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Abstract
The present study investigates the influence of different atmospheric teleconnections on the annual precipitation variability 
in Northeast Brazil (NEB) based on the annual precipitation data from the Global Precipitation Climatology Center (GPCC) 
from 1901 to 2013. The objective of this study is to analyze the influence of different atmospheric teleconnections on the 
total annual precipitation of NEB for the 1901–2013 period, considering the physical characteristics of four subregions, 
i.e., Mid-north, Backwoods, Agreste, and Forest zone. To analyze the influence of different atmospheric teleconnections, 
GPCC data were used, and the behavior of the teleconnections was assessed using Pearson correlation coefficient, Rainfall 
Anomaly Index (RAI), and cross-wavelet analysis. The Pearson correlation was used to analyze the influence on the annual 
precipitation for the studied region. RAI was used to calculate the frequency of atmospheric patterns and drought episodes. 
The cross-wavelet analysis was applied to identify similarity signals between precipitation series and atmospheric telecon-
nections. The results of the Pearson correlation assessed according to Student's t test and cross-wavelet analysis showed that 
the Atlantic Multidecadal Oscillation (AMO) exerts a more significant influence on the Backwoods region at an interannual 
scale. In contrast, the Pacific Decadal Oscillation (PDO) exerts greater control over the modulation of the climatic patterns 
in NEB. The results of the study are insightful and reveal the differential impacts of teleconnections such as the AMO, PDO, 
MEI, and NAO on precipitation in the four sub-regions of NEB. The Atlantic circulation patterns strongly influence the 
interannual and interdecadal precipitation in the Agreste, Backwoods, and Mid-north regions, possibly associated with the 
Intertropical Convergence Zone (ITCZ) position. Finally, this study contributes to understanding internal climatic variability 
in NEB and planning of water resources and agricultural activities in such a region.
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1 Introduction

Atmospheric teleconnections serve as a bridge between dif-
ferent oceanic regions, facilitating the transfer of energy 
and influencing global climate dynamics (Zhou et  al. 
2022). They help restore imbalances in the climate system's 
energy budget, which result from the meridional distribu-
tion of solar insolation and sea surface temperature (SST) 
anomalies associated with the El Niño-Southern Oscillation 
(ENSO) and internal climate variability (Stan et al. 2017). 
These phenomena have motivated numerous observational 
studies, either on a global scale or focusing on specific 
regions, with some research demonstrating that telecon-
nections involve both oceanic and atmospheric fields (e.g., 
Grimm and Saboia 2015; Ndehedehe et al. 2018; Lim et al. 
2018; Park and Li 2018).

A variety of studies have investigated the atmospheric 
patterns generated by SST variability in the Atlantic and 
Pacific Oceans, highlighting their important role in global 
climate dynamics on interannual and multidecadal tempo-
ral scales (Chiang and Friedman 2012; Lau 2015; Cabré 
et al. 2017). These patterns can evolve and be modulated 
by the interaction of different teleconnection processes on 
various time scales. The Pacific Decadal Oscillation (PDO) 
and Atlantic Multidecadal Oscillation (AMO) are the pri-
mary dominant modes on decadal and multidecadal scales, 
while the North Atlantic Oscillation (NAO) and Multivariate 
ENSO Index (MEI) contribute to regional internal climatic 
variability on an inter-annual scale (Vining et al. 2022). The 
modulation of the PDO and the NAO involves the interaction 
between tropical SSTs, which helps to better understand the 
interannual impacts of ENSO warm and cold events in rela-
tion to the PDO and AMO phases (Han et al. 2022).

Spatiotemporal variations of extreme precipitation 
regimes are both caused by climate change. Hence, under-
standing their characteristic scales in space and time is cru-
cial to allocating and managing local water resources (Chang 
et al. 2018). Furthermore, understanding the role of climate 
variability in precipitation modulation is important for sea-
sonal predictability and a better understanding of global cli-
mate fluctuations, resulting in an improved explanation of 
rainfall variability (Jemai et al. 2017). Climate variability 
and large-scale climate teleconnections strongly impact the 
regional climate and hydrological variability in many parts 
of the world (Xiao et al. 2016; Huo et al. 2016). Therefore, 
finding the association between meteorological elements and 
the oscillatory pattern of climatic teleconnections can be 
very helpful in improving the accuracy of hydro-meteor-
ological predictions and help in the prediction of extreme 

weather events, such as drought or floods, and also in the 
management of water resources (Araghi et al. 2016; Nasci-
mento et al. 2022).

