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Abstract
The response of lightning to a changing climate is not fully understood. Historic trends of proxies known for fostering con-
vective environments suggest an increase of lightning over large parts of Europe. Since lightning results from the interaction 
of processes on many scales, as many of these processes as possible must be considered for a comprehensive answer. Recent 
achievements of decade-long seamless lightning measurements and hourly reanalyses of atmospheric conditions including 
cloud micro-physics combined with flexible regression techniques have made a reliable reconstruction of cloud-to-ground 
lightning down to its seasonally varying diurnal cycle feasible. The European Eastern Alps and their surroundings are chosen 
as reconstruction region since this domain includes a large variety of land-cover, topographical and atmospheric circulation 
conditions. The most intense changes over the four decades from 1980 to 2019 occurred over the high Alps where lightning 
activity doubled in the 2010 s compared to the 1980 s. There, the lightning season reaches a higher maximum and starts 
one month earlier. Diurnally, the peak is up to 50% stronger with more lightning strikes in the afternoon and evening hours. 
Signals along the southern and northern alpine rim are similar but weaker whereas the flatlands surrounding the Alps have 
no significant trend.

Keywords Lightning location system · ERA5 · Climate change · Generalized additive models · Machine learning · 
Complex terrain

1 Introduction

Lightning has recently been added as an essential climate 
variable of the Global Climate Observing System (Belward 
et al. 2016; Aich et al. 2018). Cloud-to-ground lightning 

strikes may damage equipment and structures such as wind 
turbines (Becerra et al. 2018) and power lines (Cummins 
et al. 1998), start fires (Reineking et al. 2010) and injure or 
kill people (Ritenour et al. 2008; Holle 2016). Further, light-
ning contributes NOx and ozone as air pollutants (DeCaria 
et al. 2005; Zhang et al. 2020), and lightning threatens per-
mafrost (Finney 2021).

Since lightning is an essential climate variable, there is 
an urgent need to understand how lightning has been evolv-
ing over the past decades. This is challenging as lightning is 
affected at various temporal and spatial scales from micro 
physics (Houze 2014) over meso-scale dynamics (Feldmann 
et al. 2021) to synoptics (Piper and Kunz 2017; Posch 2018). 
These scales are all subject to different changes by a chang-
ing climate.

We aim to investigate the historic evolution of cloud-to-
ground lightning across the European Eastern Alps. Clima-
tologies show that this region is a hot spot within Europe 
(Poelman et  al. 2016; Enno et  al. 2020; Taszarek et  al. 
2020). The interactions of the complex terrains and atmos-
pheric processes such as circulation and radiation lead to 
persistent forcings (Bertram and Mayr 2004). Orographic 
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lifting, thermally induced circulations (plains–mountains, 
slope winds, valley winds), and lee effects can all trigger 
lightning in this region (Houze 2012). Further, this region 
is exposed to climate change in a special way as the area 
covered by snow and ice is decreasing (Matiu et al. 2021) 
warming is more pronounced than in other parts of Europe 
(Brugnara 2020), and convective precipitation increases at 
high elevations (Giorgi et al. 2016). A trend analysis of the 
mean annual number of days with thunderstorms since 1979 
indicate an increase over the Alps (Taszarek et al. 2019).

Leveraging recent advancements in three fields enables 
us to tackle the reconstruction of lightning over a 40 year 
time period: (1) Decade-long homogeneously detected light-
ning observations (Cummins and Murphy , 2009; Schulz 
et al. , 2016). (2) Physically-based numeric model outputs 
for hourly reanalysis of the atmospheric conditions includ-
ing micro-physics over several decades (Hersbach et al. 
2020). (3) Flexible regression techniques from statistics and 
machine learning (see Hastie et al. 2009, for an overview) 
that allow to select and link the relevant model outputs to 
the lightning observations in order to obtain reconstructions. 
Note that all three elements have to come together to yield 
a high-quality answer. Just using detected lightning obser-
vations over a decade would be too short to assess climate. 
The physical models alone do not resolve thunderstorms. 
And the statistical/machine learning techniques are needed 
for obtaining a satisfactory regression fit with good out-of-
sample predictive performance.

