period, denoted as GCM∗

c
 are com-

puted as:

(1)GCM = GCM + GCM
�

(2)ERA = ERA + ERA
�

(3)GCM∗

c
= ERA

b
+ GCM

�

Fig. 1  Topographical map 
showing the extent of the COR-
DEX Australasia domain
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where ERA
b
 is mean over the base-period, and GCM′ is 

computed over the considered period of interest.

2.3  Analysis methods

To examine the effect of bias correction on the change 
in climate, we evaluate the Δchange (future - historical), 
in the bias corrected (BC) and non-bias corrected (NC) 
simulations, between future (2030–2059) and historical 
(1970–1999) climate. We focused our analysis on a few 
select variables: summer maximum temperature (DJF tas-
max), winter minimum temperatures (JJA tasmin), yearly 
total precipitation (PRCPTOT), as well as the following 
extreme indices recommended by the Expert Team on 
Sector-Specific Climate indices: annual maximum value of 
daily maximum temperature (TXX), annual minimum value 
of daily minimum temperature (TNN), and rainfall > 95th 
percentile (R95P) in a given period. When assessing these 
changes we calculate the statistical significance for each 
grid cell using the non-parametric Mann–Whitney U-test 
( � = 0.05 ), with stippling used to indicate areas with statis-
tical significance. We then evaluate the differences in the Δ
change between BC and NC simulations for each variable.

To understand whether the changes are important we 
examine them relative to inter-annual variability. We calcu-
lated the normalised difference between BC and NC simu-
lations using the historical inter-annual standard deviation 
from NC as follows:

Equation 4 allows us to quantify the extent to which the 
changes introduced by the bias correction are larger/smaller 
than inter-annual standard deviation, i.e., internal model 
variability. For these plots, stippling is used to highlight grid 
cells with values > 1 or < −1 , which indicate that differences 
between the BC and NC means are larger than the inter-
annual standard deviation. This analysis is carried out for 
all variables for each GCMs/RCM under historical climate, 
future climate, as well as the Δchange (future - historical).

Next, we examined whether bias correction of GCMs 
to a common re-analysis reduces the range and variability 
in the Δchange between the downscaled simulations. To 
answer these questions we first examined the differences in 
the maximum range:

where range(X) is defined as the difference between the 
maximum and minimum values in (X). We then examined 
the standard deviation ( � ) and the difference in mean abso-
lute deviation (MAD)

(4)
�BC − �NC

�
NC

range(BC) − range(NC)

where MAD is defined as median of the absolute deviations 
from the data’s median X̃

For example, suppose the Δchange in DJF tasmax at a par-
ticular grid point from the 4 GCM/RCM NC and BC sim-
ulations is, respectively, [2.0, 2.5, 1.5, 4.0] and [1.5, 1.8, 
1.4, 2.0]. Then the difference between BC and NC in their 
range, � and MAD is then −1.9 ( 0.6 − 2.5 = −1.9 ), − 0.8 
( 0.28 − 1.28 = −0.8 ) and − 0.3 ( 0.2 − 0.5 = −0.3 ). This 
tells us that at this grid point for DJF tasmax, bias correc-
tion has reduced the range and variability in the Δchange, 
and hence, reduced uncertainty with higher convergence of 
results between the 4 simulations. These calculations are 
carried out for each variable separately, and to produce an 
overall summary for temperature and precipitation indices, 
we then normalized the differences by the observed inter-
annual standard deviation, using gridded observations from 
the Australian Water Availability Project (AWAP) (Jones 
et al. 2009) dataset, which provides daily gridded observa-
tions of maximum and minimum temperature and precipita-
tion at a 5 by 5 km resolution.