Precipitation in Northeast Brazil (NEB) presents high 
spatiotemporal variability and irregular rainfall (Brito et al. 
2021; Silva et al. 2022). Overall, the irregular rainfall in 
NEB can have significant social, economic, and environ-
mental impacts, and it is important to develop strategies 
to mitigate its effects and adapt to the changing climate. 
The main problems caused by irregular rainfall are drought, 
flooding, soil erosion, reduced availability of water, impacts 
on biodiversity, and health impacts. Regarding the relation-
ship between rainfall and atmospheric teleconnections, 
according to Brahmananda Rao and de Brito (1985), during 
winter, the circulation characteristics over the North Atlantic 
Ocean seem to be related to the circulation characteristics of 
other regions in the Northern Hemisphere. This suggests that 
NEB rainfall may have interesting teleconnections with the 
circulation characteristics of other regions in the Northern 
Hemisphere.

Therefore, it is crucial to investigate the influence of 
atmospheric teleconnections on the precipitation pattern 
that may lead to the intensification of internal climatic vari-
ability or climatic changes (Silva et al. 2020). The popula-
tion in such a region is vulnerable to the impacts of climate 
change primarily because of the socioeconomic and politi-
cal context in which they live. According to Delazeri et al. 
(2022), climate change can exacerbate access to basic needs, 
making it harder for vulnerable populations to obtain these 
necessities. Climate change-induced events such as floods, 
droughts, and hurricanes can displace communities, forcing 
them to migrate to other regions. These migrations can lead 
to increased economic and social vulnerabilities, especially 
for those who are compelled to leave their homes without 
sufficient resources, resulting in instability and poverty (Da 
Silva et al. 2022). Moreover, the population and production 
in the region rely on rainfall events to sustain agricultural 
production and daily water consumption, as rainwater is cap-
tured in cisterns for storage (Dantas et al. 2020).

Mainly, this is because NEB is an agriculturally based 
developing region facing the challenge of feeding rapidly 
growing populations in the coming decades (Thornton 
et al. 2014). The performance of different meteorological 
systems and the deficiency of public policies in managing 
water resources or severe weather warnings favor the occur-
rence of economic losses and human lives in NEB (Silva 
et al. 2017). Understanding rainfall variability is essential for 
dealing with the scarcity of water resources due to increasing 
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water demand, population growth, and economic develop-
ment (Surendran et al. 2019).

As a major aspect of the water circulation system, the 
spatiotemporal distribution of regional precipitation is 
inevitably affected by climatic factors, which may induce a 
series of hydrologic disasters, including drought and flood 
(Verdon et al. 2004; Dufek and Ambrizzi 2008; Kundze-
wicz et al. 2010; Leng et al. 2015), and extreme precipitation 
events that are among the most disruptive of atmospheric 
phenomena (Zin et al. 2010). To analyze these events, well-
distributed and consistent data with the ability to capture 
the rainfall regime in the planet's most remote and poorly 
instrumented regions are needed. Nowadays, the Global 
Precipitation Climatology Centre (GPCC) (Schamm et al. 
2014) provides gridded gauge-analysis products derived 
from quality controlled station data, which are adequate for 
analysis of the effect of atmospheric teleconnections on rain-
fall variability. Several studies have used the time series of 
GPCC to investigate the evolution of atmospheric telecon-
nections in precipitation (e.g., Molavi-Arabshahi et al. 2015; 
Okumura et al. 2017; Wang et al. 2018), and the results are 
satisfactory.

It is important to note that many studies have used 
advanced statistical analysis, such as wavelet (Santos et al. 

2019, 2023; Alizamir et al. 2023) to detect statistically sig-
nificant interannual and interdecadal oscillations in the pat-
terns of precipitation variability and atmospheric telecon-
nections (e.g., Chang et al. 2018; Santos et al. 2018, 2013; 
Su et al. 2017; Jemai et al. 2017) and this tool has been 
shown to be very useful for this purpose (Zhao et al. 2022; 
Fan et al. 2022).

Brahmananda Rao and de Brito (1985) analyzed telecon-
nections between the rainfall over NEB and the Winter Cir-
culation of Northern Hemisphere. Teleconnections are noted 
to be stronger during the winter season, and interannual vari-
ations of rainfall over NEB are associated with variations 
in the Northern Hemisphere winter circulation. Recently, 
Costa et al. (2018) showed that global climate oscillations 
have a non-stationary relationship with the NEB rainy sea-
son, impacting the hydrology of the study area at different 
time scales. In this sense, given the spatiotemporal variabil-
ity of precipitation over NEB, the objective of this study is 
to evaluate the influence of different atmospheric telecon-
nections on the total annual precipitation of NEB for the 
1901–2013 period, considering the physical characteristics 
of four subregions, i.e., Mid-north, Backwoods, Agreste, and 
Forest zone.