Previous studies applied proxies for lightning to assess its 
historic behavior from atmospheric reanalyses. Classically, 
cloud top height (Price and Rind 1992), the product of CAPE 
and precipitation (Romps et al. 2018), the square root of 
CAPE multiplied by deep layer shear (Taszarek et al. 2019), 
CAPE exceeding a threshold conditioned on the occurrence 
of convective precipitation (Taszarek et al. 2021), or verti-
cal iceflux (Finney et al. 2014) have been used. Moreover, 
the content of such proxies depends on the micro-physical 
parameterizations used in the numerical models (Charn and 
Parishani 2021). In sum the current scientific status it that 
different lightning proxies and/or micro-physical parameteri-
zations can lead to contrary results in the light of a chang-
ing climate. For instance, using only iceflux could project 
a decrease of future lightning (Finney et al. 2018), whereas 
the product of CAPE and precipitation projected an increase 
of lightning under climate change (Romps et al. 2014). Fur-
ther, discussion on this controversy can be found in Murray 
(2018) and Taszarek et al. (2021).

The aim of this study is to come up with a description of 
lightning composed of diverse processes and use this descrip-
tion to analyze historic lightning. In a first step, a flexible 
regression model links the detected lightning observations 
to the model output from the atmospheric reanalyses when 
both data sources overlap (2010–2019). The interest lies in 

whether lightning occurred, not (yet) in the number of flashes 
per time and area (which is e.g. modeled in Simon et al. 2019). 
The occurrence of cloud-to-ground lightning could also be 
interpreted as the occurrence of thunderstorms or the likeli-
hood of convective initiation. In a second step, probabilistic 
reconstructions of lightning occurrence are obtained from the 
flexible regression model for the overall period 1980–2019 
including the period when solely atmospheric model outputs 
but no lightning detection observations are available.

Similarly, statistical post-processing of output from 
numerical weather prediction (NWP) models using historical 
observation records is widely used in the weather forecasting 
literature and termed model output statistics (MOS, Glahn 
and Lowry 1972). Therefore, we call our approach lightning-
MOS. While lightning-MOS serves here to reconstruct his-
toric lightning, it could also be used for future projections.

Moreover, other statistical/machine learning approaches 
have also been used in previous lightning studies. In par-
ticular, Ukkonen and Mäkelä (2019) have evaluated various 
machine learning classifiers for linking reanalysis output to 
the occurrence of lightning. Although they have not com-
puted reconstructions with their classifiers, they encour-
aged using this approach to study climate trends. Beyond 
lightning, GAMs have proven their capabilities for severe 
weather trends (Rädler et al. 2018). Similar machine learn-
ing approaches have been used to generate wildfire danger 
maps (Vitolo et al. 2020; Coughlan et al. 2021). Also, the 
field of post-processing numerical weather predictions lev-
erages such techniques ranging from GAMs combined with 
objective variable selection (Simon et al. 2018) to deep neu-
ral networks (Kamangir et al. 2020).

The outline of the remainder of the paper is structured as 
follows: Using ALDIS lightning detection data (Sect. 2.1) 
and the ERA5 atmospheric reanalyses (Sect. 2.2) the light-
ning-MOS (Sect. 3.1) reconstructs 40 years (1980–2019) 
of consistent lightning data for the European Eastern Alps. 
In particular, it yields the probability for the occurrence of 
lightning in an ERA5 grid cell within an hour. With these 
data on hand an analysis (Sect. 4) of the spatio-temporal 
variability over the last 40 years is conducted. The analysis 
focuses on identifying potential shifts and/or expansions 
of diurnal cycles and the thunderstorm seasons (Sect. 4.3), 
as well as the investigation of climate trends over the past 
40 years (Sect. 4.4). Section 5 discusses the approach and 
Sect. 6 provides the conclusions.

2  Data

Two data sets were utilized for the purpose this study: 
Measurements from the lightning location system ALDIS 
(Sect. 2.1), and direct and derived parameters from ERA5 
(Sect. 2.2).
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2.1  Lightning detection data

The Austrian Lightning Detection & Information System 
(ALDIS) is part of the European effort EUCLID (Schulz 
et al. 2016). Lightning is detected using also information 
from EUCLID sensors outside of the ALDIS domain in 
order to ensure a spatially homogeneous detection efficiency. 
To ensure temporal homogeneity, the period 2010–2019 is 
chosen, for which changes to software and hardware have 
had a negligible effect on detecting cloud-to-ground flashes 
(Poelman et al. 2016). The assumption of temporal homoge-
neity is in particular valid as from these measurements the 
binary information is extracted whether at least one cloud-
to-ground flash exceeding some current limits occurred 
within spatio-temporal grid cells of 32 km × 32 km and one 
hour. A current threshold filter from −2 to +15 kA serves 
to eliminate intracloud pulses that are often misclassified as 
cloud-to-ground flashes (Poelman et al. 2016).

