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Abstract
Given the mismatch between the large volume of data archived for the sixth phase of the Coupled Model Intercomparison 
Project (CMIP6) and limited personnel and computational resources for downscaling, only a small fraction of the CMIP6 
archive can be downscaled. In this work, we develop an approach to robustly sample projected hydroclimate states in CMIP6 
for downscaling to test whether the selection of a single initial condition (IC) ensemble member from each CMIP6 model 
is sufficient to span the range of modeled hydroclimate over the conterminous United States (CONUS) and CONUS sub-
regions. We calculate the pattern-centered root mean square difference of IC ensemble member anomalies relative to each 
model’s historical climatology for shared socioeconomic pathway (SSP) projections over 30-year time periods and compare 
the ratio of inter-model to intra-model variability for this metric. Regardless of SSP, inter-model variability is generally 
much greater than intra-model variability at the scales of the CONUS as a whole, as well as for most CONUS sub-regions. 
However for some variables and scenarios, inter- and intra-model variability are similar at sub-CONUS scales, indicating 
that selecting a single IC ensemble member per model may be sufficient to sample the range of projected hydroclimate states 
in the 21st Century across CONUS, but for specific regions and variables, more careful selection of ensemble members may 
be necessary. Regionally-resolved Taylor diagrams identify where more IC ensemble member downscaling efforts should be 
focused if resources are available to do so. Our results suggest that, with parsimonious sampling, the requisite computational 
expense of downscaling temperature and precipitation fields over the CONUS for subsequent CMIP activities may increase 
only marginally despite the great increase in data volumes with each successive CMIP phase.
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1 Introduction

The simulations that comprise the Coupled Model Intercom-
parison Project version 6 (CMIP6) multi-model ensemble 
(Eyring et al. 2016) serve, among other purposes, to estab-
lish a plausible set of historical and future projections of 
the Earth system for a wide range of emissions scenarios 
(O’Neill et al. 2016). The utility of these projections for 
local planning in the 21st Century faces challenges, however, 
because each Earth System Model (ESM) in CMIP6 first 
focuses on ensuring model skill at planetary to continen-
tal spatial scales and interannual to centennial time scales 

through loose constraints, such as top-of-atmosphere energy 
balance and a large-scale circulation of the atmosphere and 
ocean, supported by theory (Mauritsen et al. 2012; Schmidt 
et al. 2017). The coarse resolution of each ESM ( ∼ 100 km) 
either under-resolves or simply does not resolve the pro-
cesses that contribute to local impacts. ESM skill is achieved 
through physical and parameterized process modeling at 
large spatial scales and long time scales instead of at small 
time and short spatial scales (Clark et al. 2015), even though 
only the latter scales are relevant to infrastructure and opera-
tions planning.

As a result, while ESMs physically model climatic con-
ditions that are without an historical analog, they are blunt 
tools for developing projections at the spatial scales of inter-
est for local infrastructure and operations planning. The mis-
match between ESMs and local needs is highlighted by the 
existence of model biases relative to the historical observa-
tional record at regional and local levels, which may be large 
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enough to preclude a model’s adoption, even indirectly, by 
a user for planning purposes (Wang et al. 2014; Kim et al. 
2020; Srivastava et al. 2020; Pierce et al. 2021a). For a wide 
range of applications that require localized information, the 
mismatch between the CMIP6 models and both process 
representation and the spatial resolution needs of the user 
necessitates downscaling solutions. There are a wide range 
of downscaling techniques ranging from statistical meth-
ods (Wood et al. 2004; Abatzoglou and Brown 2012; Stoner 
et al. 2013; Pierce et al. 2014) to hybrid methods (Gutmann 
et al. 2014) to fully dynamical methods that contain explicit 
and parameterized representations of atmospheric and sur-
face physical processes (e.g., Giorgi and Gutowski 2015). 
These methods construct local projections from coarse GCM 
outputs at scales relevant to local-level infrastructure and 
operations planning (e.g., Wood et al. 2004; Stoner et al. 
2013; Pierce et al. 2014; Giorgi and Gutowski 2015; Gut-
mann et al. 2016).

While many variables are potentially of interest to local 
infrastructure and operations planning, we focus here on the 
daily surface air temperature and precipitation in the Conter-
minous United States (CONUS). These variables are central 
to local planning and management (e.g., Moss et al. 2017) 
and there are established workflows for analyzing these vari-
ables for climate assessments performed by a wide range 
of United States federal agencies (e.g., Melillo and Yohe 
2014; USGCRP 2021). However, even if the focus is limited 
to precipitation and temperature, the CMIP6 archive repre-
sents an extremely large volume of data, including dozens 
of separate contributions from different modeling centers as 
well as different ensemble members of each model produced 
through changing initial conditions (IC; e.g., Murphy et al. 
2004; Deser et al. 2012; Kay et al. 2015; Deser et al. 2020) 
or perturbed physical parameterizations (e.g., Murphy et al. 
2004; Rostron et al. 2020). IC ensembles are particularly 
useful for assessing a given model’s internal variability, 
especially in the context of adaptation decision-making 
(Mankin et al. 2020). The development of localized solu-
tions from that archive must contend with the volume of data 
available in the CMIP6 archive while capturing the range of 
not just inter-model but intra-model variability. Because of 
this, the question becomes: how can one adopt a judicious 
and parsimonious approach to downscaling CMIP6 which is 
suitable across the broad range of hydroclimates represented 
in the CONUS?

As a practical matter, there are significant personnel and 
computational costs to downscaling; the expenses incurred 
for dynamical downscaling solutions are well-known (Giorgi 
and Gutowski 2015) but are also non-negligible even for 
statistical downscaling. Despite efforts to homogenize model 
input for subsequent analysis, there remain idiosyncrasies 
in each contributing model (Pierce et al. 2021b). A signifi-
cant amount of preparation is required for each model to 

account for, in addition to these, differences in grid scales, 
vertical coordinate convention, completeness of variables 
being reported, and calendaring systems. For example, the 
UKESM1 model has a 360-day year (Sellar et al. 2019), 
unlike other models, which must be accounted for in statisti-
cally downscaling an ensemble. Additionally, mismatches in 
the number of ensemble members per model could over- or 
under-weight a given model. The idiosyncrasies of CMIP 
models have not diminished, and are unlikely to diminish, 
over time. Finally, the data storage and data provision chal-
lenges for downscaling outputs are perennial. Solutions to 
these practical matters associated with ever-growing ensem-
bles of climate models that need downscaling correspond-
ingly need to scale with the growing data volumes, with 
sustainable levels of computational and personnel support.

As of this writing, 57 CMIP6 models have reported 
results to the Earth System Grid Federation (Cinquini et al. 
2014) that fulfill these requirements. Together, these con-
stitute ∼ 1770 total simulations for which downscaled solu-
tions could be developed. However, it is highly impractical 
to develop downscaling solutions for the complete set of 
CMIP6 simulations, and there is limited guidance in the 
scientific literature for navigating a multi-model ensemble 
of ESMs where some models contribute multiple ensem-
ble members (McSweeney et al. 2012). Additionally, the 
implications of intra-model uncertainty on the correspond-
ing uncertainty of downscaled hydroclimate projections have 
been under-investigated.