3  Results

Figure 2a–d show the differences in the Δchange (2030–2059 
minus 1970–1999) between BC and NC (BC minus NC) for 
DJF tasmax, TXX, JJA tasmin and TNN respectively. These 
plots show spatially varying differences between BC and 
NC simulations which can be quite large, with differences 
for DJF tasmax (Fig 2a) and TXX (Fig. 2b) of up to ±1.6 ◦ C. 
For DJF tasmax in WRF_CCSM, the BC simulations have 
a larger Δchange than NC by up to +1.2 ◦ C over the south-
east of Australia. For WRF_ECHAM and WRF_MK, BC 
simulations tend to simulate a smaller Δchange than NC, 
especially in the north, and for WRF_MIROC, BC simula-
tions have a larger Δchange for most of the east of approxi-
mately +1.2 ◦ C but smaller Δchange over the southwest of 
up to −1.0 ◦ C. For TXX in WRF_MIROC, BC simulations 
simulates a smaller Δchange than NC by up to −1.4 ◦ C over 
the southwest and a larger change by up to +1.6 ◦ C over 
the southeast of Australia. In WRF_CCSM, the Δchange 
in TXX is similarly larger over both the southeast and the 
southwest, and for WRF_ECHAM and WRF_MK, the BC 
simulations generally simulate a smaller Δchange. Similarly, 
JJA tasmin (Fig. 2c) and TNN (Fig. 2d) show spatially vary-
ing differences which can be quite large. WRF_ECHAM and 
WRF_MIROC BC simulations showed consistently larger 

�(BC) − �(NC)

MAD(BC) −MAD(NC)

MAD = median(∣ X
i
− X̃ ∣)
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Fig. 2  Differences in the Δchange between BC and NC for DJF tasmax, TXX, JJA tasmin, TNN
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Δchange in JJA tasmin over most of the continent by up 
to +1.0 ◦ C, whereas WRF_MK showed the opposite result, 
and WRF_CCSM showed regions of both larger and smaller 
changes. Overall, the TNN results reflected the JJA tasmin 
results. When considering the Δchange in BC and NC sepa-
rately for DJF tasmax, JJA tasmin, TXX and TNN (Figs. 
S1–S4), results show very consistent warming signals, that 
were statistically significant across the entire, if not most of 
the continent. However, what Fig. 2a–d clearly highlight, is 
that the magnitude of the Δchange can be large.

To better contextualize the differences in the Δchange 
between BC and NC simulations, we next examined the 
normalized differences, which compares differences in the 
Δchange between BC and NC relative to the model inter-
annual variability. This is shown in Fig. 3a–d with stippling 
indicating regions where normalized changes are < −1 or 
> 1 and hence showing where the effect of bias correction 
is larger than the models inter-annual variability. The plots 
show that normalized differences generally lie between −1 
and 1 for all 4 variable over most of the continent, but there 
are some exceptions. Regions in these plots where the dif-
ferences are larger than the models inter-annual variability 
(i.e. less than −1 and greater than 1) tend to correspond to 
areas where the differences in the Δchange between BC and 
NC are ±1 ◦ C (Fig. 2a–d), but the converse is not always 
true. For DJF tasmax, except for relatively small parts of 
southeast Australia in WRF_CCSM and southwest Australia 
in WRF_MIROC, differences are less than model inter-
annual variability. Similar for TXX, there are only small 
parts in southwest Australia in WRF_CCSM and WRF_
MIROC where changes are greater than model inter-annual 
variability. However, for JJA tasmin, there are much larger 
areas that show differences greater than model inter-annual 
variability, in WRF_ECHAM over southeast Australia and 
WRF_MIROC over southwest Australia and part of east-
ern Australia. Results for TNN were quite similar to TXX 
with only relatively small regions where the changes where 
greater than +1. Overall, except for JJA tasmin for two of the 
4 models, the difference in the Δchange is not distinguish-
able from the model’s inter-annual variability. This provides 
confidence in the Δchange irrespective of whether bias cor-
rection is used or not.

When considering the historical and future periods sepa-
rately (S5–S8), the normalized difference plots show that 
difference in the Δchange between BC and NC can be larger 
than the models inter-annual variability (i.e. less than −1 or 
greater than 1) over large parts, if not most of the continent, 
unlike differences in the Δchange (Fig. 3a–d). In particular, 
for DJF tasmax (Fig. S5) and TXX (Fig. S6) these differ-
ences are larger in WRF_MIROC and WRF_MK over the 
continent, and, in WRF_ECHAM over large parts of the 
continent, except for the future period in TXX where they 
are smaller. For JJA tasmin (Fig. S7) differences tend to be 

