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Abstract
The recharge oscillator model of the El Niño Southern Oscillation (ENSO) describes the ENSO dynamics as an interaction 
between the eastern tropical Pacific sea surface temperatures (T) and subsurface heat content (thermocline depth; h), defin-
ing a dynamical cycle with different phases. h is often approximated on the basis of the depth of the 20 °C isotherm (Z20). 
In this study we will address how the estimation of h affects the representation of ENSO dynamics. We will compare the 
ENSO phase space with h estimated based on Z20 and based on the maximum gradient in the temperature profile (Zmxg). 
The results illustrate that the ENSO phase space is much closer to the idealised recharge oscillator model if based on Zmxg 
than if based on Z20. Using linear and non-linear recharge oscillator models fitted to the observed data illustrates that the Z20 
estimate leads to artificial phase dependent structures in the ENSO phase space, which result from an in-phase correlation 
between h and T. Based on the Zmxg estimate the ENSO phase space diagram show very clear non-linear aspects in growth 
rates and phase speeds. Based on this estimate we can describe the ENSO cycle dynamics as a non-linear cycle that grows 
during the recharge and El Nino state, and decays during the La Nina states. The most extreme ENSO states are during the 
El Nino and discharge states, while the La Nina and recharge states do not have extreme states. It further has faster phase 
speeds after the El Nino state and slower phase speeds during and after the La Nina states. The analysis suggests that the 
ENSO phase speed is significantly positive in all phases, suggesting that ENSO is indeed a cycle. However, the phase speeds 
are closest to zero during and after the La Nina state, indicating that the ENSO cycle is most likely to stall in these states.

Keywords El Nino Southern Oscillation · Ocean–Atmosphere dynamics · Complex System Analysis · Thermocline Depth · 
Seasonal Predictions · Climate Dynamics

1 Introduction

The dynamics of the El Nino Southern Oscillation (ENSO) 
are often analysed in the context of the recharge oscilla-
tor (ReOsc) model [Burgers et al. 2005; Jin 1997; Timmer-
mann et al. 2018]. In this model the interannual variations of 
ENSO are described by the interaction between the eastern 
equatorial Pacific sea surface temperatures (SST) and the 
thermocline depth of the whole equatorial Pacific (h). Here, 
h is assumed to be measuring the thickness of the upper 
ocean layer also referred to as the upper ocean warm water 

volume (WWV). It marks the point in the temperature profile 
with the strongest gradients (Zmxg), see Fig. 1.

Studies of ENSO dynamics often estimate h based on 
the 20 °C isotherm [Z20; e.g., Smith 1995; Kessler 2002; 
Timmermann et al. 2018; Vijayeta and Dommenget 2018; 
Burgers et al. 2005]. The Z20 is considered a good approxi-
mation of Zmxg, as it is roughly on the same depth as Zmxg 
for most of the equatorial Pacific and covaries with Zmxg on 
seasonal to interannual time scales. However, it does have 
some important limitations in the context of ENSO dynam-
ics. First, as illustrated in Fig. 1, the Z20 can change due to 
warming of the whole or a part of the temperature profile 
even though Zmxg has not changed. This is an important 
problem for climate change studies, as pointed out in [Yang 
and Wang 2009; Dommenget and Vijayeta 2019; Vijayeta 
2020; Izumo and Colin 2022].

Further, dynamical changes that do not affect Zmxg can 
have an effect on Z20 (Fig. 1). In the context of ENSO 
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dynamics, the interaction between SST and h is of particu-
lar interest, which could potentially be different for Z20 and 
Zmxg. Dommenget and Al-Aasari [2022; here after DA22] 
presented an extended discussion of the ENSO phase space 
statistics based on Z20 estimates. They concluded that much 
of the phase dependent characteristics of the ENSO phase 
space can be linked to an artificial cross-correlation between 
Z20 and T. This posed a problem when trying to interpret the 
phase dependent structures of the ENSO phase space.

The study of Izumo and Colin [I2022] approached the 
problem of estimating h for the analysis of the ENSO 
dynamics by statistically improving the estimate of h. They 
statistically optimized the orthogonality between T and h 
using sea level data as a proxy for WWV or h.

Here we focus on the temperature profile as an estimate 
for WWV. By approximating the WWV using the tempera-
ture profile, Z20 can have a different dynamical behaviour 
in ENSO variability from that of Zmxg since they measure 
by construction different aspects of the temperature profile.

The aim of this study is to evaluate how the representa-
tion of ENSO dynamics change when the thermocline depth 
estimates are changed from a Z20 to a maximum gradient 

estimate (Zmxg). In the following section we will shortly 
describe the data, the methods of estimating Z20 and Zmxg, 
the ReOsc model and how its parameters are estimated and 
the statistical methods for analysing the ENSO phase space. 
The first result section will focus on comparing the statistics 
of Z20 and Zmxg, which is followed by an analysis of how 
they co-vary with the SST. We then focus on the analysis of 
the ENSO phase space diagram in Sect. 5 building up on the 
results from DA22. This discussion is further explored by 
the analysis of linear and non-linear ReOsc models fitted to 
the observed data in Sects. 6 and 7. The study is concluded 
with a summary and discussion section.

2  Data and methods

Observed data for this study is mostly limited by the sub-
surface ocean data and we therefore limit the analysis to the 
time from 1980 to 2021. SST is taken from HADISST 1.1 
data set for the period 1980 to 2019 [Rayner et al. 2003]. The 
temperature index for the ReOsc model is based on monthly 
mean SST in the NINO3 region (150°W–90°W, 5°S–5°N).