One major previous effort to downscale the CMIP5 
archive in North America, the Localized Constructed 
Analogs (LOCA), used a convention whereby a single IC 
ensemble member was chosen to produce one downscaled 
climate model per emissions scenario (Brekke et al. 2013). 
This assumed that IC ensemble members of a given model 
were all similar enough to each other that this sampling 
approach would not underestimate changes in the distribu-
tions of temperature and precipitation that were produced 
by model internal variability, as characterized by the range 
of IC ensemble members. The sufficiency of selecting a sin-
gle ensemble member for developing downscaled solutions 
that do not underestimate the impact of model internal vari-
ability on hydroclimate projections has not been established 
and motivates the need to quantify the range spanned by 
a given model’s ensemble members and all models. Here, 
we seek to understand how best to sample such a large and 
heterogeneous archive, and whether that sampling should 
expend resources to include different IC ensemble members 
or should favor a greater range of models.

The main blunt summary statistics we could be interested 
in using to compare the similarities between models are (1) 
mean biases, (2) mean state changes (or anomalies), and (3) 
the spatial pattern in responses. Mean biases are removed 
from GCMs prior to downscaling, so from a downscaling 
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perspective these do not represent meaningful differences 
between models. Differences in mean state changes and the 
spatial pattern in responses between models and IC ensem-
ble members however both characterize how different model 
results may yield distinct simulations of future climate; 
either by predicting very different rates of change (e.g. a 
warmer simulation versus a cooler one), or by simulating 
different spatial patterns in where changes occur. Pattern 
scaling has been used as a method to extrapolate climate 
simulations to time periods not covered by the simulation, 
and relies on the assumption that the pattern of state change 
is relatively stable over time (Fowler et al. 2007). Rather 
than looking at how spatial patterns of anomalies change 
(which we expect to be minimal based on the pattern scaling 
assumption), in this paper we look at mean state changes, 
or anomalies, relative to the historical baseline, and com-
pare the anomalies of different ensemble members across 
and within models by constructing a multi-model ensemble 
mean of anomalies. The multi-model ensemble mean is used 
as a point of reference that indicates a “central” estimate 
of model behavior across the CMIP6 archive, for a given 
climate variable, scenario, and 30-year time period. By com-
paring the relative similarity of spatial patterns in anomalies 
with the multi-model ensemble mean, we can summarize 
several dimensions of model difference into a single metric, 
the variability ratio (later denoted R), to characterize differ-
ences between and within models.

In this paper, we compare the variability between models 
(inter-model variability) to the variability within each model 
(intra-model variability), and specifically ask: does a random 
sampling of ensemble members provide an unbiased sample 
of the multi-model ensemble, even if this yields only a single 
ensemble member from a given model? In answering this 
question, our objective is not to rank model and ensemble 
performance but rather to determine an optimal approach 
to sampling the archive for a wide range of subsequent 
analyses of hydroclimate fields while remaining agnostic 
to measures of skill. Specifically, we do not consider mean 
biases or metrics of model performance but instead, focus 
on the higher-order differences between models and between 
ensemble members. We discuss the magnitude of the ratio 
of inter- to intra-model variability across future projections, 
variables, and CONUS sub-regions. This work builds on the 
results of Mankin et al. (2020) by exploring the navigation 
of the CMIP6 multi-model ensemble with multiple down-
scaled solutions. The distinction in this paper is that for the 
purpose of downscaling the CMIP6 multi-model ensemble, a 
parsimonious approach must be taken to sample the archive, 
so we explore what parsimony entails.

This paper is organized as follows: first, in Sect. 2 we pre-
sent an overview of the CMIP6 archive and its range of mean 
state changes over CONUS, our use of Taylor diagrams 
and their suitability for concisely summarizing ensembles 

of models each with different IC ensemble members, our 
methodology for quantifying the relative differences between 
inter- and intra-model variability among the multi-model 
ensemble, and an exploration of the robustness of this 
approach to the presence of outlier ensemble members. We 
present the results of our analysis in Sect. 3 and conclude 
with a set of recommendations for prioritizing downscaling 
routines in Sect. 4.

2  Data and methods

2.1  Overview of the CMIP6 archive

As of February 28, 2022, the CMIP6 archive on the Earth 
System Grid Federation contained contributions from 44 
modeling centers and 113 models. While the CMIP6 archive 
continues to grow as additional outputs and ensemble mem-
bers are added, as of this date 61 models have historical 
model outputs and 49 have future projections for the vari-
ables of precipitation rate (pr), minimum daily tempera-
ture (tasmin), and maximum daily temperature (tasmax); 
see Tables 1 and 2. Throughout this work we focus on IC 
ensemble members, which are distinct realizations of each 
model with identical physics and forcings and nearly identi-
cal initial conditions which were produced to capture cli-
mate change and assess Earth System internal variability in 
ESMs (e.g., Murphy et al. 2004; Deser et al. 2012; Kay et al. 
2015; Deser et al. 2020). Of these, only IC ensemble mem-
ber historical simulations and future projections added to 
the archive prior to October 1, 2021 which had complete (or 
near-complete, with a ± 12 month margin of error) monthly 
time series spanning a given 30-year time period are in our 
analysis.

We chose to look at three specific shared socioeconomic 
pathways (SSPs), namely SSP245, SSP370, and SSP585, 
since these span a wide range of end-of-century radiative 
forcings across all of the scenarios and are broadly relevant 
to investigations of societal impacts due to changing tem-
perature and precipitation patterns (Wu et al. 2022). We 
acknowledge that these three SSPs are a subset of all pos-
sible scenarios which we could have analyzed. We chose to 
compare scenarios with similarly large numbers of ensem-
ble members. These three SSPs are among the scenarios 
for which the archive contains the most model-ensembles 
(O’Neill et al. 2021) (at the time we began analysis in Octo-
ber 2021, SSP245 and SSP370 had the highest number of 
ensemble members provided by modeling centers, followed 
by SSP126 and SSP585), and the divergent boundary condi-
tions of the scenarios lead to substantial differences in end-
of-century hydroclimate (Hawkins and Sutton 2009; Lehner 
et al. 2020). We also wanted to ensure that this analysis is 
relevant to those scenarios that are being downscaled for 



5174 J. M. Longmate et al.

1 3

widespread analysis: for the upcoming Fifth National Cli-
mate Assessment, only SSP245, SSP370, and SSP585 are 
being downscaled.

On average, a total of ∼ 200 IC ensemble members from 
38 models met our analysis requirements per scenario. The 
set of models and ensemble members with historical simu-
lations for the 30-year period of 1980–2010 (the period of 
time for which we can maximize the number of IC ensem-
ble members included) is larger, and contains ∼ 350 total 
ensemble members across 53 models, averaging to 8 ensem-
ble members per model, with a maximum of 72 ensemble 
members produced by a single model.