Fig. 1  HYPERLINK "sps:id::fig1||locator::gr1||MediaObject::0" Location of Northeast Brazil and mesoregions
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2  Data and methodology

2.1  Study area

The study region, located between the parallels 01°02′30″N 
and 18°20′07″S and between the meridians 34°47′30″W and 
48°45′24″W (Fig. 1), encompasses the states of Alagoas, 
Bahia, Ceará, Maranhão, Paraíba, Piauí, Pernambuco, Rio 
Grande do Norte, and Sergipe. These states account for a 
total area of 1,561,177  km2, representing 18.26% of Brazil's 
total area, with a population density of 30.54 inhab./km2. 
The study area's delimitation concentrates around 89.5% 
of Brazil's semiarid region, covering most of the states in 
the region except for Maranhão (IBGE 2010). This study 
analyzed precipitation variability using GPCC data and 
its relationship with atmospheric teleconnections in NEB, 
employing the division proposed by Andrade (1980), which 
divided NEB into four physiographic mesoregions: Mid-
north (Meio-Norte), Forest zone (Zona da Mata), Agreste, 
and Backwoods (Sertão). The criteria used to define the 
four sub-regions in NEB are climate, vegetation, presence 
of mountains, and geographical location. These factors help 
us understand the specific characteristics of each sub-region, 
such as their unique strengths and challenges. By consider-
ing these criteria, policymakers and regional planners can 
develop targeted strategies to promote sustainable devel-
opment and improve the overall well-being of the region's 
inhabitants (Moreira et al. 2007). Thus, each subdivision 
analyzed has distinct physical characteristics and precipita-
tion regimes.

The Forest zone is a coastal region with a humid tropical 
climate, featuring well-distributed rainfall throughout the 
year and coastal mountains and plateaus. The predominant 
vegetation is the Atlantic Forest, with extensive production 
of sugarcane. The Agreste is a region with the presence of 

mountains and plateaus, has a mild climate, and the pre-
dominant vegetation is a transition between the Atlantic 
Forest and the Caatinga. This region is a transition zone 
between the Forest zone and the Backwoods. The Forest 
zone is located in the east and has the highest precipitation 
values in NEB (Brasil Neto et al. 2020).

The Backwoods is a region with the presence of moun-
tains and plateaus, a hot and dry climate, with irregular and 
concentrated rainfall in a few months of the year, typical 
of the semiarid climate. This subregion presents irregular 
and scarce rainfall, besides periods of drought, and its typi-
cal vegetation is the Caatinga and Savannah (Silva et al. 
2018). The Mid-north is a more northern region, composed 
of Maranhão and Piauí. It has a hot and humid climate, with 
the presence of Cerrado and Caatinga. In the Mid-north, 
precipitation varies from 2000 to 1500 mm/year.

The predominant climates in NEB are the humid equato-
rial climate that covers a small part of the state of Mara-
nhão and the border of the state of Pará (Silva Junior et al. 
2020); the humid coastal climate that covers the coast from 
the states of Bahia to the Rio Grande do Norte; a tropical 
climate that predominates in the states of Bahia, Ceará, 
Maranhão, and Piauí; and the semiarid tropical climate 
that occurs in most of the NEB states, except for Maranhão 
(Safanelli et al. 2023).

NEB is also characterized by irregular rains and pro-
longed drought occurrences that affect the main economic 
activities in the agricultural sector and livestock (Brasil Neto 
et al. 2022). The region's geographical position, relief, and 
pressure systems are among the main climatic factors deter-
mining the distribution of climatic elements in NEB and the 
seasonal variation (Kayano and Andreoli 2009). Among the 
large-scale phenomena that act over NEB, the Intertropical 
Convergence Zone and El Niño-Southern Oscillation are the 
most important (Hastenrath and Lamb 1977; Chiang et al. 
2002; Giannini et al. 2004).