Fig. 1  Idealised temperature 
profiles with estimates of 
the thermocline depth by the 
maximum temperature gradient 
(Zmxg) and the 20 °C isotherm 
(Z20). The thermocline depth is 
the same in all profiles
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Upper ocean temperature observations for the estimation 
of Z20 and Zmxg are based on several ocean analysis data sets: 
the ocean analysis of the UK Met Office from 1980–2021 
[Good et al. 2013], SODA3 1980–2017 [Carton and Giese 
2008], CHOR AS and RL ocean reanalysis 1980–2010 
[Yang et al. 2017]. The four different datasets are combined 
to one long time series repeating each common year several 
times to better capture the variability.

The temperature profiles are based on coarse vertical 
resolutions with vertical gaps between data points of 5 m or 
more, see Fig. 2 for examples. For the estimation of Zmxg and 
Z20 we use a spline fit interpolation with a vertical resolution 
of 0.1 m. At the upper and lower end of the data profiles we 
add additional help points to avoid artificial curves of the 
spline fit near the ends of the profile. For the upper help 
point we add a point at depth 0 m with the same tempera-
ture as the most upper data point in the profile. At the lower 
end of the profile, we add another data point below the last 
data point with the same depth and temperature difference 
as between the last two points, thus we linearly interpolate. 
Zmxg is defined as the depth of the interpolated point with the 
largest gradient and Z20 as the depth with the interpolated 
point closest to the 20 °C isotherm, see Fig. 2 for examples.

The equatorial mean thermocline depth (h) is defined 
as the averaged over the equatorial Pacific (130°E–80°W, 
5°S–5°N) for both estimates. Some statistics for T and h are 
shown in Table 1. The ReOsc model, as discussed in this study 

follows Burgers et al. [2005]. It is presented by two tendency 
equations:

(1)
dT(t)

dt
= a11T(t) + a12h(t) + �

T
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Fig. 2  Examples of Observed temperature profiles along the equato-
rial Pacific together with estimates of the Z20 (red dashed line) and 
Zmxg (blue dashed line) values. They show the observed data points 
(black circles), the help points at the ends of the profiles (red trian-

gles), the spline-fitted temperature profile (red lines) and the gradi-
ents of the spline-fitted temperature profile (blues lines) in values of 
[0.02 °C/m] in reference to the 18 °C value on the x-axis

Table 1  Parameters of the PDF for observed and modelled T and h 

Z20 Zmxg

Observed
 stdv(T) = 0.94 °C stdv(T) = 0.94 °C
 skewness(T) = 0.98 skewness(T) = 0.98
 stdv(h) = 8.5 m stdv(h) = 9.9 m
 skewness(h) = − 0.59 skewness(h) = − 0.93

Linear ReOsc model
 stdv(T) = 0.92 °C stdv(T) = 0. 93 °C
 skewness(T) = 0.02 skewness(T) = 0.03
 stdv(h) = 8.9 m stdv(h) = 10.0 m
 skewness(h) = − 0.01 skewness(h) = − 0.01

Non-linear ReOsc model
 stdv(T) = 0.76 °C stdv(T) = 0. 90 °C
 skewness(T) = 0.78 skewness(T) = 1.10
 stdv(h) = 8.6 m stdv(h) = 10.2 m
 skewness(h) = − 0.51 skewness(h) = − 0. 65
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The model describes the tendencies of T and h as func-
tion of T and h, and some white noise forcing terms ( �

T
 and 

�
h
 ). It has four important parameters: the growth rates of T 

( a11 ) and h ( a22 ), and the coupling parameters ( a12 and a21 ). 
They are estimated for the combined observations by multi-
variate linear regression the monthly mean tendencies of T 
and h against monthly mean T and h, respectively [Burgers 
et al. 2005; Jansen et al. 2009; Vijayeta and Dommenget 
2018]. h is estimated by either Zmxg or Z20, resulting into 
two different estimates of the ReOsc model parameters. The 
residual of the linear regression fit are interpreted as the 
random noise forcing terms ( �

T
 and �

h
 ), with the standard 

deviation (stdv) of the residuals being the stdv of �
T
 and �

h
 . 

The values of all parameters are shown in Table 2.
The ReOsc model with different parameter fits can be 

integrated for  104yrs with white noise forcing for �
T
 and 

�
h
 , to evaluate the effect on the statistics for T and h. In the 

following analysis will discuss a number of different ReOsc 
model fits. Some statistics for T and h for the different fits 
are given in Table 1.

(2)
dh(t)

dt
= a21T(t) + a22h(t) + �

h

The analysis of the ENSO phase space is based on 
monthly mean values of T and h, and follows the approach 
of DA22. T is presented on the x-axis versus h on the y-axis. 
This Cartesian coordinate system is transformed into a 
spherical coordinate system with the phase angle � = 0o in 
the h (y-direction) and 90o in the T (x-direction). � follows a 
clockwise rotation. T and h are normalized by their respec-
tive standard deviation (Table 1) to get a non-dimensional 
presentation of the variables (Tn and hn). This normalization 
is also applied to the ReOsc model parameters (Table 2). The 
ENSO system anomaly, S, is a vector with the two cartesian 
coordinates Tn and hn. In the spherical coordinate system the 
magnitude of S is constant for a constant radius and is not 
a function of the phase � . Thus, the ENSO system is now 
described by the magnitude of S and �.

The tendencies of the ENSO system in the spherical 
coordinate system are described by the radial and tangential 
components. The radial component describes the tendency 
to move away from the origin (positive values) or towards it 
(negative values). The tangential component describes the 
tendency of the system to circle around the origin, with posi-
tive values indicating clockwise motion and negative values 
indicating anti-clockwise motion.