2.2  Mean state change

To display the range of projections of minimum temperature, 
maximum temperature and precipitation that the CMIP6 
models and their ensemble members produce, we calcu-
lated the mean state change (or anomaly) for all ensemble 

members from all models, across variables, scenarios, 
regions, and 30-year time periods. In Fig. 1 we show box 
plots of mean state change for all ensemble members for 
a single region, the Southwest (boxplots for the remain-
ing NCA4 regions can be found in Appendix 4). For all 
regions, scenarios, and variables, the mean state change of 
different ensemble members spans a broad range of values, 
and increases over time. In Fig. 1 the range of mean state 
change of ensemble members is shown without specifying 
from which model they originate. Despite the multi-model 
ensemble average and range of mean state change across 
all models and ensembles steadily increasing over time, 
the CONUS-wide and regional variability ratios in Fig. 7 
show that between-model variability generally increases at 
a greater rate relative to within-model variability, with some 
regional exceptions. As context for Fig. 7, this suggests that 
differences in between- and within-model variability are 
driven by similarity between ensemble members from the 
same models, rather than by convergence of all ensemble 

Table 1  Number of CMIP6 
historical initial condition 
(IC) ensemble members that 
fulfill our restriction criteria 
in the CMIP6 archive for 
daily precipitation rate (pr), 
maximum daily temperature 
(tasmax), and minimum daily 
temperature (tasmin)

Model # of IC ensemble mem-
bers

Model # of IC ensemble mem-
bers

pr tasmax tasmin pr tasmax tasmin

ACCESS-CM2 3 3 2 ACCESS-ESM1-5 40 40 28
AWI-CM-1-1-MR 5 4 4 AWI-ESM-1-1-LR 0 1 1
BCC-CSM2-MR 3 3 3 BCC-ESM1 3 3 3
CAMS-CSM1-0 2 0 0 CanESM5 25 25 24
CAS-ESM2-0 4 4 3 CESM2 11 0 0
CESM2-FV2 3 0 0 CESM2-WACCM 3 0 0
CESM2-WACCM-FV2 3 0 0 CIESM 3 3 3
CMCC-CM2-HR4 1 0 0 CMCC-CM2-SR5 1 0 0
CMCC-ESM2 1 1 0 E3SM-1-0 5 0 0
E3SM-1-1 1 0 0 E3SM-1-1-ECA 1 0 0
EC-Earth3 70 73 66 EC-Earth3-AerChem 2 2 2
EC-Earth3-CC 1 1 0 EC-Earth3-Veg 9 9 8
EC-Earth3-Veg-LR 3 3 3 FGOALS-f3-L 3 0 0
FGOALS-g3 6 6 3 FIO-ESM-2-0 3 3 3
GFDL-ESM4 3 3 1 GISS-E2-1-G 12 12 12
GISS-E2-1-G-CC 1 1 1 GISS-E2-1-H 10 10 10
GISS-E2-2-H 5 5 0 ICON-ESM-LR 5 0 0
INM-CM4-8 1 1 1 INM-CM5-0 2 2 1
IPSL-CM5A2-INCA 1 0 0 IPSL-CM6A-LR 32 32 32
IPSL-CM6A-LR-INCA 1 1 0 KACE-1-0-G 3 0 0
KIOST-ESM 1 0 0 MCM-UA-1-0 1 0 0
MIROC6 49 50 50 MPI-ESM-1-2-HAM 3 3 3
MPI-ESM1-2-HR 10 10 9 MPI-ESM1-2-LR 10 10 10
MRI-ESM2-0 10 10 9 NESM3 5 5 5
NorCPM1 15 0 0 NorESM2-LM 3 0 0
NorESM2-MM 2 0 0 SAM0-UNICON 1 1 1
TaiESM1 2 0 0

Total realizations: 403 340 301
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members towards greater agreement. The wide spread of 
values across ensemble members additionally showcases a 
small fraction of the differences across models and ensemble 
members that downscalers need to consider, and highlights 
the need to undertake prioritization for the selection of mod-
els and ensemble members.

2.3  Methods

2.3.1  Regridding model output

In order to provide tractable comparisons between model 
results, a common grid is required, so we conservatively 

Table 2  Number of CMIP6 shared socioeconomic pathway (SSP) 
projection ensemble members for SSP245, SSP370, and SSP585 that 
fulfill our restriction criteria in the CMIP6 archive for daily precipi-

tation rate (pr), maximum daily temperature (tasmax), and minimum 
daily temperature (tasmin)

Model Precip. Max. Temp. Min. Temp.

SSP245 SSP370 SSP585 SSP245 SSP370 SSP585 SSP245 SSP370 SSP585

ACCESS-CM2 3 3 2 3 3 3 2 2 3
ACCESS-ESM1-5 19 30 0 30 30 10 24 27 6
AWI-CM-1-1-MR 1 5 1 1 5 1 1 5 1
BCC-CSM2-MR 1 1 1 1 1 1 1 1 1
BCC-ESM1 0 3 0 0 2 0 0 2 0
CAMS-CSM1-0 2 2 2 0 0 0 0 0 0
CanESM5 25 25 25 25 25 25 25 25 24
CAS-ESM2-0 0 2 0 2 2 2 2 2 2
CESM2 3 3 3 3 3 3 3 3 1
CESM2-WACCM 5 3 5 4 0 4 4 0 4
CIESM 1 0 0 1 0 1 1 0 1
CMCC-CM2-SR5 1 1 1 0 0 0 0 0 0
CMCC-ESM2 0 1 0 1 1 1 0 1 0
E3SM-1-1 10 0 0 0 0 0 0 0 0
EC-Earth3 50 57 53 72 57 58 66 5 45
EC-Earth3-AerChem 0 2 0 0 2 0 0 0 0
EC-Earth3-CC 0 0 0 1 0 1 0 0 0
EC-Earth3-Veg 6 6 6 8 6 8 7 6 5
EC-Earth3-Veg-LR 3 3 3 3 3 3 3 3 3
FGOALS-f3-L 1 1 1 0 0 0 0 0 0
FGOALS-g3 4 5 4 4 5 4 4 5 4
FIO-ESM-2-0 3 0 3 3 0 3 3 0 3
GFDL-ESM4 3 1 1 3 1 1 2 1 1
IITM-ESM 1 1 1 0 0 0 0 0 0
INM-CM4-8 1 1 1 1 1 1 1 0 1
INM-CM5-0 1 5 1 1 5 1 1 5 1
IPSL-CM5A2-INCA 0 1 0 0 0 0 0 0 0
IPSL-CM6A-LR 11 11 6 11 11 6 7 10 0
KACE-1-0-G 3 3 3 0 0 0 0 0 0
MIROC6 37 3 50 50 3 50 43 3 40
MPI-ESM-1-2-HAM 0 3 0 0 3 0 0 1 0
MPI-ESM1-2-HR 2 10 2 2 10 2 2 10 1
MPI-ESM1-2-LR 10 9 10 10 10 10 10 10 10
MRI-ESM2-0 1 5 0 5 5 4 5 5 3
NESM3 2 0 2 2 0 2 2 0 2
NorESM2-LM 0 3 0 0 0 0 0 0 0
NorESM2-MM 0 1 0 0 0 0 0 0 0
TaiESM1 1 1 1 0 0 0 0 0 0
Total 211 211 188 247 194 205 219 132 162
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remap (Jones 1999) all future projections to the coarsest 
model resolution in the archive, with roughly 250 km grid 
cells.

2.3.2  Summarizing model climatologies

To calculate anomalies, we subtract the model-specific his-
torical mean across the time period of 1980–2015 from the 
scenario- and ensemble member-specific annual mean of 
the corresponding climate variable. We calculate 30-year 
averages of these anomalies in moving windows across 
2015–2100 for SSP245, SSP370, and SSP585 (e.g. the 
annual average value of maximum daily temperature for 
CESM2’s IC ensemble member r1i1p1f1 in SSP370, aver-
aged across 2070–2100 into a two-dimensional field of grid 
cells). The 30-year time period is standard for climate nor-
mal calculations (World Meteorological Organization 1989, 
2007) because it is a sufficiently long period of time over 
which to average out annual to multi-decadal fluctuations 
(Arguez and Vose 2011).