Finally, detected and filtered cloud-to-ground flashes are 
hourly aggregated to a grid with a 32 km spatial mesh. Each 
grid cell with at least one cloud-to-ground flash is labelled as 
lightning cell. Spatially, the grid ranges from 8.5◦ to 16.9◦ E 
and from 45.9◦ to 49.8◦ N (Fig. 1). Temporally, the lightning 
data was homogeneously detected and processed from 2010 
to 2019. From this period of time data covering the boreal 
summers (Apr–Sep) are used, which is the main lightning 
season in European Alps.

2.2  Atmospheric reanalysis output

ECMWF’s fifth reanalysis (ERA5, Hersbach et al. 2020) 
comes with a resolution of 32 km horizontally and of 1 h 
in time. Further, its vertical discretization with 137 lev-
els resolves many details valuable for the description of 

convective processes. We pre-select 40 single level vari-
ables and augment these by deriving another 45 variables 
from vertical profiles within the troposphere, for which the 
74 model levels between the surface (level 137) and approxi-
mately 15 km altitude (or 120 hPa at level 64) are used.1

The focus of the pre-selection of single level variables 
and the derivation of further variables from model levels is 
on covering processes relevant for convection and lightning 
from atmospheric environments favorable for the formation 
of thunderstorms to electrical charge separation. Exam-
ples are cloud top height, wind shear within and below the 
clouds, the amount of liquid and solid water between prede-
fined isotherms, and vertical iceflux in the mid-troposphere. 
The idea of this pool of potential variables is that it includes 
a fair amount of variables that are likely to be important for 
the description of lightning. Uninformative variables will be 
filtered out by the objective selection algorithm (Sect. 3.1).

The data between 2010 and 2019 are used for training and 
evaluation of the lightning-MOS, data from 1980 onward 
are used for the probabilistic reconstruction of lightning 
occurrences.

2.3  Subdomains

The 32 km × 32 km cells are grouped into four subdomains 
with similar characteristics of topographically induced lift-
ing. Figure 1 shows the assignment of the cells and Table 1 
summarizes their properties. Flatlands with little altitudi-
nal variation and ERA5 altitudes below 500m a.m.s.l. are 
regions without any significant lifting. The northern rim of 

Fig. 1  Topography of study 
area. The data are aggregated 
to a 32 km × 32 km mesh. 
Colored grids indicate the sub-
domains. turquoise: High Alps 
(HIA), green: Northern Alpine 
rim and northern mountain 
ranges (NAR), purple: Southern 
Alpine rim (SAR), yellow: Sur-
rounding flatlands (FLT)
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1 L137 model level definitions: https:// www. ecmwf. int/ en/ forec asts/ 
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the Alps and Bavarian and Bohemian forest further north 
and similarly the southern rim of the Alps are regions where 
impinging air first encounters steeper slopes and the ensu-
ing topographical lifting might release convective instabili-
ties. The even higher topography with ERA5 altitudes above 
1200m a.m.s.l. beyond the first topographic lifting by the 
enclosing rims is the fourth subdomain.

3  Methods

This section introduces the flexible regression approach 
that links the detected ALDIS lightning observations to 
the ERA5 output. We will denote this approach as light-
ning MOS which builds on generalized additive models and 
objective variable selection (Sect. 3.1). Further, this sec-
tion presents reference approaches. The first is a climatol-
ogy that describes lightning occurrence conditioned on the 
spatio-temporal setting. The remaining references are three 
common proxies of lightning and convective environments 
(Sect. 3.2).

3.1  Lightning model output statistics

The lightning-MOS explains the observed lightning occur-
rence with the parameters from ERA5 using a flexible 
regression framework. A generalized additive model (GAM, 
Wood 2017) identifies non-linear effects between the two 
sets of data. The lightning-MOS is set up using a GAM to 
model � which is the probability of lightning occurrence 
such that,

The logit() function on the left-hand side of Eq. 1 maps the 
probability of lightning � to the real line. The right-hand 
side is composed of the intercept �0 which estimates a global 
average of the regression model and several potentially non-
linear functions f∗() and g∗() that identify deviations from 
the global average conditioned on the explanatory variables. 