Table 2  ReOsc model 
parameters as they result from 
different fits to observations

Growth rate Coupling Noise forcing

Linear ReOsc model parameters
  Z20

   a11 = − 0.115  mon−1 a12 = 0.018  km−1mon−1 stdv(�
T
) = 0.27  Kmon−1

   a22 =  + 0.002  mon−1 a21 = − 1.42  mK−1mon−1 stdv(�
h
) = 2.3 m  mon−1

 Normalized
   a11n = − 0.115  mon−1 a12n = 0.17  mon−1 norm-stdv(�

T
) = 0.29  mon−1

   a22n =  + 0.002  mon−1 a21n = − 0.16  mon−1 norm-stdv(�
h
) = 0.27  mon−1

Linear ReOsc model parameters
  Zmxg

   a11 = − 0.06  mon−1 a12 = 0.015  km−1mon−1 stdv(�
T
) = 0.29  Kmon−1

   a22 = − 0.07  mon−1 a21 = − 1.66  mK−1mon−1 stdv(�
h
) = 3.4 m  mon−1

 Normalized
   a11n = − 0.06  mon−1 a12n = 0.15  mon−1 norm-stdv(�

T
) = 0.30  mon−1

   a22n = − 0.07  mon−1 a21n = − 0.16  mon−1 norm-stdv(�
h
) = 0.35  mon−1

Non-linear ReOsc model parameters
  Z20

   a11-0 = − 0.035 K  mon−1

   a11-1 = − 0.19  mon−1

   a11-2 = 0.058  K−1mon−1

a12 = 0.018  km−1mon−1 stdv(�
T
) = 0.27  Kmon−1

   a22 =  + 0.002  mon− a21 = − 1.42  mK−1mon−1 stdv(�
h
) = 2.3 m  mon−1

Non-linear ReOsc model parameters
  Zmxg

   a11-0 = − 0.061 K  mon−1

   a11-1 = − 0.11  mon−1

   a11-2 = 0.071  K−1mon−1

a12 = 0.015  km−1mon−1 stdv(�
T
) = 0.29  Kmon−1

   a22 =  + 0.002  mon− a21 = − 1.66  mK−1mon−1 stdv(�
h
) = 3.4 m  mon−1
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We can define a phase dependent growth rate based on the 
radial tendencies divided by the magnitude of S. It should 
be noted that this statistical definition of the growth rate is 
different from the growth rates a11 and a22 , as it includes 
the dynamical growth and the growth by noise forcing (see 
DA22for details). A phase dependent phase speed is defined 
based on the tangential tendencies divided by the magnitude 
of S. The mean period of an ENSO cycle can be estimated 
based on integrating the phase speed from 0° to 360°.

In an idealized ReOsc model we would expect all nor-
malized model parameters being symmetrical for Tn and 
hn, leading to symmetrical eqs. [1–2]. That is, the growth 
rates, coupling and strength of the noise forcing are the same 
magnitudes for both Tn and hn. Following DA22 we define 
an idealized ReOsc model reference with the parameters:

This idealized ReOsc model serves as a reference against 
which we can evaluate different estimates of the observed 
ReOsc model, assuming that the observed ENSO is indeed a 
symmetric, damped oscillation between SST and some sub-
surface heat content index. Thus, a presentation of ENSO 
that is closer to the idealised ReOsc model is likely to be a 
better presentation of the underlying dynamics of ENSO.

3  Comparison of Z20 and Zmxg statistics

The Z20 estimate is designed to approximate the variability 
and mean of Zmxg. While it is often very close to Zmxg, it 
can clearly be different from the Zmxg for individual profiles 
(e.g., Fig. 1a).

This can also be illustrated by the example profiles shown 
in Fig. 2. The nature of the two estimation procedures can 
lead to different characteristics in their variability. The Z20 
estimate is a robust estimate that cannot vary much for 
small changes in the temperature profile, but it is sensitive 
to warming of the whole or parts of the profile.

In turn, the Zmxg is based on gradients that are not sensi-
tive to warming of the whole profile or some parts of it, but 
it can lead to significant changes in Zmxg for small changes 
in the temperature profile that affect the maximum gradient. 
For instance, the temperature profiles often have a region of 
50 m or longer in which the temperature gradients are not 
substantially different (e.g., Fig. 2a and c). A small change 
in this region of the profile can lead to substantial changes in 
Zmxg but would have very little impact on Z20. This can lead 
to higher variance in Zmxg for high frequency variability in 
small regions or local profiles.

The vertical resolution of the temperature profile and the 
spline fit used in this approach can affect the estimates, but are 
unlikely to be a primary problem, assuming we have 10 m or 

(3)
a11 = a22 = −0.048mon−1 and a12 = −a21 = 0.16mon

−1

better vertical resolution. The Z20 has little sensitivity to the 
changes in the resolution from 10 m to much higher resolu-
tion, while the Zmxg estimate can be a bit more sensitive due 
to the above-mentioned regions of long sections in the profile 
with nearly constant temperature gradients. Here higher verti-
cal resolution would make the Zmxg estimate more variable, as 
it would capture smaller changes in gradients. Therefore, the 
spline fit of the coarse resolution data acts as a smoothing of 
the gradients.

The relationship between Z20 and Zmxg, as Fig. 3 illustrates 
by the maps of the mean and the standard deviation of Z20 
and Zmxg for the tropical Pacific, varies regionally. The overall 
pattern and values in the mean are similar for both estimates 
near the equator (from  5oS to  5oN) but disagree further away 
from the equator. Z20 is generally a bit deeper in the west and 
shallower in the east equatorial Pacific.