Additionally, we construct a multi-model ensemble mean 
of these anomalies, weighted inversely by the number of 

ensemble members per each model to give models equal 
weight regardless of the number of IC ensemble members 
provided per model. Anomalies of individual ensemble 
members are compared with the multi-model ensemble 
average.

2.3.3  Regional focus

We look at three separate partitions of the CONUS: (1) all of 
CONUS, (2) the seven regions defined in the Fourth National 
Climate Assessment (NCA4; Reidmiller et al. 2017), and (3) 
three custom regions, “West”, “Central”, and “East.” At the 
coarsest resolution used, the smaller NCA4 regions contain 
very few grid cells ( ∼ 10 in the Northeast). The three custom 
regions are thus useful for examining sub-CONUS regional 
differences while ensuring that each region has a sufficient 
number of grid cells to minimize small sample problems when 
calculating regional statistics. The three regions are defined as 
follows: the West region is everything west of 104◦ W, the East 
region is everything east of 95◦ W, and the Central region lies 
between 104◦ W and 95◦ W. The division of regions at these 
parallels preserves some rough boundaries in the regional 

Fig. 1  Box and whisker plots of mean state change for all models and 
ensemble members for rolling 30-year time periods are shown for 
each variable and scenario, for the NCA4 region of the Southwest. 

The units of mean state change for temperature are degrees Celsius, 
and for precipitation are mm/day
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climatology of CONUS (Regonda et al. 2016) while ensuring 
regions are both larger and more similar in size. Regional Tay-
lor diagrams (see Sect. 2.3.4) make use of the NCA4 regions to 
bring regional climatology information to bear on their inter-
pretation, while regional variability ratios (see Sect. 2.3.5) are 
calculated across these three larger subregions to avoid small 
geospatial sample sizes.

2.3.4  Taylor diagrams

Taylor diagrams (Taylor 2001) are useful visualizations of 
how multiple model outputs compare relative to a reference 
dataset, and we use this comparison to examine the relative 
differences between models and ensemble members within 
the CMIP6 archive. In this analysis, since we do not focus 
on traditional metrics of model performance such as mean 
bias, Taylor diagrams are well-suited to succinctly capture 
the higher-order statistics of the multiple models and their 
ensemble members across a range of CMIP6 experiments. 
Our metric of interest is the difference between the average 
of a field for an ensemble member across a 30-year period 
in a future projection and the average across the correspond-
ing historical simulation from 1980-2015 for that ensemble 
member, which we refer to as “state change” or “anomaly”. 
The reference dataset that we use for Taylor diagrams of 
future projections is the multi-model ensemble average of 
these anomalies, as discussed in Sect. 2.3.2. This approach 
emphasizes how the anomalies of each model’s output from 
scenario experiments of the 21st Century differ between 
models and ensemble members across the CMIP6 archive.

The mean-centered statistics of a Taylor diagram (Taylor 
2001) are designed to concisely summarize the degree of 
correspondence between two fields or “patterns,” here com-
paring each ensemble member anomaly with the reference 
data set (here the multi-model ensemble average anomaly). 
The statistics of interest are the standard deviation of each 
ensemble member {�ij ∶ i = 1,… ,N;j = 1,… , ni} (where 
N is the total number of models and ni is the number of 
ensemble members for model i) and of the reference data 
set �r as well as the correlation coefficient between each 
ensemble member and the reference data set, denoted 
{�ij ∶ i = 1,… ,N;j = 1,… , ni} . Both quantities are calcu-
lated across all grid cells in the region of interest. These 
statistics can be further aggregated into the centered pattern 
root mean square (RMS) difference D for each ensemble 
member, denoted {Dij ∶ i = 1,… ,N;j = 1,… , ni} , which 
can be written in terms of the standard deviations and cor-
relation coefficient as

Note that Dij approaches zero as the two fields or patterns 
become more alike. In the following, RMS differences 

(1)Dij =
√

�2
ij
+ �2

r
− 2�ij�r�ij.

generically refer to a specific variable (precipitation or tem-
perature) in a specific time period (anomaly in one of the 
future scenarios) for a specific region (CONUS or one of the 
subregions). Furthermore, it should be noted that the RMS 
differences do not account for overall mean differences in the 
two fields. For the calculation of both centered pattern RMS 
differences and correlation coefficients, the mean of each 
field (i.e. the model-ensemble-specific mean anomaly) is 
subtracted out in the calculation of the correlation coefficient 
and root mean squared difference before these quantities are 
plotted. The equations for these two quantities (equations 1 
and 2 respectively, from Taylor (2001)) highlight differences 
in spatial patterns of anomalies rather than mean differences.

The correlation coefficient R between two variables, fn 
and rn , defined at N discrete points in space, with mean val-
ues of f̄  and r̄ respectively is defined as:

The centered pattern RMS difference, E′ is defined as:

The Taylor diagram visualizes these three statistics (centered 
pattern RMS difference, standard deviation, and correlation 
coefficient) in a single plot. The reference data set used 
is either the multi-model ensemble average of anomalies. 
The model-ensemble average anomaly is normalized, and 
ensemble member anomalies are normalized by the model-
ensemble average anomaly.

As discussed in Sect. 2.3.2, these fields are constructed 
as 30-year averages, and the field of reference is the multi-
model ensemble mean, averaging the fields of each ensemble 
member anomaly for a given 30-year period and inversely 
weighted by number of ensembles per model. The field of 
reference is therefore time-dependent, rather than fixed to 
the present day or historical observation at a certain point in 
time (i.e. when we calculate the variability ratio for models 
and ensembles over 2015-2045 versus 2070-2100, the ref-
erence field used to calculate this ratio is also constructed 
over that same time period, rather than the present day). By 
looking at differences in patterns of anomalies across models 
at a given time period of a scenario, relative to the multi-
model ensemble mean, mean state biases outside of these 
time horizons do not appear in our analysis.

2.3.5  Quantifying inter‑ and intra‑model variability 
and their ratio

While Taylor diagrams are helpful for visualizing a 
large amount of information about IC ensemble behavior 

(2)R =

1

N

∑N

n=1
(fn − f̄ )(rn − r̄)

𝜎f𝜎r

(3)E� =
1

N

N
∑

n=1

([(fn − f̄ ) − (rn − r̄)]2)
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between models and within models, the units of distance 
between points are not uniform or easily interpretable 
(Gleckler et al. 2008). Even when restricting our scope to 
monthly climatologies over CONUS and its subregions, the 
amount of information in the CMIP6 multi-model ensem-
ble across different variables, scenarios, spatial extents, 
and time periods is too large to summarize concisely. It 
is necessary to distill down the mean-centered statistics 
of a Taylor diagram into a single value to describe differ-
ences in inter- and intra- model variability. This analysis 
focuses on differences in spatial patterns of anomalies, and 
on the variability of these differences across the CMIP6 
archive. Specifically, we are interested in how that vari-
ability emerges in different regions and at different spatial 
scales, and how characterizing this variability can assist 
in the parsimonious sampling of ensemble members for 
downscaling. Therefore the statistics we use differ from 
other metrics of model uncertainty and internal variability 
from other authors, with which the reader might be more 
familiar (e.g., the three sources of uncertainty discussed 
in Hawkins and Sutton 2009).