Table 1  Indices, abbreviations, and descriptions of the teleconnections analyzed

Index Abbreviation Description

Atlantic Multidecadal Oscillation AMO The AMO has been identified as a coherent mode of natural variability occurring in the North 
Atlantic Ocean with an estimated period of 60–80 years (NCAR 2019)

Pacific Decadal Oscillation PDO The PDO is a pattern of Pacific climate variability similar to ENSO in character but varies 
over a much longer time scale and can remain in the same phase for 20 to 30 years, while 
ENSO cycles typically only last 6 to 18 months (NCSU 2019)

North Atlantic Oscillation NAO The NAO index is based on the surface sea-level pressure difference between the Subtropical 
(Azores) High and the Subpolar Low. The positive phase of the NAO reflects below-normal 
heights and pressure across the high latitudes of the North Atlantic and above-normal 
heights and pressure over the central North Atlantic, the eastern United States, and western 
Europe. The negative phase reflects an opposite pattern of height and pressure anomalies 
over these regions (NCDC 2019)

Multivariate ENSO Index MEI Weighted anomaly average of six meteorological variables in the tropical Pacific: sea surface 
temperature, sea level pressure, surface air temperature, components of surface wind zonal 
and meridional, and component total cloudiness fraction of the sky (NCAR 2019)
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2.2  Dataset used

The data series used in this research is based on monthly 
precipitation data from the GPCC for the 1901–2013 period 
(available data), with 0.5° × 0.5°, 1.0° × 1.0°, and 2.5° × 2.5° 
spatial resolutions (Schneider et al. 2016). In this study, we 
used the GPCC 7.0 product with a 0.5° × 0.5° spatial reso-
lution. GPCC provides global monthly rainfall estimates, 
which are solely based on ground observations from around 
75,100 stations worldwide that feature at least 10 years of 
records (Basheer and Elagib 2016). These data were used to 
estimate the annual total precipitation on wet days (PRCP-
TOT). Table 1 shows the indices of teleconnections used in 
this study. More details about these indices are available on 
the website https:// www. esrl. noaa. gov/ psd/ data/ clima teind 
ices/ list, of the National Centers for Environmental Predic-
tion (NCEP).

2.3  Behavior of the teleconnections

2.3.1  Pearson correlation coefficient

The Pearson method was applied to analyze the behavior of 
the teleconnections and their influence on the annual pre-
cipitation for the studied region. The population correlation 
coefficient (parameter) ρ and its sample estimate are closely 
related to the normal bivariate distribution, whose probabil-
ity density function is given by:

where, � = �X,Y =
COV(X, Y)

�X�Y
=

�X,Y

�X�Y
 is the population param-

eter in which COV(X, Y) is the covariance between X and Y, 
σX is the standard deviation of X, and σY is the standard 
deviation of Y. The Maximum Likelihood Estimator is given 
by the expression:

where n is the number of observations of the sample, X is 
the arithmetic mean of X, and Y  is the arithmetic mean of 
Y. The correlation coefficient, ρ, can also be interpreted in 
terms of ρ2, which is known as the coefficient of determi-
nation. When multiplied by 100, ρ2 yields the percentage 
of the variation in  the dependent variable Y that can be 
explained by the variation in the independent variable X. In 
other words, it quantifies the proportion of the variance in 
Y that is predictable from X, that is, how much variation is 
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shared by both variables. The coefficient of determination 
is the ratio of the variance explained by the linear regres-
sion model (Y = α + βX, where α and β are constants) to the 
total variance in Y.

The significance of the estimated correlation coefficient 
is verified through hypothesis testing. The statistic to test the 
hypothesis  H0: ρ = 0 against  H1: ρ ≠ 0 has distribution t with 
n − 2 degrees of freedom, that is:

In this work, the correlation analysis between the precipi-
tation series of the 113 GPCC grids with the four distinct 
teleconnections was performed, and the values were spa-
tialized over the entire NEB. In addition, it is worth noting 
that different significance levels between the obtained cor-
relations were tested, and the results with confidence levels 
greater than 0.01 were highlighted.

2.3.2  Rainfall Anomaly Index (RAI)

In this work, the RAI was used to analyze precipitation on a 
monthly, seasonal, and annual scales and address droughts 
that affect agriculture, water resources, and other sectors 
(Kraus 1977). This index considers the classification of pre-
cipitation values to calculate positive and negative precipita-
tion anomalies and was chosen because it is flexible in the 
precipitation analysis. The following equation defines such 
an index:

where N is the annual precipitation for a given year, N1 is 
the average annual precipitation of the historical series, M is 
the average of the ten most extensive historical precipitation 
time series, and X is the average of the ten shortest historical 
precipitation time series. In this work, RAI series were cal-
culated based on the average rainfall of the entire NEB and 
the four mesoregions. In addition, to categorize the RAI val-
ues into different severity classes, the rainfall classification 
defined by Van-Rooy (1965) was used, as shown in Table 2.