The standard deviation is enhanced on the equator rela-
tive to the off-equatorial regions in particular for the central 
to eastern Pacific, and more clearly for Z20 than for Zmxg. The 
variability in the western equatorial Pacific is stronger for Zmxg 
than for Z20 and it is weaker for Zmxg than for Z20 in the far 
eastern equatorial Pacific. The correlation between Z20 and 
Zmxg is relatively high in the central equatorial Pacific and 
lower at higher latitudes, see Fig. 3g.

For the dynamics of ENSO, as discussed in the context of 
the ReOsc model, the thermocline depth of the whole equato-
rial Pacific (h) is a dynamical variable of importance. Fig-
ure 4a shows the time series of h, as estimated by Z20 and 
Zmxg. We can note that they are highly correlated and that the 
standard deviation of both is very similar.

The power spectra of the two estimates of h show that Zmxg 
has more variance than the Z20 on nearly all frequencies, but 
in particular on the high frequencies (Fig. 4b). This can reflect 
the nature of the physical processes causing the variability in 
these two variables, but it may also reflect the nature of how 
the two variables are defined (see discussion above).

A more important difference in the variability of Z20 and 
Zmxg can be noted in the cross-power spectrum between the 
two estimates, see Fig. 4b-d. For lower frequencies (smaller 
than 1/yr), for which the variability of the two estimates is 
highly coherent, we can note that the Zmxg estimates leads 
the time evolution of Z20 by about 25°. Thus, variations in 
Zmxg appear significantly earlier in time than they do in Z20. 
Such differences in the timing of the variability is important 
for the ENSO phase space discussions, as they focus on the 
phase relations between T and h.

4  Co‑variability with T

The idealised ReOsc model suggests that T and h should 
have a perfectly out-of-phase cross-correlation, with zero 
correlation at lag zero and opposite cross-correlations at 
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lags of opposite signs, Fig. 5. In the following analysis we 
will use the idealised ReOsc model as a reference against 
which we evaluate the different estimates of h, assuming that 
the estimate that more closely follows the idealised ReOsc 
model is more accurate.

The Zmxg does follow this out-of-phase cross-correla-
tion of the idealised ReOsc model for time lags near zero 
very well but does show some significant deviations for 
lags < − 12 mon and lags > 3 mon. The mismatch between 
the observed Zmxg estimate and the idealised ReOsc model 

Fig. 3  Comparison of the mean (left column) and standard deviation (right column) of the thermocline estimates Z20 (c, d) and Zmxg (a, b), and 
the differences between the two (e, f) in percentages of the Zmxg values. The correlation between Z20 and Zmxg are shown in (g)
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is much stronger when h leads T than when T leads h. This 
asymmetry is unexpected from the idealised ReOsc model.

The Z20 estimate, however, does not appear to fit to the 
idealised ReOsc model on any time lag. The cross-corre-
lation at lag zero is strongly positive and the lag-lead time 
evolution of the cross-correlation is clearly shifted towards 
negative time lags.

The cross-power spectrum between T and h provides an 
alternative way of evaluating the cross-relation between T 
and h, see Fig. 6. Both estimates have very similar behaviour 
for the cross-spectral amplitude and coherence, but differ-
ent phase relations for longer time scales. The cross spec-
tral amplitude for both estimates is higher than that of the 
idealised ReOsc model for frequencies away for the peak 
amplitude frequency, and it is lower at frequencies near the 
peak amplitude for both estimates (Fig. 6a). The coherence 
is also a bit higher for frequencies away for the peak ampli-
tude frequency for both estimates than expected from the 
idealised ReOsc model (Fig. 6b). The phase relation of the 
Zmxg estimate appears to be largely in agreement with the 
expected 90° relation found in the idealised ReOsc model. 
However, the Z20 estimate has a significant deviation from 
the 90° relation for interannual frequencies, suggesting a 

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025
-40

-20

0

20

40

th
er

m
oc

lin
e 

de
pt

h 
[m

]

mean eq. Pacific thermocline depth

r = 0.87

stdv(Z
mxg

)/stdv(Z
20

) = 1.08

a)

Z20

Zmxg

10-1 100

freq. [1/yr]

10 -2

10 0

10 2

10 4

V
ar

ia
nc

e/
C

ov
ar

ia
nc

e

spectrab)

10-1 100

freq. [1/yr]

0

0.2

0.4

0.6

0.8

1
coherencec)

10-1 100

freq. [1/yr]

-90

-60

-30

0

30

60

90

Z
20

 le
ad

s 
 Z

m
xg

   
   

   
Z

m
xg

  l
ea

ds
  Z

20

phased)

Fig. 4  a Time series of h estimated by Z20 (red) and Zmxg (blue). The 
correlation value r and the ratio in the standard deviations are shown 
too. b Power spectra of Z20 (red) and Zmxg (blue) and the cross-spec-

tral power between the two estimates (black). c Cross-spectral coher-
ence and d cross-spectral phase between the two estimates

-20 -15 -10 -5 0 5 10 15 20

time [mon]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

co
rr

el
at

io
n

cross-correlation T vs. h

h sdael T T sdael h

Z20

Zmxg

idealised ReOsc
90% interval

Fig. 5  Cross-correlation between T and h based on Z20 (red) and 
Zmxg (blue), and for the idealised ReOsc model simulation (black). 
The 90% confidence interval (shaded area) is based on 40yrs long 
time series of the idealised ReOsc model simulation



5774 D. Dommenget et al.

1 3

closer in-phase relation between Z20 and T than expected 
from the idealised ReOsc model. This is consistent with 
the cross-correlation at lag zero being positively correlated 
between Z20 and T.