To assess whether a random selection of model ensem-
ble members will produce an unbiased sample of the 
multi-model ensemble for downscaling temperature and 
precipitation in a particular region, we can use a standard 
statistical approach of random effects modeling that quanti-
fies the magnitude of between-group variability relative to 
the within-group variability (Gelman 2005). In this case, 
“group” refers to a climate model, with the ensemble mem-
bers comprising the items in each group; the quantity of 
interest is the centered RMS differences and their variability 
across and within models. The standard setup specifies that 
the ensemble members from each model represent a random 
sample of all possible IC ensembles, where each model has 
a model-specific mean centered RMS difference, say Di , and 
some variance �2 that does not depend on the model, which 
will indicate the “within-model” variability. For conveni-
ence, a Gaussian distribution is often assumed, wherein

where N(a, b) denotes a Normal distribution with mean a 
and variance b and “ iid∼ ” denotes “independent and identi-
cally distributed as.” The model-specific mean centered 
RMS difference values are furthermore assumed to arise 
from a super-population of all possible models that have an 
overall (across-model, or between-model) mean D and vari-
ance �2 , again following a Gaussian distribution

In general this framework is robust to the specific random 
effects distribution in Eq. 5 (McCulloch and Neuhaus 2011); 

(4)Dij

iid
∼N(Di, �

2), i = 1,… ,N;j = 1,… , ni,

(5)Di

iid
∼N(D,�2), i = 1,… ,N.

we further explored other distributions for Eqs. 4 and 5 (e.g., 
log-Normal) and found no difference in our results.

The quantity of interest is then the ratio of the between-
model variability to the within-model variability, quanti-
fied in terms of the standard deviations � and � , denoted

which we henceforth refer to as the “variability ratio,” or 
“R.” When R > 1 (i.e., the between-model variability is 
larger than the within-model variability), we can safely con-
clude that a random sampling of IC ensemble members will 
generally produce an unbiased sample of the multi-model 
ensemble. However, if R < 1 , this indicates that the variabil-
ity within the various models is larger than the differences 
between models and one must carefully choose ensemble 
members in order to sample the multi-model ensemble. 
Using the assumptions specified by Eqs. 4 and 5, standard 
statistical software can be used to yield maximum likelihood 
estimates of the ratio of variances in Eq. 6 and the Delta 
method can be used to quantify uncertainty in this ratio (for 
more information, see Appendix 1).

While the types of variability we describe here as 
“between-model variability” and “within-model variabil-
ity” may at first glance seem similar to of the sources of 
uncertainty in Hawkins and Sutton (2009) termed “model 
uncertainty” and “internal variability,” they differ in a 
few key ways. First, our points of reference differ sig-
nificantly from that used in Hawkins and Sutton (2009); 
while the point of origin in their data space is the present 
day (where change relative to present day values starts at 
0, and increases as time or forcing progresses), our data 
space is centered around a time-varying model-ensemble 
average. The variability ratio R is therefore not a ratio 
between the Hawkins and Sutton (2009) model uncertainty 
and internal variability, but rather a measure of between-
model variability within the CMIP6 archive relative to the 
within-model variability across the models in the CMIP6 
archive. It is time-varying and defined by the contents of 
the archive rather than a historical observational reference 
point. Second, the spatial correlation metrics we construct 
in this analysis highlight differences in patterns of anoma-
lies rather than differences in means. As we will see in 
Sect. 3.2 and Fig. 7 of our results, the behavior of how 
spatial correlation metrics change as forcing increases will 
not follow the same trend seen in Hawkins and Sutton of 
model uncertainty increasing relative to internal variabil-
ity. (Indeed, we see no significant changes in these patterns 
across the multi-model ensemble as forcing increases.)

(6)R =
�

�
,



5179Prioritizing the selection of CMIP6 model ensemble members for downscaling projections of…

1 3

2.3.6  Assessment of robustness to outlier ensemble 
members

In light of the fact that we plan to draw conclusions about an 
appropriate sampling scheme for ensemble members for the 
CMIP6 multi-model ensemble based on the variability ratio 
and its uncertainty, it is important to ensure that the R metric 
is robust to the presence of outlier or “extreme” ensemble 
members from a given model. Recall that if our estimate of 
R is significantly larger than 1, we conclude that a random 
sampling of IC ensemble members will produce an unbiased 
sample of the multi-model ensemble. Consider the following 
hypothetical scenario: suppose a small number of models 
(one or more) have a single ensemble member that is system-
atically different than the others, e.g., one ensemble member 
projects a decrease to precipitation over CONUS by end-of-
century while all others project an increase to precipitation. 
In this case, random sampling of IC ensemble members may 
not yield an unbiased sample of the CMIP6 multi-model 
ensemble in the case that the “extreme” ensemble member 
is selected. The natural question becomes: is our metric R 
robust to such a scenario? In other words, will our estimate 
of R (and its uncertainty) reflect the presence of extreme 
ensemble members?

We conducted a synthetic data test to formally answer this 
question. Following the total number of models for which 
we have at least one ensemble member of daily precipitation 
rate ( N = 52 ; see Table 1) and the corresponding number of 
ensemble members from these models (again see Table 1), 
we consider synthetic time slices of regionally-averaged 
anomalies at the end of the 21st Century. Using a Monte 
Carlo framework, we generate synthetic data and test our 
calculation of R as follows: 

1. Each synthetic model is randomly assigned a mean, 
say mi , and standard deviation, say si , where the model 
means range between 1 and 5 and the standard devia-
tions range between 0.1 and 0.5 (note that these are the 
max possible ranges; individual synthetic data sets can 
have ranges that are smaller than these ranges).

2. The synthetic time slice yij for ensemble member 
j = 1,… , ni of model i = 1,… ,N (where the ni are as 
in Table 1) are drawn from a Normal distribution with 
mean mi and standard deviation si.

3. Using this synthetic data, we then estimate R and its 
uncertainty. In this case, none of the models have an 
“extreme” ensemble member; furthermore, we would 
expect R > 1 since the differences between models 
(model means range between 1 and 5) is larger than the 
within-model variability (which ranges between 0.1 and 
0.5).

4. Next, we assess the effect of one more models having an 
extreme ensemble member. For i = 1,… ,N , we 

(a) Randomly sample i of the models, and
(b) For models that have more than one ensemble 

member, randomly sample one of its members 
and change the sign of the synthetic time slice yij.

   In each case we estimate R and its uncertainty from 
the “adjusted” synthetic data. See Fig. 2a for a sample 
synthetic data set.

5. Again for each i = 1,… ,N , we calculate two probabili-
ties: 

(a) The probability of selecting the extreme ensemble 
member from the models that have an extreme 
ensemble member: on average this will be 
∑

i∶ni>1
n−1
i

∑

i∶ni>1
1

= 0.242 for i = 1 (the average of one 

divided by the number of ensemble members from 
models with more than one ensemble member) 
and 

∑

i∶ni>1
1

∑

i∶ni>1
ni
= 0.1 for i = N (one over the average 

number of ensemble members from models that 
have more than one member).

(b) The probability of selecting the extreme ensemble 
member from the entire ensemble: this is simply 
i∕
∑

i ni = i∕403.

We repeat this procedure for 100 synthetic data examples, 
and then average the best estimates of R and its confidence 
interval limits over these synthetic replicates. R code for 
replicating these results is provided in the Supplement.