(1)

logit(�) =�0 + f1(���, ���, ����) + f2(����)

+ f3(����)

+ g1
(

�1
)

+⋯ + gp
(

�p
)

.

The non-linear functions f∗() and g∗() are set up using 
P-splines and thin plate regression splines (Wood 2017).

The three functions f∗() describe the effect of the spatio-
temporal setting. The first f1(���, ���, ����) is a three-
dimensional smooth effect that allows variations of the 
diurnal cycle over geographical space. The second f2(����) 
and the third f3(����) add an annual cycle and the effect of 
topography, respectively.

The functions g∗() model the effects of the ERA5 param-
eters (Sect. 2.2) for which �∗ stands as a placeholder in eq. 1. 
Which ERA5 parameters and how many are used within 
the lightning-MOS is not pre-defined but determined objec-
tively by a selection algorithm that searches for the most 
important ERA5 parameters to explain the probability of 
lightning occurrence � . The algorithm for the objective 
selection of ERA5 parameters is a combination of gradi-
ent boosting (Bühlmann and Hothorn 2007) and stability 
selection (Meinshausen and Bühlmann 2010) and will be 
introduced briefly. A detailed description of the algorithm 
can be found in Simon et al. (2018) who developed the algo-
rithm for a selection of NWP parameters for a thunderstorm 
forecasting scheme.

The selection of the most important non-linear functions 
g∗() is performed using gradient boosting combined with 
stability selection. Gradient boosting is an iterative gradi-
ent descent algorithm, where the function which minimizes 
the residual sum of squares when fitted to the gradient of 
the log-likelihood (Eq. 3 in Simon et al. 2018) is slightly 
updated in each iteration. The estimates converge to the 
maximum likelihood estimates, when the number of itera-
tions approaches infinity. Early stopping of the iterations 
ends in regularized estimates of the functions g∗() , and also 
serves as selection procedure when individual functions are 
equal to 0 at the final iteration.

If gradient boosting is applied as a stand-alone method 
the number of iterations—and thus the degree of regulariza-
tion—can be determined by means of information criteria or 
cross-validation. Here the main purpose of gradient boosting 
is to select important functions g∗() . It is desirable to avoid 
the selection of numerous non-informative terms. Stability 
selection is a convenient resampling method for controlling 
the number of selected non-informative terms by gradient 
boosting (Meinshausen and Bühlmann, 2010; Hofner et al., 
2015).

Rather than applying the boosting algorithm to all obser-
vations, stability selection is based on drawing a subsample 
of the training data, running the boosting algorithm until 
a predefined number of iterations is reached. This proce-
dure is repeated many times, here 100 times. Afterwards 
the relative selection frequencies per nonlinear term are 
computed. Finally, the terms which were selected most 
frequently are included in the final model (cf. algorithm 
in Hofner et al. 2015). This final GAM is optimized using 

Table 1  Properties of subdomains shown in Fig. 1

Description Model altitude Spatial 
coverage 
( km2)

HIA High Alps > 1 200m 54,272
NAR Northern Alpine rim 

and mountain ranges
> 500m & < 1200m 81,920

SAR Southern Alpine rim > 500m & < 1200m 24,576
FLT Surrounding flatlands < 500m 92,160
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restricted maximum likelihood method in order to identify 
the non-linear functions f∗() and g∗() (Wood et al. 2017).

3.2  Reference models

To assess the performance of the lightning-MOS and to 
compare it against other approaches describing lightning 
or thunderstorms two conceptually different types of refer-
ence models are taken into account. First, a climatology that 
describes the occurrence of lightning given the spatio-tem-
poral setting (Simon and Mayr 2022). Second, proxies that 
are well known for their ability to describe convective envi-
ronments (Finney et al. 2014; Taszarek et al. 2017, 2021).

A climatology is estimated as a baseline to assess the 
performance of the lightning-MOS. A GAM (Eq. 1) is set up 
exclusively with the non-linear functions for spatio-temporal 
setting f∗() using covariates for geographic space (longitude 
��� and latitude ��� ), time (day of the year ���� and hour 
of day ���� ) and ERA5 model topography ���� . As none 
of the functions with ERA5 parameters g∗() are included in 
the climatology, this comparison elucidates the improvement 
brought by lightning-MOS over a climatological forecast.