The fact that the Z20 estimate does not have the 90° out-
phase relationship with T could potentially be related to the 
assumption that h should be the mean over the whole equa-
torial Pacific. The mean thermocline depth over the whole 
equatorial Pacific is a balance of thermocline depth in the 
western equatorial Pacific, which tends to have a negative 
correlation (at lag zero) to T, and the thermocline depth 
in the east, which tends to have a positive correlation to T 
[Meinen et al. 2000; Izumo and Colin 2022; Jin 1997]. A 
change in the regional weighting of the western and east-
ern equatorial Pacific could potentially improve the phase 
relation between Z20 and T. Due to the different strength of 
variability of the Zmxg and Z20 estimates in different regions 
of the tropical Pacific (Fig. 3), they effectively have different 
weightings of the west and east tropical Pacific in the arith-
metic mean thermocline. depth over the whole equatorial 
Pacific (h). The Zmxg estimate has more variability in the 
western Pacific relative to the Z20 estimate (Fig. 3), which 
shifts the balance away from the east and further to the west, 
if compared against the Z20 estimates, effectively being more 
shifted towards a negative correlation with T.

However, this regional shift in variance it not the most 
important difference between the two estimates, as the 
estimates are by construction different in nature. We now 
test the role of the regional weighting along the equatorial 
Pacific by estimating h with Gaussian weighting function, 
see Fig. 7a. The weighting function has different weights as 
function of longitudes with a width of the Gaussian function 
of 20° longitudes. For each estimate we shift the peak of the 
distribution by 10° longitudes. This effectively tests how 
the cross-relation between T and h depends on the relative 

weighting between the western and eastern equatorial Pacific 
thermocline depth.

Figure 7b shows the cross-correlation between T and h as 
function of the longitude with the maximum weighting for h. 
For both estimates we find a clear transition from a negative 
correlation in the western equatorial Pacific towards a posi-
tive correlation in the eastern equatorial Pacific, consistent 
with findings from previous studies. Thus, there is a longi-
tude for both estimates at which the correlation between T 
and h is zero, which is further to the west for Z20 than for 
Zmxg. For most of the equatorial Pacific the Z20 estimate has 
a larger (more positive) correlation than Zmxg, indicating that 
Z20 is generally more strongly correlated with T than the 
Zmxg. The Z20 estimate is also more sensitive to the longitude 
of the weighting function, as the correlation varies more 
strongly from the western to the eastern equatorial Pacific.

The idealised ReOsc model suggests that T and h should 
have a 90° phase relationship for frequencies smaller than 
1/yr. Figure 7c shows the mean phase for both estimates as 
function of the longitude with the maximum weighting for 
h. Similarly, to the cross-correlation results we can note a 
transition from the west to the east towards a more in-phase 
(phase zero) relation between T and h. Again, there is a lon-
gitude at which both estimates have the expected 90° phase 
relationship, but for both estimates this is slightly different 
from the longitude at which the cross-correlation is zero 
(compare Fig. 7b and c). The mean phase of Z20 is also more 
sensitive to the longitude of the weighting than for Zmxg.

A key idea of the idealised ReOsc model is that h forces 
the tendencies of T (eq. [1]), with positive h leading to posi-
tive tendencies in T and vice versa for negative h. Thus, we 
would expect that there is a positive correlation between 
dT/dt and h. In the idealised ReOsc model this correlation 
is 0.48. For the mean equatorial Pacific estimates of h with 
Z20 and Zmxg the values are 0.36 and 0.43, respectively. 
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Indicating that Zmxg is closer to the idealised ReOsc model 
expectation than Z20. These values vary substantially for the 
longitude with the maximum weighting for h, see Fig. 7d. 
Both estimates peak at a similar longitude in the central 
Pacific, but the correlation is higher at all longitudes for 
Zmxg.

In addition to the sensitivity of h to the longitudes over 
which it is estimated there is also a potential sensitivity of h 

to the latitudes over which it is estimated. We therefore esti-
mate h with different width in latitudes centred around the 
equator, ranging from 1° to 20°, see Fig. 8. For width rang-
ing from 1° to about 7° the Zmxg estimate tends to be closest 
to what we would expect from the idealised ReOsc model. 
For width larger than the cross correlation.between T and 
h, and between dT/dt and h clearly point out that the esti-
mates are drifting away from the expected idealised ReOsc 
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model, suggesting these estimates are not relevant for ENSO 
dynamics. Again, the Z20 estimates are clearly further away 
from the expect statistics for the idealised ReOsc model than 
the Zmxg estimates, suggesting that the Zmxg estimates are the 
better estimates for the analysis of ENSO dynamics.

5  The ENSO phase space

We now focus on the ENSO phase space, which highlights 
the dynamics between T and h, as a cycle of an oscillation 
between T and h. In an idealised linear ReOsc model the 
phase space should present T and h as a perfect circle with 
clockwise phase propagation through all phases [DA22].

Figure 9 shows the ENSO phase space base on the Z20 
and Zmxg estimates. The Z20 estimate is essentially the same 
as the one discussed in DA22 and is marked by a preferred 
likelihood to be along the diagonal quarters Q1 to Q3 due 
to the correlation between Z20 and T as discussed in DA22. 
The Zmxg estimate is more circular and does not appear to be 
stretched along the diagonal from Q1 to Q3.

The mean S and the probability of S > 2 as function of 
phase are shown in Fig. 10a and b. Both estimates have simi-
lar mean S with a high correlation (see r-value in Fig. 10a), 
but with the Zmxg estimates showing larger values in the Q2 
quarter and the Z20 estimate being more pronounced in the 
Q1 and Q3 relative to the Q2 and Q4 quarters.