(3)t =
�̂�
√
n − 2

�

1 − �𝜌2

∼ tn−2

(4)

RAIpositive = 3

[
(N − N1)

(M − N1)

]

, and RAInegative = −3

[
(N − N1)

(X − N1)

]

,

Table 2  Rainfall classification according to RAI

RAI Classification RAI Classification

≥ 3.00 Extremely wet − 0.99 to − 0.50 Slightly dry
2.00 to 2.99 Very wet − 1.99 to − 1.00 Moderately dry
1.00 to 1.99 Moderately wet − 2.99 to − 2.00 Very dry
0.50 to 0.99 Slightly wet ≤ − 3.00 Extremely dry
0.49 to − 0.49 Near normal

https://www.esrl.noaa.gov/psd/data/climateindices/list
https://www.esrl.noaa.gov/psd/data/climateindices/list
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2.3.3  Cross‑wavelet analysis

In this study, we employed cross-wavelet analysis to examine 
the coherence between the selected teleconnection indices 
and precipitation, as represented by the RAI, across differ-
ent timescales. The combination of cross-wavelet analysis 
and RAI allowed us to identify the periods during which the 
teleconnections and precipitation were significantly related, 
as well as the timescales of their interactions. By analyz-
ing these relationships, we were able to better understand 
the influence of atmospheric teleconnections on precipita-
tion variability in NEB and provide a more comprehensive 
assessment of the underlying climatic processes. Cross-
wavelet analysis shows the covariance of energy between 
two time series and reveals information about the relation-
ship between their phases. As in Fourier transform analysis, 
the wavelet power spectrum can be extended to analyze two 
time series, Xn and Yn (Grinsted et al. 2004). Considering 

the continuous form, it is possible to define the Continuous 
Wavelet Transform of these two series as WXY = WXWY*, 
where the asterisk denotes the conjugate complex; further-
more, we define the wavelet cross power spectrum as ||WXY |

| . 
The theoretical distribution of the cross-spectrum back-
ground energy of the wavelets of two time series  PX

K
  and 

PY
K

 is defined in Torrence and Compo (1998) as:

Equation (5) shows the theoretical distribution of the 
cross-wavelet transform power spectrum over two time series 
(Torrence and Compo 1998). Thus, Zv(p) is the confidence 
level associated with probability p, for a Probability Density 
Function, defined by the square root of the product of two 
χ2 (Chi-square). In this paper, cross-wavelet analyses were 
performed considering the RAI series of each of the four 

(5)D
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|
|W

X
n
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n
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< p

)

=
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v

√
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Fig. 2  Variation of annual aver-
age precipitation in the mesore-
gions and NEB (1901–2013)

Fig. 3  Correlation between 
PRCPTOT (mm) and a AMO 
and b PDO, where dotted areas 
correspond to correlations 
showing statistical signifi-
cance at the 0.1 level, and c 
time series of normalized 
PDO + AMO, 1901–2013
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regions with the series of the four teleconnections. In this 
sense, 16 coherence analyses were developed between these 
signals, highlighting the robustness of the work developed.

3  Results

3.1  Correlation between the PRCPTOT 
and atmospheric teleconnections

Figure 2 shows the variation of annual average precipitation 
in the mesoregions and NEB from 1901 to 2013. Upon ana-
lyzing this figure, it is evident that the highest precipitation 
values are concentrated in the Mid-north and Forest zone 
mesoregions, respectively, with rainfall exceeding 2000 and 
1400 mm/year. The Backwoods and Agreste mesoregions 
exhibit the lowest precipitation values, with rainfall ranging 
between 500 and 900 mm/year.

Figure 3a, b show the correlation between PRCPTOT and 
AMO and PDO, respectively, while Fig. 3c shows the time 
series of the normalized PDO + AMO from 1901 to 2013. 
The relationship between PRCPTOT and AMO for the 1901 

to 2013 period shows significant negative correlation coef-
ficients in the northern, central, and southern parts (Fig. 3a). 
The multidecadal variability in NEB presents a more power-
ful influence in the Backwoods than the continental influ-
ence on precipitation.

On the other hand, the PDO shows a significant negative 
correlation in the northern, eastern, and western sectors of 
NEB, indicating an inverse pattern of precipitation with the 
PDO (Fig. 3b). During the warm phase of the PDO, precipi-
tation in NEB is below average, and the cold phase results 
in wetter conditions. The normalized PDO + AMO shows a 
cooling between 1901–1924 and 1949–1989 and warming 
between 1926 and 1946 and from 1990 onwards (Fig. 3c). 
These results indicate that PDO + AMO influences the cli-
mate in NEB. The warm PDO mode is associated with more 
frequent El Niños, and the warm AMO mode on an annual 
basis correlates with generalized warming. Thus, when the 
PDO and AMO are in their warm modes, one can expect 
more warmth, while when both are in their cold modes, one 
expects climate cooling over the region.