Results are shown in Fig. 2b, which shows the estimated 
R and its uncertainty limits averaged over the 100 syn-
thetic data examples. As expected, the variability ratio is 
significantly greater than 1 for the original data (i.e., when 
zero models have an extreme ensemble member); notably, 
R is significantly less than 1 when many of the models 
have an extreme ensemble member. When two, three, or 
four models have an extreme ensemble member, the vari-
ability ratio is significantly larger than one, with lower 
bounds of 1.26, 1.12, and 1.02, respectively; however, this 
represents only (at most) 4∕403 = 0.01 of the ensemble, 
and furthermore the probability of selecting one of these 
ensemble members from the “extreme” models is at most 
around 0.20.

The implications for sampling “extreme”, or outlier, 
ensemble members for downscaling depend on both the 
existing differences between ensemble members present 
in the models for the metric of interest, as well as how 
a specific user of downscaled simulations might define 
an outlier ensemble member, which will depend on their 
intended application. In constructing R, we do not want 
the variability ratio to overemphasize the importance of 
one or a “small” number of outlier ensemble members, 
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as that would render it overly sensitive to small shifts in 
the underlying set of ensemble members. In the synthetic 
example here, the variability ratio is not sensitive to small 
numbers (roughly five or fewer) of outlier ensemble mem-
bers, as defined in the synthetic example here, and remains 
greater than one. We also want the variability ratio to be 
able to drop below one if enough outlier ensemble mem-
bers are present, as we can see occurs in this synthetic 
example in Fig. 2b when the number of models with one 
outlier ensemble member rises above roughly 10. We 
therefore feel confident that the presence of one or two 
outlier ensemble members will not impact the variability 
ratio much, but that many significantly different ensemble 
members will drive the variability ratio down below one. 
As this example makes use of synthetic data emulating an 
unspecified metric, more specific conclusions about outlier 
ensemble members will be use-specific.

3  Results

3.1  Case study: SSP370 end‑of‑century

Using Taylor diagrams, we can visually compare between- 
and within-model ensemble behavior across differ-
ent shared socioeconomic pathway scenarios (SSP245, 
SSP370, and SSP585) and regions (all of CONUS and 
each of the seven different NCA4 regions) for the 30-year 
end-of-century period spanning 2070–2100. Ensemble-
specific anomalies are compared against the multi-model 
ensemble average of all anomalies for the same vari-
able, scenario and time period, inversely weighted by the 
number of ensembles from each model. To illustrate the 
information contained in the large number of analyses that 
we performed, we selected the SSP370 end-of-century 
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Fig. 2  Illustration of synthetic data (a) and corresponding assessment 
of estimating the variability ratio for sequentially more models that 
have an extreme ensemble member (b). c, d Show the probability of 

selecting an extreme ensemble member from the extreme models and 
selecting an extreme member from the entire ensemble, respectively
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projections as a case study. We use the corresponding 
Taylor diagrams to investigate CONUS-wide and regional 
patterns of variability, and to demonstrate the relation-
ship between Taylor diagrams and variability ratios. Cor-
responding plots for the other SSP scenarios are included 
in Appendices 2 and 3; while the average global mean 
temperature (GMT) reached by the end of century differs 
between these scenarios, the end-of-century Taylor dia-
grams for a given variable and region are similar across 
scenarios.

These Taylor diagrams also provide a useful demon-
stration of how the variability ratio (R, shown in Fig. 3 
in the subtitle of each panel) quantifies the between- to 

within-model variability in Taylor diagram statistics. The 
variability ratio is particularly useful in this case where there 
are a very large number of models and ensemble members 
and it is difficult to quickly compare the relative magnitude 
of between- to within-model variability by eye. Across var-
iables and regions at the end of the century (2070–2100, 
Figs. 4, 5), the estimate of R ranges between 0.7 and 5.6, 
which tells us that the difference between models is roughly 
up to five and a half times larger than the differences in the 
ensemble members of an individual model for R > 1 (note 
that the minimum value of 0.7 occurs for SSP245 precip-
itation in the Northwest, see Appendix 3 Fig. 10). Visu-
ally, larger values of R reflect the general behavior of the 

Fig. 3  CONUS-wide Taylor diagrams for the mean annual anomaly (from the historical period of 1980–2015) of daily maximum temperature in 
SSP370 over 2070–2100, relative to the multi-model ensemble average

Fig. 4  Regional Taylor diagrams for the mean annual anomaly (from the historical period of 1980–2015) of precipitation in SSP370 over 2070–
2100, relative to the multi-model ensemble average
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TD statistics: the ensemble members of a specific model 
are clustered together such that across models these clus-
ters are separated from one another, as we can observe in 
Fig. 6 in the Southern Great Plains, where R is relatively 
high. For this case study, R for maximum temperature in 

the Northwest and Northern Great Plains is the smallest, at 
R = 1 , and R for minimum temperature is the largest (though 
the magnitude of the confidence intervals on these ratios 
renders them all similar, as we observe in Fig. 7). Across all 
regions and variables, with large and small RMS differences, 

Fig. 5  Regional Taylor diagrams for the mean annual anomaly (from the historical period of 1980–2015) of daily maximum temperature in 
SSP370 over 2070–2100, relative to the multi-model ensemble average

Fig. 6  Regional Taylor diagrams for the mean annual anomaly (from the historical period of 1980–2015) of daily minimum temperature in 
SSP370 over 2070–2100, relative to the multi-model ensemble average
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individual ensemble members of the same model tend to 
cluster close to each other around a model-specific “mean;” 
R characterizes the distinctiveness of this grouping relative 
to the clustering of all ensembles. For annual CONUS-wide 
estimates, R is smaller for precipitation than for surface tem-
perature despite a wider range of RMS differences among all 
ensembles. Note that R characterizes the ratio of between- to 
within-model differences and remains agnostic to the abso-
lute magnitude of RMS differences.

In the CONUS-wide and regional Taylor diagrams, we 
observe a mixture of ensemble members clustering with 
other ensemble members from the same model (e.g. daily 
minimum temperature in the Southern Great Plains for 
SSP370, or precipitation in the Northeast and daily maxi-
mum temperature in the Southeast), as well as the absence 
of distinct clustering of ensemble members by models (e.g. 
precipitation in the Northern Great Plains). Across variables, 
we generally observe that the spatial patterns in anomalies 
across ensemble members agree more closely with the multi-
model ensemble average in the Southwest, as well as the 
Northwest. This is plausibly attributable to the topographic 
constraints of the regions (the Cascade mountain range and 
the Sierra Nevadas).

3.2  Variability ratios across variable, SSP, 
and regions

To distill the large amount of information contained in Tay-
lor diagrams of several variables, regions, projections, and 
time periods, we calculated CONUS-wide and regional vari-
ability ratios R for moving window 30-year averages across 
the SSP projections from 2015 to 2100, plotted versus the 
average change in global mean temperature during that 
30-year period for shared socioeconomic pathway (SSP) 245 
(red), 370 (green), and 585 (blue). Panel A shows CONUS-
wide variability ratios for precipitation (top), maximum 
temperature (center), and minimum temperature (bottom), 
while panel B shows regional variability ratios across three 
regions (West, Central, and East) for the same three vari-
ables. Figure 7 shows best estimates of R along with a 95% 
confidence interval.