More pronounced differences between Z20 and Zmxg are 
noted for the extreme values of S > 2. Here the Zmxg estimate 
shows a very clear picture with the extremes being focussed 
on the Q2 quarter, which is somewhat expected from the 
skewness of T and Zmxg (Table 1). The Z20 estimate is clearly 
stretched out to the Q1 and Q3 quarters due to the positive 
correlation between Z20 and T.

An important aspect that the phase diagram allows to ana-
lyse is the phase dependence of the growth rate and phase 
speed of the ENSO dynamical system. Figure 10c and d 
show the growth rate and phase speed as function of phase. 
The two estimates do have only modest similarity, but indeed 
show some important differences.

The growth rate of the Zmxg estimate shows positive 
growth rates from shortly after the La Nina state (~ 300°) 
until shortly after the El Nino state (~ 130°) and negative 
growth for the rest of the cycle. The growth rate of the Z20 
estimate is more complex with positive growth rates around 
the recharge and discharge states (0° and 180°) and negative 
growth rate near the Nina state and El Nino states (90° and 
270°). This pattern is again strongly related to the positive 
correlation between Z20 and T, as discussed in DA22.

The phase speed shows substantial differences between 
the two estimates. The Z20 estimate shows very strong var-
iations with fastest transitions in the Q2 and Q4 quarters 
and slowest in quarter Q3, which are again a result of the 
correlation between Z20 and T (see discussion in DA22). 
This result is in quite contrast to the literature discussion, 

0

30

60

90

120

150

180

210

240

270

300

330

0

1

2

3

4

5

Z20a)

T
n

h
n

0

30

60

90

120

150

180

210

240

270

300

330

0

1

2

3

4

5

Zmxgb)

T
n

h
n

Fig. 9  Observed ENSO phase space based on Z20 (left) and Zmxg 
(right). The times series of �⃗S are shown as grey lines and the vec-
tors are the mean tendencies of Tn and hn within a range of ± 0.4 to 
the reference point in the phase space (starting point of the vector). 
A vector of unit length is a tendency of 1  mon−1 and the scale of 
the vector is proportional to the magnitude of the tendencies. Vec-

tors are only shown for S < 3.5 and where there is actual data. The 
red line marks the mean value of �⃗S for each angle within an angle 
range of ± 20°. In addition to the Cartesian coordinates Tn and hn, the 
spherical coordinates for the radius ( �⃗S ) values [2,3,4] and angle ( φ ) in 
clockwise notation are given



5777ENSO phase space dynamics with an improved estimate of the thermocline depth  

1 3

which state that the ENSO cycle is slowest or least clear in 
quarter Q2 [e.g., Kessler 2002].These variations in phase 
speed are also much larger than those in the Zmxg estimate, 
however they lead to a similar estimate of the mean cycle 
period (see values in Fig. 10d).

The Zmxg estimate has the fastest transition after an El 
Nino state (100° to 160°) and the slowest between the La 
Nina and the recharge states (270° to 30°) consistent with 
the discussion in Kessler [2002]. Further, both estimates 
have mean phase speeds significantly different from zero 

for all phases suggesting that ENSO is indeed a cycle. This 
is more clearly the case for Zmxg than for Z20.

6  Fit of the linear ReOsc model

The characteristics of the ENSO phase space diagram can 
best be understood in the context of the ReOsc model. We 
therefore fitted the linear ReOsc model to the Z20 and Zmxg 
data with the same T values for both, resulting into two 
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different sets of estimated ReOsc model parameters cor-
responding to the Z20 and Zmxg, respectively (see methods 
section for details). It should be noted here that the multi-
variate approach does lead to changes in all parameter, not 
just the ones directly related to h. The model parameters are 
listed in Table 2.

Given that Z20 and Zmxg have different standard devia-
tions, we expect the model parameters, which are related to 
h, to be different for the two estimates. To be able to better 
compare the different ReOsc models estimates we can focus 
on the non-dimensional, normalised model parameters (see 
Table 2). The normalized model parameters also allow us to 
compare the dynamics of the tendency equations of T and h 
irrespective of the physical units of T and h.

The Z20 estimate of the normalized ReOsc model 
parameters are very similar (symmetric) for T and h for all 
aspects, but not for the growth rate. The growth rate in T is 
strongly damped, whereas the growth rate in h is weakly 
positive. This asymmetry is a result of the positive correla-
tion between T and Z20, as discussed in DA22. The ReOsc 
model fit of the Zmxg estimate is much more symmetric in 
all aspects of the tendency equations, including the growth 
rates, which are nearly identical for T and h. Here both 
growth rates are equally strongly damped (negative). This 
fit is very similar to the idealised ReOsc model (Eq. 3).

The differences in the fitted ReOsc model parameters 
result into very different statistics of the ENSO phase space, 
as can be shown by integrating eqs. (1,2) with white noise 
forcing for  104yrs, see Table 1 and Fig. 11. The linear model 
with the Zmxg estimate has very little to no phase dependen-
cies, whereas the linear ReOsc model with the Z20 estimate 
has very clear phase decencies resulting from the asymmetry 
in the growth rate of T, which is a result of the correlation 
between T and Z20. The linear ReOsc model with the Z20 
estimate has good correlation with the observed statistics, 
suggesting that much of these observed statistics can be 
explained by the correlation between T and Z20. Thus, it 
is unlikely that these characteristics mark true underlying 
structure of the ENSO recharge oscillator dynamics. They 
are most likely just a limitation, resulting from the artificial 
correlation between T and Z20. The results of the ENSO 
phase space statistics of the Zmxg estimate in turn suggest 
that basically all the observed phase dependent characteris-
tics are unrelated to linear dynamics. Thus, they must result 
from some non-linear ENSO dynamics.