A comparison with the following three state-of-the-art 
lightning proxies will demonstrate whether and by how 
much lightning-MOS outperforms them, too. The three 
proxies are

• CAPE given convective precipitation, which mimics 
a situation in which CAPE is released (Taszarek et al. 
2021),

• iceflux at 450 hPa, which mimics charge separation 
(Finney et al. 2014), and

• the product of the square root of 2 times CAPE and deep 
layer shear (0–5 km layer), called capeshear which is 
known to be a good indicator to distinguish between non-
severe and severe thunderstorms (Taszarek et al. 2017).

These quantities are converted into binary yes/no variables 
by setting thresholds. If the threshold is exceeded the 
variable indicates the occurrence of lightning. The 
thresholds are computed such that for each binary proxy 
variable the fraction of lightning cases throughout the 
domain and season equals the fraction of lighting cases in 
the observations. The observations are again the ALDIS 
cloud-to-ground flashes transformed to binary information 
on the scale of the ERA5 grid. Following this procedure, the 
threshold For CAPE-released is 260 J kg−1 , for iceflux the 
threshold is 1.65 × 10−5 kgicem

−2
cloud

s−1 , and for capeshear 
the threshold is 740 J0.5 m kg−0.5 s−1 . Since these thresholds 
are adapted to our domain, they will likely differ from the 
values used in other studies.

4  Results

Four different topics of results are presented in detail: First, 
the objectively selected ERA5 parameters for the lightning-
MOS (Sect. 4.1). Second, a comparison against observa-
tions and the reference approaches (Sect. 4.2). Third, the 
evolution of diurnal and annual cycles over the past decades 
(Sect. 4.3). Fourth, the climate trends and their spatial dis-
tribution (Sect. 4.4).

4.1  Selected variables

An objective selection algorithm (gradient boosting with 
stability selection, see Sect. 3.1) is applied to select the 
most important variables from the pool of ERA5 param-
eters (Sect. 2.2). Though gradient boosting alone could serve 
as selection tool, stability selection is used to reduce the 
chance of selecting non-informative parameters even fur-
ther. Therefore, the gradient boosting is repeated 100 times 
on random subsamples each containing 20% of the training 
data. Finally, only the ERA5 parameters that were selected 
in at least 99% of the individual boosting runs enter the final 
model. The algorithm selected 9 parameters (Table 2) from 
the 85 ERA5 parameters, which are either directly available 
in ERA5 or derived from ERA5 model level data.

The electrification of clouds requires a mixed phase cloud 
with differently sized particles as micro-physical condition 
and strong enough motions to form, collide and separate 
them as a dynamical condition (e.g. Rakov and Uman 2003). 
The algorithm selected the snow water content between the 
−20◦C and −40◦C isotherms ( �������� ), total column 
supercooled liquid water ( ����� ), mass of water vapor 
between the −10◦C and −20◦C isotherms and mid-level 
cloud cover ( ��� ) and convective precipitation ( �� ) to rep-
resent the micro-physical condition. Instantaneous surface 
sensible heat flux ( ���� ), CAPE ( ���� ), two meter tempera-
ture ( �� ), and cloud top height above ground ( ��� ) represent 
the dynamical condition.

4.2  Performance and validation

A comparison of metrics assesses the performance of the 
lightning-MOS relative to the baseline climatology. First, 
the deviance explained, a measure for the goodness-of-fit 
of GAMs that generalises the residual sum of squares, is 
presented (Sect. 3.1.4 in Wood 2017). Larger values refer to 
better capability of the model in explaining the variation of 
the binary target variable. While the baseline climatology fit-
ted to the whole data of ten years yields a deviance explained 
of 12.4% , the lightning-MOS results in a deviance explained 
of 33.5% . Further, we computed the Receiver Operating 
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Characteristics (ROC) in a ten-fold cross-validation experi-
ment. The area under the ROC curve (AUC) measures the 
ability of the two methods to discriminate between the target 
classes lightning and no lightning. The AUC is evaluated for 
each hour of day, month and region separately. The median 
AUC (2.5% quantile, 97.5% quantile) over these values is 
0.90 (0.81, 0.97) for the lightning-MOS, which outperforms 
the baseline climatology with 0.58 (0.41, 0.77).