Fig. 4  a Spatial distribution of the correlation of PRCPTOT (mm) 
with NAO, and b time series of NAO and PRCPTOT, period 1901 to 
2013. The dotted areas correspond to correlations showing statistical 
significance at the 0.1 level corresponding to correlation coefficients 

of ± 0.184 ≤ r < ± 0.156; the 0.05 significance level corresponds to 
values of ± 0.185 ≤ r < ± 0.241 and the 0.01 significance level corre-
sponds to r ≥ ± 0.242

Fig. 5  a Spatial distribution of the correlation of PRCPTOT (mm) 
and MEI, and b time series of MEI and PRCPTOT, period 1901 to 
2013. The dotted areas correspond to correlations that show statistical 
significance at the 0.1 level, corresponding to correlation coefficients 

of ± 0.184 ≤ r < ± 0.156; the 0.05 significance level corresponds to 
values of ± 0.185 ≤ r < ± 0.241, and the 0.01 significance level corre-
sponds to r ≥ ± 0.242
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The NAO has two pressure systems that affect the direc-
tion of the westerly winds, i.e., the low-pressure system 
located in Iceland and the high-pressure system in the 
Azores. During the 1901–2013 period, the NAO shows sig-
nificant negative correlation coefficients in the central-west-
ern sector of NEB (Fig. 4a). The positive phase of the NAO 
corresponds to the intensification of high-altitude westerly 
winds, which arrive with greater speed at subpolar latitudes 
and guide storms across the Atlantic between Newfoundland 
and Northern Europe (Wallace and Gutzler 1981). The NAO 
was in a predominantly positive phase at the beginning of 
the twentieth century, while the negative phase was more 
pronounced between the 1940s and 1970s (Weisheimer et al. 
2017). Hurrell (1995) states that the positive and negative 
phases of the NAO are strongly associated with the location 
and intensity of the jet stream and, as a consequence, with 
the trajectory of depressions in the North Atlantic. Figure 4b 
shows the variability of RAI during the different phases of 
the MEI. It can be seen that NAO and RAI show high vari-
ability and that NAO remains at the same stage for some 
years. On the other hand, during the positive phase of the 
NAO, the climatic conditions in NEB become more condu-
cive to the occurrence of drought episodes (Fig. 4b).

The MEI and precipitation show negative correlation 
coefficients, indicating opposite characteristics of SST and 
bearing geographic variations in their seasonal characteris-
tics (Fig. 5a). Negative MEI values represent the cold ENSO 
phase (La Niña), while positive MEI values represent the 
warm ENSO phase (El Niño). In the years from 1901 to 2013, 
La Niña of strong intensity occurred in the years: (1903–1904, 
1906–1908, 1909–1910, 1916–1918, 1938–1939, 1949–1951, 
1954–1956, 1973–1976, 1988–1989, and 2007–2008); and El 
Niño of strong intensity in the years: (1902–1903, 1905–1906, 
1911–1912, 1918–1919, 1925–1926, 1939–1941, 1957–1959, 
1972–1973, 1982–1983, 1990–1993, and 1997–1998). El 
Niño events of greatest amplitude occurred in 1982–1983 and 
1997–1998, presenting major climate impacts over the period 
studied, 1901 to 2013.

3.2  Cross‑wavelet analysis of RAI and atmospheric 
teleconnections

The following results show the periodicity of the RAI with 
AMO, PDO, NAO, and MEI through cross-wavelet analysis. 
Figure 6 shows that AMO and RAI present periodicity on 
the 30-year scale. This result is more noticeable in the Forest 
zone in the 1930–1980 period, Agreste in 1930–1990, and 

Fig. 6  Cross-wavelet transform of the standardized AMO and RAI 
time series (upper pane) and cross-wavelet transform of the standard-
ized MEI and RAI time series (lower pane). The relative phase rela-
tionship is shown as arrows (with in-phase pointing right, anti-phase 

pointing left, and RAI leading oscillation by 90° pointing straight 
down). The lighter region is the cone of influence, where zero pad-
ding has reduced the variance. The 5% significance level against red 
noise is shown as a thick contour
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Backwoods in 1930–1980, while the phase vectors between 
AMO and RAI are in opposite phases. On the other hand, 
in the Mid-north, the periodicity of 32 years was observed 
during the 1940–1965 period. The PDO and RAI present 
interannual periodicities at different scales and in all mes-
oregions. There is a 30-year interdecadal periodicity in the 
Forest zone, Agreste, and Backwoods in 1935–1950, with 
phase vectors indicating that RAI is advanced 135° from 
PDO, i.e., PDO accounts for 3/8 of the period (11.25 years). 
In the Mid-north, a periodicity of approximately 6 years is 
observed in 1915–1945, with the RAI lagging 225° from the 
PDO, i.e., the RAI responds to 3/8 of the period (2.25 years), 
and in 1985–2000, with the RAI and PDO in opposite phases.