7  Fit of a non‑linear ReOsc model

The analysis of the linear ReOsc model fitted to the 
observed Zmxg estimate in the previous section suggests 
that the phase dependent characteristics of the observed 
ENSO phase space are potentially resulting from 

non-linear interactions between T and h, and their ten-
dencies. Previous studies have suggested several different 
processes that could contribute to non-linear interactions 
between T and h, including non-linear growth of T or h, 
state-dependent noise, non-linear response of wind stress 
to SST or non-linear coupling of T or h [e.g., Frauen and 
Dommenget 2010; Kim and An 2020; Levine et al. 2016]. 
It is beyond the scope of this study to fully explore what 
non-linear aspect of ENSO may explain the ENSO phase 
space characteristics, but similar to the approach in DA22 
we like to give some indication of how non-linear pro-
cesses can potentially explain the observed ENSO phase 
space characteristics.

We follow the approach in DA22 and focus on a non-
linear growth rate of T assuming a quadratic function. We 
replaced eq. (1) of the ReOsc model to include a non-
linear growth rate of T:

A Nelder-Mead optimization scheme is used to estimate 
the non-linear model parameters ( a11−2, a11−1, a11−0) . The 
cost function for this optimization is based on integrat-
ing the model for 1000yrs and estimate the monthly mean 
distribution parameters of T and h. The parameters of this 
non-linear model for Z20 and Zmxg estimates are shown 
in Table 2. For both models we have a stronger negative 
feedback for large negative T values, and a weaker or posi-
tive feedback for large positive T values. This is quali-
tatively similar to models suggested in previous studies 
[e.g., Frauen and Dommenget 2010; Kim and An 2020; 
Geng et al. 2019; DA22]. We integrate this model with the 
same noise forcing as for the linear model. We refer to this 
model as the non-linear ReOsc model. Statistics for T and 
h for Z20 and Zmxg estimates are listed in Table 1.

Figure 12 shows the statistics of the ENSO phase space 
of the non-linear fits for the Z20 and Zmxg estimates. First, 
we can note that in general the non-linear ReOsc model 
fits better to the observed data for both estimates than the 
linear model (compare correlation values in Figs. 11 and 
12). This is essentially expected, since we optimised the 
non-linear model to fit to the observations, and the non-
linear model has more parameters to be optimized than 
the linear model. Second, we can again notice that the 
non-linear model fits are substantially different between 
the two estimates, highlighting that the two estimates give 
very different presentations of the ENSO dynamics (see 
correlation values in Fig. 12).

The non-linear fit for the Z20 estimate is closer to the 
observed data than the linear fit, but it is not substantially 
different, suggesting that much of the structure in the 
phase space diagram is resulting from linear dynamics.

(4)
dT(t)

dt
= a11−2T

2(t) + a11−1T(t) + a11−0 + a12h(t) + �
T
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Fig. 11  Statistics of the ENSO 
phase space for the Z20 (left) 
and Zmxg (right) estimates, as 
in Fig. 10, but in comparison to 
the fitted linear ReOsc model 
statistics. Each panel shows 
the observed statistics (blue 
lines), the linear ReOsc model 
fit (red lines) and the idealised 
ReOsc model reference (black 
lines) with the 90% confidence 
interval in shaded grey areas. 
The correlation between the 
observed and the fitted ReOsc 
model values are shown as the 
r-values in each panel
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Fig. 12  Statistics of the ENSO 
phase space for the Z20 (left) 
and Zmxg (right) estimates, as 
in Fig. 11, but in comparison 
to the fitted non-linear ReOsc 
model statistics. For each panel 
in the right column the correla-
tion between the statistics of the 
fitted non-linear ReOsc model 
for the Z20 and Zmxg estimates 
are shown as the red r-values
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Focussing on the Zmxg estimate we can notice that the 
non-linear model fit does capture parts of the phase depend-
ent mean S and the probability of S > 2 (Fig. 12b,d) much 
better than the linear fit. The non-linear ReOsc model can 
capture well the asymmetry in the mean El Nino (90°) and 
La Nina states (270°), with larger means for the El Nino 
state, but it has larger than observed mean S for the recharge 
state (0°) and smaller than observed mean discharge states 
(180°).

This mismatch in the asymmetries along the h-axis 
become clearer for the extreme values of S > 2 (Fig. 12d). 
Here the observed data shows a very strong non-linearity 
towards extreme discharge states. This is not captured by the 
non-linear ReOsc model fit. This marks a strong limitation 
of the non-linear ReOsc model fit.

The strongest mismatch between the non-linear model 
fit and the observed Zmxg estimate is in the growth rates. 
Here there is essentially no match between the two. The 
non-linear ReOsc model fit has positive growth rates during 
the El Nino state and negative growth rates during the La 
Nina state. This is what is expected since we constructed 
the non-linear model with a non-linearity in the growth 
rate of T only. However, this does not match very well with 
the observed, both in terms of the phase space structure, 
as measured by the correlation, and in terms of the over-
all strength in the variations with different phases, which is 
much stronger in the observed than in the non-linear model.

The phase transition speed variations with the phases are 
also not well captured by the non-linear ReOsc model. The 
model fails to capture the faster phase transitions after an 
El Nino state and suggests the fastest transitions during the 
discharge state (180°), which is not observed.

Overall, we have to conclude from this non-linear model 
fit, that the observed variations in the ENSO phase space 
are only moderately well capture by a model with non-lin-
ear growth rate in T, and that there are important aspects 
of the ENSO phase space that remain unexplained by this 
approach. Most importantly, these are asymmetries along the 
h axis, between the recharge and discharge states.