larger than the models inter-annual variability over more of 
the continent under the future climate than under histori-
cal climate, with normalized differences in WRF_ECHAM 
and WRF_MIROC greater than +1 over a majority of the 
continent under future climate. Results for TNN are simi-
lar to JJA tasmin, with being differences are larger than the 
models inter-annual variability over more of the continent 
under future climate than historical climate, but only in 
WRF_ECHAM are the normalized differences greater than 
+1 over a majority of the continent. These plots highlight 
that bias correction can have a large influence on historical 
and future climate when they are considered individually 
(rather than the Δchange). These findings are consistent with 
our previous work (Wamahiu et al. 2020) which showed that 
for large systematic maximum temperature biases found in 
WRF_ECHAM, WRF_MIROC and WRF_MK, bias cor-
rection had a large influence, and for smaller systematic 
biases found in WRF_CCSM, bias correction had less of an 
influence. Overall, Fig. S5–S8 show that while the differ-
ences in the Δchange between BC and NC can be quite large 
(Fig. 2a–d), these differences are generally smaller than the 
models inter-annual variability (Fig. 3a–d).

We next examine differences in the Δchange between BC 
and NC in PRCPTOT and R95P (Fig. 4a–b). For PRCPTOT, 
in WRF_CCSM, WRF_ECHAM and WRF_MK, the BC 
simulations have a larger Δchange than the NC simulations 
over the a majority of the continent, with differences of up 
to +400 mm over northern Australia in WRF_ECHAM 
and WRF_MK. In WRF_MIROC, the plots show that BC 
simulations has a larger Δchange over western Australia 
with differences of up to +100 mm, but smaller Δchange 
over northern Australia with differences of up to −300 mm. 
Results for R95P are similar to PRCPTOT in WRF_CCSM, 
WRF_MK and WRF_MIROC. Result for R95P are generally 
similar to PRCPTOT. When the future and historical periods 
are considered separately (Fig. S9 and S10), the plots show 
that the direction and magnitude of the changes are not con-
sistent and that these changes are generally not statistically 
significant, except for small parts of the continent. In spite 
of this, what Fig. 4a, b highlight, is that the magnitude of the 
Δchange can be large, particularly over northern Australia.

Figure 5a, b show the normalized differences in the Δ
change between BC and NC, and illustrate that differences 
are smaller than the models inter-annual variability (i.e. 
lie between −1 and 1) across the continent except for small 
regions in WRF_MIROC and WRF_ECHAM where the dif-
ferences are larger. When the future and historical periods 
are considered separately (Fig. S11 and S12), the plots show 
for PRCPTOT that the effect of bias correction is generally 
smaller than the inter-annual variability across most of the 
continent in all models except for WRF_MIROC, where it 
is larger across most of the continent and, hence, indicating 
that, for this model, bias correction had a large influence. 
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Fig. 3  Differences in the Δchange normalized against the inter-annual standard deviation from the historical NC simulations ( �NC) for DJF tas-
max, TXX, JJA tasmin, TNN. Stippling shows regions where normalized difference < −1 or > 1
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These findings are broadly consistent with our previous work 
(Wamahiu et al. 2020), which demonstrated that for large 
seasonal precipitation biases in WRF_MIROC, bias correc-
tion had a large influence in reducing model biases when 
compared against observations. For R95P (Fig. S12), the 
plots show that the effect of bias correction is smaller than 
the inter-annual variability over most of the (if not the entire) 
continent, except under future climate in WRF_MIROC over 
large parts of northwestern and northern Australia. Similar 
to the temperature indices, while the differences in the Δ
change between BC and NC can be quite large (Fig. 4), these 
changes are generally smaller than the models inter-annual 
variability (Fig. 5).

Having examined the change in temperature and precipi-
tation indices we next examine if bias correction of GCMs 
to a common re-analysis reduces the range and variability in 
the Δchange. Figure 6 and Figures S13 and S14 in the sup-
plementary material show the mean normalized difference 
in the range, standard deviation ( � ) and median absolute 
deviation (MAD) in Δchange, for the temperature indices, 

precipitation indices and when all the variables are com-
bined (i.e. for both temperature and precipitation indices). 
When all the variables are combined the plots show that 
percentage of land area where a reduction in the range, � and 
MAD is observed is 61.53%, 62.24% and 58.85% respec-
tively. These were largely driven by a large reduction in the 
precipitation indices relative to the temperature indices. For 
the precipitation indices the plots show that percentage of 
land area where a reduction in the range, � and MAD is 
observed is 74.3%, 75.07% and 69.53% compared to 37%, 
38.07% and 43.08% for the temperature indices. These 
results show that bias correction can have a large influence 
on the ensemble range and variability; particularly for pre-
cipitation changes. This is consistent with previous studies 
that have demonstrated that bias correction has a large influ-
ence on systematic precipitation biases for regional climate 
simulations over Australia (Rocheta et al. 2017; Wamahiu 
et al. 2020).