3.3  Variability of the RAI in NEB mesoregions

Figure 7 shows the variability of the RAI in the four NEB 
mesoregions. In the Backwoods, the years 1903, 1908, 1932, 
1990, 1993, and 2012 were considered extremely dry, coincid-
ing with strong intensity El Niño episodes in 1903 and weak 
intensity in 1993, while the years 1924, 1974, and 1985 were 
considered extremely wet, coinciding with moderate intensity 
La Niña episodes in 1924 and 1974. In the Forest zone, the 
years 1901–1903 were extremely dry, coinciding with El Niño 
episodes of strong intensity. The years 1918, 1924, and 1964, 
on the other hand, were considered extremely humid, coin-
ciding with the occurrence of La Niña of moderate intensity.

4  Discussion

4.1  Correlation between the PRCPTOT index 
and atmospheric teleconnections

Phase transitions from one mode to the other are abrupt 
and occur within a year or two (Intergovernmental Panel 

on Climate Change—Fourth Assessment Report AR4), 
which makes these oscillations related to oceanic patterns 
or thermohaline circulation (D'Aleo and Taylor 2007). Cool 
AMO phases occurred in the 1900–1920 and 1960–1980 
periods, while a warm phase occurred in the 1930–1950 
period. These periods coincide with examples of anoma-
lous regional climate: for example, 1930–1950 showed 
decreased rainfall in NEB, reduced river flows in the United 
States, enhanced Sahel rainfall, and hurricane formation. 
Conversely, 1960–1980 was a period of high rainfall in 
NEB, and high river flows in the US, while Sahel rainfall 
and Atlantic hurricane formation were reduced (Knight et al. 
2006). Knight et al. (2006) showed that the positive phase of 
the AMO is associated with a northward shift of the ITCZ 
over the Tropical Atlantic, together with a northward equato-
rial crosswind anomaly. The study further points out that in 
the twentieth century, periods of high precipitation in NEB 
coincided with the negative phase of the AMO (1900–1920 
and 1960–1980), while the positive phase (1930–1950) coin-
cided with below-average precipitation.

According to Andreoli and Kayano (2007), the precipi-
tation anomalies in NEB can be attributed primarily to 
the action of the anomalous Walker circulation, adjusted 
through the rearrangement of convection in the eastern 
equatorial Pacific. During El Niño years, the displacement 
of the Walker circulation hinders the formation of clouds 
and reduces rainfall during the rainy season. During El Niño 
episodes, positive precipitation anomalies occur in typically 
arid and semiarid regions, such as the west coast of South 
America, the southern United States, and East Africa (Any-
amba 2001; Holmgren et al. 2006).

Furthermore, the El Niño phenomenon, which is char-
acterized by anomalous warming of the surface waters in 
the central and eastern equatorial Pacific, is a key factor 
influencing the occurrence of drought in the semiarid region 

Fig. 7  RAI variability in the four NEB mesoregions
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of Brazil. These studies help to better understand the influ-
ence of El Niño on hydroclimatic variability in the region, 
particularly in the semiarid region of Brazil located in sub-
regions Backwoods and Agreste that are particularly vul-
nerable to the impacts of El Niño due to their already arid 
climate and limited water resources. The reduced rainfall 
during drought periods can lead to water scarcity, crop fail-
ure, and food insecurity, affecting both rural and urban popu-
lations. The results of this study corroborate those obtained 
by other researchers who have analyzed historical data on 
ocean temperatures and precipitation patterns (Hernández 
Ayala 2019; King et al. 2023). These studies have shown 
that El Niño events are associated with a decrease in rainfall 
in northeastern Brazil, particularly in its semiarid region. 
Overall, the El Niño phenomenon plays a significant role in 
shaping the hydroclimate of the semiarid region of Brazil, 
with important impacts on the livelihoods and well-being of 
local communities.

However, recent studies suggest the existence of several 
El Niño types. For example, the eastern Pacific coast expe-
rienced stronger impacts from the 1997–1998 ENSO than 
those expected from the 2015–2016 ENSO, despite hav-
ing similar tropical SST anomalies (Capotondi et al. 2015; 
Jacox et al. 2016; Tovar et al. 2018). The understanding of 
El Niño-Southern Oscillation (ENSO) teleconnections in the 
extratropics is based on the paradigms of tropical and sub-
tropical responses to thermal forcing in the tropical Pacific 
(Gill 1980; Sardeshmukh and Hoskins 1988) and the propa-
gation of resulting Rossby waves into the extratropics (King 
et al. 2023). Understanding the spatiotemporal variability of 
annual, monthly, and seasonal rainfall is crucial for deter-
mining the risk of droughts, soil erosion, floods, and devel-
oping soil conservation plans (Musabbir et al. 2023).