8  Summary and discussion

In this study we looked at the differences in the representa-
tion of the ENSO dynamics, as represented in the phase 
space, if based on Z20 and Zmxg. While the statistics of equa-
torial mean variability of Z20 and Zmxg estimates are very 
similar in many aspects, they do have substantially different 
representations of the ENSO phase space. The Z20 estimated 
is more in-phase correlated with T, which results into ENSO 
phase space diagrams that are dominated by this correlation, 
but in turn does not present important non-linear aspects of 
ENSO very well. The Zmxg estimated presents the ENSO 

phase space much more as expected from an idealised ReOsc 
model, with clear out-of-phase relations between T and h.

We further evaluated the longitudes and latitudes over 
which h should be estimated. We find that for both estimates 
there exist a region along the equatorial Pacific for which 
there is a perfect out-of-phase relation between T and h. 
However, the Z20 estimate is more sensitive to the region 
over which it is estimated and has in general a lower correla-
tion with the tendencies of T than the Zmxg estimate.

A Fit of linear and non-linear ReOsc models to the 
observed data of T, Z20 and Zmxg also showed substantial dif-
ferences between the two estimates. The Zmxg estimate sug-
gests that phase dependent ENSO statistics results entirely 
from non-linear dynamics, while in the Z20 estimate much 
of the phase dependent ENSO statistics result from linear 
ReOsc dynamics related to the in-phase correlation between 
T and Z20. Based on the non-linear ReOsc model using the 
Zmxg estimate we find that a non-linear growth rate of T can 
only capture some elements of the non-linear ENSO phase 
space, but misses out on substantial non-linear behaviour for 
the variability in h. It also has only limited skill in capturing 
the observed phase dependent aspects of the growth rate 
and phase speeds. This suggest that other processes than the 
growth rate of T must contribute to the non-linear behaviour 
of ENSO.

Using the more realistic presentation with the Zmxg esti-
mate we can use the ENSO phase space diagram to describe 
the typical (mean) ENSO cycle, see sketch in Fig. 13. Start-
ing at the recharge state: this state has, in the mean, relatively 
weak values and rarely has any extreme values. However, it 

Fig. 13  Sketch illustrating the idealised observed ENSO phase space. 
Shading indicates the probability density distribution, the green band 
marks the mean cycle and the arrows the mean phase speed
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is the phase of the ENSO cycle that is in average most unsta-
ble (positive growth rates) and will therefore lead to growth 
in the ENSO anomalies. At the same time the phase speed 
is slower than in average, allowing the ENSO anomalies 
to grow. This will lead to relatively strong El Nino states, 
which can have some of the most extreme ENSO anomalies.

After the El Nino state comes a phase with relative fast 
phase transition speed and positive growth rates. This leads 
to a transition into strong discharge states. Indeed, the 
discharge state, is the state with the most extreme ENSO 
anomalies. The transition from the discharge state to the La 
Nina state is marked by negative growth rates and moderate 
phase transition speeds. This leads to relatively weak mean 
La Nina states and rarely any extreme La Nina states.

The transition from a La Nina state to the recharge state 
starts with a phase of negative growth rate and a slow phase 
transition. This leads into the phases of the ENSO cycle with 
the weakest mean ENSO anomalies and the absence of any 
extreme values. Despite the ENSO cycle slowing down and 
weakening in these phases, there is still a significant mean 
phase transition to the next phase, the recharge state, com-
pleting the cycle. Thus, ENSO is a cycle with clear phase 
transitions through all phases. The La Nina to recharge tran-
sition is, however, the phase which is most likely to stall, 
allowing the ENSO cycle to break.

In summary, the ENSO phase space analysis using the 
Zmxg estimate provides a very powerful statistical analysis of 
ENSO dynamics. It can provide analysis of growth rate and 
phase speed as function of the ENSO phase, including non-
linear aspects of ENSO. A key signature of the analysis of a 
phase space is that it presents the system as a cycle, which 
allows to clearly study how the system evolves from one 
phase to the next. This is an aspect that previous linear sta-
tistics of ENSO, such as lag-lead cross-correlations (Fig. 5) 
or composite time evolutions of events (e.g. Figures 2–4 in 
Okumura and Deser 2010 of Figs. 5 and 7 in Dommenget 
et al. 2013) do not capture as well.

This concept of phase space analysis as presented in this 
work is not limited to ENSO studies, but it has general appli-
cation for the analysis of climate modes. A phase space, for 
instance, have been used in the context of the Madden–Julian 
Oscillation [MJO; Wheeler and Hendon 2004]. This can in 
general be extended to any climate mode. It will require to 
find a 2-dimensional presentation of the climate mode by 
two out-of-phase variables that transition into one another 
as it is the case for T and Zmxg for ENSO or the two leading 
EOF-modes for the multivariate MJO-index [Wheeler and 
Hendon 2004].

The above discussion of the ENSO phase space has also 
illustrated that it is not always clear what are the best vari-
ables to present the dynamical phase space. While the phase 
space based on for T and Zmxg shows good characteristics 
of presenting the ENSO dynamics, it is not necessarily a 

perfect presentation of ENSO dynamics. Other studies 
suggested different ways to present the ENSO phase space 
[e.g., Wang and Wang 2000; Izumo and Colin 2022]. In 
the context of tropical basin interactions, it also needs to be 
considered that ENSO dynamics are partly controlled by 
the other tropical ocean basins [e.g., Dommenget and Yu 
2017; Cai et al. 2019]. Further studies are needed to further 
explore how an ENSO phase space can be presented in an 
optimal way.
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