Finally, we examine possible mechanisms that are driv-
ing differences in the Δchange, particularly with regards 

Fig. 4  Differences in the Δchange between BC and NC for the future period for PRCPTOT, R95P
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Fig. 5  Differences in the Δchange normalized against the inter-annual standard deviation from the historical NC simulations ( �NC) for PRCP-
TOT and R95P. Stippling shows regions where normalized difference < −1 or > 1

Fig. 6  Mean normalized differences (BC − NC) of the range in the Δ
change from the 4 models for the temperature indices, precipitation 
indices and combined precipitation and temperature indices. Percent-
ages at the bottom right indicate the percentage of land area where 

there is a reduction in the range. Stippling shows where the mean 
normalized differences are larger than +1 or smaller than −1 . Areas 
which are white indicate regions where observed precipitation data is 
missing
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to the changes in DJF tasmax and JJA tasmin (Fig.  2). 
Given that previous studies over the CORDEX Australa-
sia domain have highlighted that changes in precipitation 
have a large influence on changes in maximum temperature 
in this region (Di Virgilio et al. 2019), we examined the 
changes in DJF total precipitation, soil moisture (SMOIS), 
and surface sensible (HFX) and latent heat (LH) fluxes. This 
is illustrated in Fig. 7a–d showing the differences in the Δ
change (2030–2059 minus 1970–1999) between BC and NC 
(BC minus NC) in WRF_CCSM for DJF for WRF_CCSM. 
Results show similar spatial patterns, which tend to cor-
respond to the differences in the Δchange in DJF tasmax in 
WRF_CCSM (Fig. 2a). Over the southeast of Australia, BC 
simulations show a smaller Δchange in total precipitation, 
which corresponds to lower SMOIS and a corresponding 
decrease in LH and increase in HFX, which can explain 
the spatial patterns observed in differences in the Δchange 

between the BC and NC simulations in WRF_CCSM DJF 
tasmax (Fig. 2a). Results for the other 3 models are shown in 
Fig. S15, S17 and S19, and similar mechanisms can explain 
most of the changes in DJF tasmax, however, for some mod-
els, e.g., WRF_MK, there are clearly other processes that 
we have not identified that are also driving changes in DJF 
tasmax.

Projected minimum temperature increases can be associ-
ated with an increase in nighttime cloud cover, as clouds 
are effective at reflection and emission of terrestrial long-
wave radiation to the surface. This is illustrated in Fig. 8a–c 
showing the differences in the Δchange between BC and NC 
(BC minus NC) in WRF_CCSM for low level (LL, 300 m) 
and mid level (ML, 600 m) cloud fraction (CLDFRAC) and 
downward longwave flux at the surface (GLW) during JJA 
for WRF_CCSM. The plots show a prominent northwest-
southeast pattern that corresponds to the changes in the Δ

Fig. 7  Differences in the Δchange for WRF_CCSM between BC and NC showing DJF a precipitation, b soil moisture at the surface, c latent 
heat flux at the surface and d upward heat flux at the surface

Fig. 8  Differences in the Δchange for WRF_CCSM showing JJA a low level cloud fraction (300 m), b mid level cloud fraction (600 m), c down-
ward longwave heat flux at the surface
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change for WRF_CCSM JJA tasmin (Fig. 2c). The BC simu-
lation has a larger Δchange across this northwest-southeast 
band in both LL and ML CLDFRAC, and this correspond 
the and BC simulations having a larger Δchange in GLW. 
These changes help explain the large Δchange in JJA tasmin 
over this region. Results for the other 3 models are shown in 
Fig. S16, S18, and S20 show that changes in JJA JJA tasmin 
largely correspond to changes in GLW, however, the changes 
in LL and ML CLDFRAC do not always explain the changes 
in GLW. This is particularly evident for WRF_MK, and this 
requires further investigation.

While we have explored possible mechanisms that drive 
the maximum and minimum temperature changes, we have 
not explored how bias correction influences factors that 
drive the changes in precipitation (for TMAX changes) and 
cloud fraction (for TMIN changes). These could be due to a 
number of complex interactions that would require substan-
tial further analysis that is beyond the scope of this paper.