Variability ratios are plotted as a function not of 
time but rather of the average global mean temperature 
(GMT) anomaly during each 30-year period for each SSP 
(where the anomalies are calculated relative to the pre-
industrial period). Two different scenarios with the same 
x-value thus represent approximately equivalent forcings 
and do not correspond cleanly to a future time period. 
As discussed in Sect. 2.3.3, to avoid the small sample 
size problems of the 7 NCA4 regions when comparing 
coarsely-regridded models, we calculate these statistics 
and compare them across three larger custom subregions.
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Fig. 7  Variability ratios for all regions and SSPs, for all 30-year 
time periods from 2015–2045 to 2070–2100, wherein the reference 
data used were the multi-model-ensemble average across all ensem-
ble members for the same region, SSP, and 30-year time period 

(weighted inversely by number of ensembles per model, so that mod-
els are given equal weight rather than ensemble members). SSP245 is 
shown in red, SSP370 in green, and SSP585 in blue
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For precipitation and minimum temperature, CONUS-
wide and in some regions, variability ratios exhibit plau-
sible increases as global mean temperature rises, indicat-
ing that as global mean temperature increases models 
become more different from other models than from their 
ensemble members. However the regional variability ratios 
also exhibit different trajectories between scenarios and 
variables as warming progresses. Most variability ratios 
and confidence intervals remain greater than one, but for 
some regions, variables, and scenarios R remains indis-
tinguishable from one. Most notably, almost no estimates 
of CONUS-wide and regional variability ratios R have an 
upper bound confidence interval below one, indicating that 
the intra-model variability is not necessarily greater than 
inter-model variability, and distinct realizations of a given 
model are either as similar to each other or more similar to 
each other ( R = 1 ) than to realizations of a different model 
( R > 1 ). The notable exception is maximum temperature 
in the West in the first half of the century for SSP370, 
for which R < 1 . CONUS-wide, R ranges between 1.2 and 
5.7, indicating that the inter-model variability over these 
estimates is approximately 1.2 to 5.7 times greater than the 
intra-model variability. In other words, ensemble members 
of the same model are generally as similar as or more 
similar than the typical behavior of an arbitrary ensemble 
member of a different model.

While we might expect the relative magnitude of 
between-model variability and within-model variability to 
change under different levels of warming, the ratio appears 
generally to increase with global mean temperature. Even 
towards the end of the century for SSP370 and SSP585, the 
CONUS-wide R remains larger than one across all three 
variables. Our observation that between-model variability 
is generally greater than within-model variability across 
variables, scenarios, and regions holds as scenarios project 
into the future, as R plausibly increases with the nota-
ble exception of maximum temperature in the West. For 
maximum temperature in the West we also observe differ-
ent trajectories for R across scenarios, attributable to very 
small between- and within-model variabilities contribut-
ing to R (note that in 7 a mid-century confidence interval 
upper bound of 83 is truncated for ease of visualization). 
CONUS-wide variability ratios increase consistently, but 
for precipitation in the East, maximum temperature in the 
Central region, and minimum temperature in the West we 
observe R plausibly declining in the first half of the cen-
tury. Confidence intervals remain large however, rendering 
claims about trajectories of variability ratios as average 
global mean temperature anomaly increases uncertain.

In summary, while we might expect R to decrease with 
increasing global mean surface temperature anomalies due 
to differences in model ensemble fields arising from model 

internal variability being amplified with increased radia-
tive forcing (e.g., Andrews et al. 2015; Wills et al. 2020), 
we find that this effect generally remains small even with 
a high emissions scenario at the end of the 21st Century.

4  Discussion

The increased interest in the scientific community in 
Earth system modeling, along with the increased inter-
est amongst a wide range of end-users in projects derived 
from earth system modeling, has led to rapid growth in 
CMIP modeled output. The size of the CMIP3 project 
was roughly 36 terabytes (TB), while the size of CMIP5 
was roughly 1.8 petabytes (PB), and the CMIP6 archive 
is expected to be roughly 40 PB in size. At the same time, 
contributions from an increasing number of modeling 
centers containing multiple ensemble members and mul-
tiple experiments present a practical challenge to compre-
hensive efforts to downscale such a large and growing set 
of simulations. In this work, through a set of analyses that 
survey the CMIP6 multi-model ensemble, we have shown 
that efficient sampling of the ensemble for the purposes 
of subsequent downscaling and analysis is more tractable 
than the exponential growth of CMIP ensembles would 
suggest. This sampling can support assessments of model 
skill and weighting, and allow for parsimony in the pro-
duction of a set of downscaling solutions that captures the 
range of how the ensemble of ESMs each parameterize 
atmospheric and surface processes that impact temperature 
and precipitation.

This is all the more important in the face of greatly-
increasing numbers of ensemble members per model, espe-
cially since there are significant personnel, computational, 
and storage costs to downscaling each ensemble member for 
each model. Previous downscaling activities have operated 
under the untested assumption that a single ensemble mem-
ber per model would be sufficient to sample the ensemble. 
We have tested this assumption by developing a variability 
ratio metric R to quantify between-to-within-model variabil-
ity for temperature and precipitation and generally find R > 1 
across the CONUS and also over CONUS sub-regions over 
the historical record and through the 21st Century, irrespec-
tive of emissions scenario. This finding indicates that the 
assumption of downscaling a single IC ensemble member 
is tenable, with caveats. Comparing models and ensembles 
regionally rather than CONUS-wide shows, perhaps unsur-
prisingly, a more complicated picture. By our criteria, the 
case for selecting a single, arbitrary ensemble member per 
model for downscaling will likely be tenable (because the 
confidence intervals of R include unity). Nevertheless, in 
order to ensure that the multi-model does not underestimate 
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the range of mean-state changes, our results indicate that, at 
the regional level, some caution should be used in the selec-
tion of ensemble members and some thought put to which 
regional metrics and scenarios are of interest to end-users.

Given that one of the primary motivations for the devel-
opment of multiple IC ensemble members per model is to 
estimate the internal climate variability of a model (e.g. 
Kay et al. 2015), it may be initially surprising that each IC 
ensemble member is close enough to its cohort to largely 
preclude the need to downscale any more than a small 
number of IC ensemble members. However, on closer 
inspection, the metric R shows us that the spatiotemporal 
correlations of temperature and precipitation in a model 
exhibit consistent patterns that are distinct for that model. 
That is why we used the R metric: those patterns are cen-
tral to LOCA2 prediction. Moreover, LOCA2 and many 
other statistical methods typically make extensive use of 
bias correction (BC) (see Teutschbein and Seibert 2012 
for a rationale), which removes most of the model internal 
variability signal that IC ensemble members are designed 
to encompass. Consequently, BC further diminishes the 
importance of downscaling many IC members to capture 
the range in relative changes in hydroclimate variables. At 
the same time, our findings show that the spatiotemporal 
correlation structures in different IC members may become 
more divergent where globally-averaged mean temperature 
anomalies exceed a 3 ◦ C increase in some regions, such 
as the central United States, which could be the result of 
nonlinearities in coupled land-atmosphere processes (e.g., 
similar to the divergent simulations of the Great Plains 
Low-Level Jet found in Tang et al. (2017)). All in all, the 
efforts to develop multiple IC ensemble members as con-
tributions to CMIP6 were not produced in the service of 
ensuring a realistic range of hydroclimate states across the 
CONUS; and yet that is precisely the purpose of downs-
caling a multi-model ensemble. The analysis here shows 
how to consider the different purposes of these modeling 
efforts.