4.2  Cross‑wavelet analysis of RAI and atmospheric 
teleconnections

The NAO and the RAI present interannual periodicity at 
different scales, with greater predominance in the Mid-
north mesoregion. In the Forest zone, the MEI and the RAI 
present periodicity of 4–6 years in 1980–1990, with the 
MEI and RAI in opposite phases; in the Agreste, a perio-
dicity of 4 years is observed in three distinct periods: in 
1915–1920, with the RAI responding to 1.5 years of the 
period; in 1930–1945, with the RAI lagged 45° of the MEI, 
that is, the RAI responds to 6 months of the period; and in 
1980–1990, with the MEI and RAI in opposite phases. In the 
Backwoods, the MEI and RAI show a periodicity of 4 years 
in 1915–1925 and 1980–1990, with the MEI and RAI in 
opposite phases; in the Mid-north, a periodicity of 4–6 years 
is observed in 1915–1925, 1930–1940, 1970–1975, and 

1985–2005, and periodicity of 15 years in 1975–1995, with 
the MEI and RAI in opposite phases.

4.3  Variability of the RAI in NEB mesoregions

In the Mid-north, the years 1915, 1919, 1932, 1951, and 
1983 were extremely dry and coincided with the occurrence 
of El Niño episodes of moderate intensity (1915 and 1951) 
and strong intensity (1919 and 1983). The years 1917, 1924, 
1974, and 1985 were considered extremely wet, with La 
Niña episodes of strong (1917), moderate (1924), and weak 
(1974) intensities. In the Agreste, the 1901–1905 period 
was considered extremely dry and coincided with strong 
(1902–1903) and moderate (1904–1905) El Niño intensity. 
The years 1924, 1964, 1985, and 2000 were considerably 
wet, with moderate La Niña events in 1924 and 2000.

The Backwoods and Mid-north are the regions most sus-
ceptible to climatic fluctuations and drought episodes. For 
the 1901–1913 period and according to the RAI, 47 drought 
episodes were identified in the Backwoods and 45 drought 
episodes in the Mid-north. In the Agreste, 30 drought epi-
sodes were identified, and in the Forest zone, 36 episodes 
of drought. According to Lee et al. (2023), the El Niño/
Southern Oscillation (ENSO) is a combined phenomenon 
of fluctuating sea surface temperature and atmospheric cir-
culation over the central and eastern Pacific Ocean. It has 
a critical influence on climate patterns all over the world. 
During the El Niño events, the monthly rainfall anomalies 
are below normal.

5  Conclusions

In this research, the influence of different atmospheric tel-
econnections on the total annual precipitation of NEB for 
the 1901–2013 period, considering the physical character-
istics of subregions Mid-north, Backwoods, Agreste, and 
Forest zone, was analyzed. The results obtained showed 
that different indices of teleconnections can be used to 
understand the influence of global scale teleconnections 
on precipitation in NEB. In addition, the statistical tech-
niques of cross wavelet and RAI, coupled with oceanic and 
atmospheric patterns, indicated changes in the climatic 
indices of the Pacific Ocean and the Atlantic Ocean, as 
well as climatic variability and the influence of external 
forces in the evolution of NEB climate patterns.

The results show differences in the modulation of the 
atmospheric teleconnections in the sub-regions of NEB. 
The AMO modulates precipitation in NEB in the four sub-
regions on an interannual scale, with greater influence 
in the Backwoods. Still, the PDO exerts greater control 
over the modulation of weather patterns in NEB. In the 
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Agreste and Forest zone, the PDO impacts precipitation 
on an interannual- and decadal-scale, and in the Mid-north 
and Backwoods, on an interannual scale in discontinuous 
periods. It is also pointed out that external and anthropo-
genic forcings affect the local convection, interfering with 
the Atlantic and Pacific oceanic conditions.

The MEI shows greater variability in the Mid-north 
mesoregion, indicating the intensification of La Ninã 
phenomena in the northwestern sector of NEB on an 
interannual scale and on different time scales. The NAO 
impacts the RAI on an interannual- and decadal-scale in 
the Mid-north and on an interannual scale in the Back-
woods, Agreste, and Forest zone.
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