4  Discussion and conclusion

While a number of studies have demonstrated the added 
value of bias correcting GCMs against re-analysis prior 
to dynamical downscaling over the CORDEX Australa-
sia domain (eg. Rocheta et al. 2017; Wamahiu et al. 2020) 
and other regions (eg. Bruyére et al. 2013; Xu and Yang 
2012), to the best of our knowledge, no study has evalu-
ated the effect of using bias corrected LBCs on the change 
in climate (i.e. the Δchange) projected by regional climate 
model simulations. In this study, we build upon our previ-
ous work (Wamahiu et al. 2020), where we evaluated the 
value of using the mean shift method to bias correct 4 GCMs 
(CCSM3, ECHAM5, MIROC32 and MK35) for use in RCM 
simulations over the CORDEX Australasia domain under 
historical climate, and showed that bias correction reduced 
large systematic precipitation and temperature biases. In this 
study, we use future climate simulations to investigate the 
effect of bias correction on the Δchange (future minus histor-
ical), the effect of bias correction relative to models’ inter-
annual variability, and whether bias correction of a GCM 
ensemble using a common re-analysis reduces the uncer-
tainty (i.e. the range and variability) in the mean change in 
climate in the RCM simulations.

We found that while DJF tasmax, JJA tasmin, TXX and 
TNN (Fig. S1–S4) showed broadly consistent projected 
temperature increases, differences in the Δchange between 
BC and NC (Fig. 2) projections exceeded ±1 ◦ C in some 
regions. However, these differences were generally smaller 
than the models’ inter-annual variability, and hence not 
distinguishable from year-to-year variations. When con-
sidering historical and future periods separately, the effect 
of bias correction was quite large and greater than model 

inter-annual variability, especially for models which we 
found to have large systematic biases in our previous study 
(Wamahiu et al. 2020). However, since the bias correction 
is applied to both current and future climate, differences in 
the Δchange remain small relative to model inter-annual 
variability.

Differences between BC and NC PRCPTOT changes 
show that BC simulations are wetter than in NC simula-
tions, especially over the tropics for 3 out of the 4 GCMs 
used, however, these differences were not considered sta-
tistically significant. Similar to our results for temperature, 
the effect of bias correction on the Δchange in PRCPTOT 
was smaller than the models’ inter-annual variability. For 
historical and future periods alone, the effect of bias cor-
rection was also smaller than the inter-annual variability 
in all models except for WRF_MIROC. This is consist-
ent with our previous work (Wamahiu et al. 2020) which 
showed that WRF_MIROC had a large reduction in pre-
cipitation bias under historical climate when bias correc-
tion was used.

Overall, when averaged across all variables, bias cor-
rection resulted in a reduction in the range and variability 
of the projected change in climate from the 4 models, with 
a larger reduction for precipitation as compared to tem-
perature indices. That is, the future change projected by 
the ensemble tends to converge if the LBCs are bias-cor-
rected. This occurs despite the difference in the Δchange 
between BC and NC for any individual model and vari-
able being small compared to inter-annual variability. This 
convergence in the future change improves our confidence 
in the projections, especially for precipitation. Finally, the 
fact that overall differences in the Δchange were generally 
smaller than model inter-annual variability provides con-
fidence in studies that do not use bias correction prior to 
downscaling to within this range of uncertainty.

We acknowledge that while downscaling 4 GCMs is rea-
sonable size for dynamic dowscaling, this is still a small 
sample size. In addition, we use of CMIP3 GCMs rather than 
the more up-to-date CMIP5 and CMIP6 GCMs, and this was 
due to our previous work (Wamahiu et al. 2020) being based 
on CMIP3. However, our results are relevant irrespective 
of the family of GCM used, and our results provide useful 
guidance on the use of bias correction for future studies that 
used CMIP5 and CMIP6 GCMs. We also note that studies 
comparing changes in temperature and precipitation over 
Australia between CMIP3 and CMIP5 GCMs report broadly 
similar magnitudes of change (Li et al. 2015), and this gives 
us confidence that our results are useful in informing future 
projected changes in climate over Australia. Our future work 
will focus on CMIP5 and CMIP6 GCMs.
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