There are several caveats to this analysis, however. First, 
this analysis looked only at IC ensemble members of temper-
ature and precipitation over the CONUS. A similar analysis 
of other variables, in other regions, and/or perturbed-physics 
ensemble members (PPEs) may produce different results. 
Second, we have focused on 30-year averages of monthly 
climatologies because of the widespread use of climate 
normals, but analysis over longer or shorter periods could 
impact our conclusions. Third, we have compared models 
generating projections at different grid scales and we con-
servatively remap all models to the scale of the coarsest 
model. While remapping is necessary for intercomparisons, 
it also constrains the spatial resolution of any model to that 
of the coarsest model. We expect conservative remapping 
to have a small smoothing effect on models being remapped 

to similar but slightly coarser grid scales. Finally, we want 
to reiterate the separation between the analysis here and 
analyses of model skill and weight that often accompany 
the processing of downscaled solutions.

Despite these caveats, the findings of this analysis support 
the use of one, or at most a small number of IC ensemble 
members for downscaling temperature and precipitation 
in the 21st Century. Our method provides a framework for 
analyzing multiple models and ensemble members across a 
broad region, and is applicable to endeavors such as the Fifth 
National Climate Assessment. Additionally, it points to the 
sub-linear growth, to date, in personnel, computational, and 
storage costs for downscaling multi-model ensembles, which 
have grown by more than an order of magnitude in each 
successive CMIP phase. Such sub-linear scaling is critically 
important for the long-term sustainability of downscaling 
solution development in future CMIP activities. The ques-
tion of parsimony for developing downscaling solutions is 
not likely to be made moot by increased computational or 
personnel resources: models and ensemble members, to date, 
have been growing in number and complexity with each 
phase of CMIP, which has tended to increase the potential 
computational and personnel resources required to develop 
downscaling solutions. Downscaling solutions remain spe-
cialized and have not been designed to scale with increased 
model and ensemble number. Our findings show that current 
approaches can reasonably support downscaling solution 
development for CMIP6, and if similar approaches to histori-
cal and scenario-based experiments are adopted for CMIP7 
and beyond, the downscaling solutions that currently exist 
will continue to be able to provide the additional information 
needed to link coarse-resolution climate change effects as 
described by ESMs with the fine-scale change projections 
necessary to develop climate-risk-informed plans and opera-
tions at the local level.

Appendix 1: Quantifying uncertainty 
in the ratio of between‑ to within‑ model 
variability

While standard statistical software can provide maximum 
likelihood estimates of the between-model standard devia-
tion � and within-model standard deviation � , and hence 
their ratio R = �∕� , one can use the Delta method to quan-
tify uncertainty in this ratio. Here, our goal is to construct 
a confidence interval for the R = �∕� . In addition to maxi-
mum likelihood estimates of the variances, denoted �̂ and 
�̂  , the nlme package for R (include citation) provides an 
approximate covariance matrix for the log standard devia-
tions, i.e.,
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we then use these quantities to get at the uncertainty of the 
quantity of interest using the Delta method. Since the ratio of 
variances must be positive and a confidence interval should 
(1) not include negative values and (2) likely not be sym-
metric about the best estimate, we first construct our confi-
dence interval on the log scale and then exponentiate the end 
points. The quantity we want the uncertainty of is the log of 
the ratio of the variances

in terms of X = log� and Y = log � , this can be written as

Denote Σ̂ = the approximate covariance matrix of the log 
standard deviations (obtained from the nlme package). The 
Delta method says that the estimated variance of f(X, Y) is

X = log�, Y = log �;

log
�

�
= log� − log �;

f (X, Y) = X − Y .

�Varf (X, Y) = ∇f (X, Y)⊤ ⋅ �Σ ⋅ ∇f (X, Y),

where

A 95% confidence interval for f(X, Y) is then

and a cor responding conf idence interval  for 
exp{f (X, Y)} = exp{2 log� − 2 log �} =

�2

�2
 is

Appendix 2: CONUS‑wide Taylor diagrams 
of SSP245 and SSP585

See Figs. 8 and 9.

∇f (X, Y) =

[

�

�X
f (X, Y)

�

�Y
f (X, Y)

]

=

[

1

−1

]

.

(Lf ,Uf ) =

(

f (X̂, Ŷ) − 1.96

√

V̂arf (X, Y), f (X̂, Ŷ) + 1.96

√

V̂arf (X, Y)

)

(

exp{Lf }, exp{Uf }
)

.

Fig. 8  CONUS-wide Taylor diagrams for the 30-year anomaly of SSP245 relative to the multi-model ensemble average of anomalies

Fig. 9  CONUS-wide Taylor diagrams for the 30-year anomaly of SSP585 relative to the multi-model ensemble average of anomalies
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Appendix 3: Regional Taylor diagrams 
of SSP245 and SSP585
See Figs. 10, 11, 12, 13, 14 and 15.

Fig. 10  Regional Taylor diagrams for the 30-year annual average anomalies of precipitation, showing models and ensembles for SSP245 over 
2070–2100, compared against the multi-model ensemble average of these anomalies

Fig. 11  Regional Taylor diagrams for the 30-year annual average anomalies of precipitation, showing models and ensembles for SSP585 over 
2070–2100, compared against the multi-model ensemble average of these anomalies
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Fig. 12  Regional Taylor diagrams for the 30-year annual average anomalies of maximum temperature, showing models and ensembles for 
SSP245 over 2070-2100, compared against the multi-model ensemble average of these anomalies

Fig. 13  Regional Taylor diagrams for the 30-year annual average anomalies of maximum temperature, showing models and ensembles for 
SSP585 over 2070-2100, compared against the multi-model ensemble average of these anomalies
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Fig. 14  Regional Taylor diagrams for the 30-year annual average anomalies of minimum temperature, showing models and ensembles for 
SSP245 over 2070-2100, compared against the multi-model ensemble average of these anomalies

Fig. 15  Regional Taylor diagrams for the 30-year annual average anomalies of minimum temperature, showing models and ensembles for 
SSP585 over 2070-2100, compared against the multi-model ensemble average of these anomalies
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Appendix 4: Mean state change boxplots 
for NCA4 regions

See Figs. 16, 17, 18, 19, 20 and 21.

Fig. 16  Box and whisker plots of mean state change for all models 
and ensemble members for rolling 30-year time periods is shown for 
each variable and scenario, for the NCA4 region of the Northwest. 

The units of mean state change for temperature are degrees Celsius, 
and for precipitation are mm/day
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Fig. 17  Box and whisker plots of mean state change for all models 
and ensemble members for rolling 30-year time periods is shown 
for each variable and scenario, for the NCA4 region of the North-

ern Great Plains. The units of mean state change for temperature are 
degrees Celsius, and for precipitation are mm/day
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Fig. 18  Box and whisker plots of mean state change for all models 
and ensemble members for rolling 30-year time periods is shown 
for each variable and scenario, for the NCA4 region of the South-

ern Great Plains. The units of mean state change for temperature are 
degrees Celsius, and for precipitation are mm/day
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Fig. 19  Box and whisker plots of mean state change for all models 
and ensemble members for rolling 30-year time periods is shown for 
each variable and scenario, for the NCA4 region of the Midwest. The 

units of mean state change for temperature are degrees Celsius, and 
for precipitation are mm/day
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Fig. 20  Box and whisker plots of mean state change for all models 
and ensemble members for rolling 30-year time periods is shown for 
each variable and scenario, for the NCA4 region of the Northeast. 

The units of mean state change for temperature are degrees Celsius, 
and for precipitation are mm/day
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Fig. 21  Box and whisker plots of mean state change for all models 
and ensemble members for rolling 30-year time periods is shown for 
each variable and scenario, for the NCA4 region of the Southeast. 

The units of mean state change for temperature are degrees Celsius, 
and for precipitation are mm/day
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