To further affirm the lightning-MOS, the reconstructed 
probabilities (ten-fold cross-validation) are compared with 

the dichotomous observations for the period of 2010–2019. 
For the comparison of the diurnal cycles (Fig. 2), both 
the fitted and observed values are aggregated to diurnal 
cycles for each month and subdomain (NAR, HIA, SAR 
and FLT). For the comparison of the annual cycles (Fig. 3) 
the focus is set in the afternoon hours (13–19 UTC) and 
fitted and observed values are aggregated to each day of 
the season and subdomain. Since lightning has a strong 
day-to-day variability, aggregation to the day of the season 
yields a noisy picture (thin lines in Fig. 3), the values are 

Table 2  ERA5 parameters 
included in the lightning-MOS, 
which are automatically selected 
from 85 ERA5 parameters 
(Sect. 2.2) by the statistical 
learning algorithm (Sect. 3.1)

Type Abbreviation Description

ERA5 single level ���� Convective available potential energy
variables �� Convective precipitation

���� Instantaneous surface sensible heat flux
��� Medium cloud cover
�� 2 meter temperature
����� Total column supercooled liquid water

Derived variables �������� Mass of specific snow water content between the −20◦C and 
−40◦C isotherms

��� Cloud top height in height above ground
������� Mass of water vapor between the −10◦C and −20◦C isotherms
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Fig. 2  Validation of reconstructed diurnal cycles over the period 
between 2010 and 2019. The reconstructions are obtained by cross-
validation. The dashed lines represent diurnal cycles computed from 

proxies as discussed in Sect.  5. Columns present diurnal cycles for 
each month, rows for each region
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further smoothed by a cubic spline. The reconstruction 
(red solid lines in Figs. 2 and 3) closely matches amplitude 
and phase of the observed diurnal and annual lightning 
cycles (black solid lines).

Cycles reconstructed with the proxies of CAPE-
released, iceflux and capeshear (light blue, pink and purple 
dashed lines in Fig. 2), on the other hand, deviate strongly 
from observations. The diurnal cycles obtained from 
CAPE-released peak about 2–3 h too early. Moreover, the 
maximum probabilities of this proxy over the high Alps 
are far too high. The diurnal cycles of the proxy derived 
from iceflux are not as pronounced as the diurnal cycles of 
the observations. The probabilities during night and morn-
ing are too high and the probabilities during afternoon and 
evening are too low. Capeshear, similar to CAPE-released, 
peaks too early. Further, capeshear reveals strong biases 
in July in the Southern Alpine rim, and in August in SAR, 
NAR and FLT.

For the comparison of the annual cycles (Fig. 3) fitted 
and reconstructed probabilities as well as the proxies are 
averaged for each day of the year and subdomain. CAPE-
released captures the annual cycle of the observations 
very well. Capeshear matches the observed annual cycle 
in the high Alps nearly completely, but strongly overesti-
mates in the other subdomains, in particular at the end of 
the season. The iceflux proxy leads to annual cycles with 
too low an amplitude in the high Alps and the Southern 
Alpine rim. In the middle of the season it underestimates 
the observed cycle and at the bounds of the season it over-
estimates the observed cycle.

4.3  Reconstructed diurnal and annual cycles

The lightning-MOS is used to reconstruct lightning prior to 
the beginning of homogeneous lightning data. To investigate 
the diurnal cycles, the reconstructed probabilities are aver-
aged for each hour, month and subdomain. Figure 4 displays 
the results by decade. The 1980s are in blue, the 1990s in 
green, the 2000s in yellow, and the 2010s in red. The curves 
for the annual cycle in (Fig. 5) are obtained from aggregating 
the probabilities for each day of the year and subdomain and 
further temporal smoothing to account for the strong day-to-
day variability of lightning (Simon et al. 2017).

Zooming into the subdomains and starting with the north-
ern Alpine rim, the strongest change of the diurnal cycles 
(top row in Fig. 4) is found in June, for which the lightning 
activity between 18 and 06 UTC (19-07 LST) increased by 
about 50% after 2000 compared to the time before. The rela-
tive changes for the same periods in May are on the order of 
25%. August reveals decadal variability with the 1990s and 
2000s having been less active than the 1980s and the 2010s. 
These changes in the diurnal cycles affect the annual cycle 
for this region (left panel in Fig. 5). The lightning season 
begins earlier after 2000. The second half of the lightning 
season has decadal variability but no clear trend.

In the high Alps, the diurnal cycles of lightning changed 
strongly between May–Aug (middle row in Fig. 4). The 
increase is most prominent in June, for which the prob-
abilities doubled. Also in May the increase is close to dou-
bling. In July and August the increase is also pronounced, 
but the relative change is not as strong as in May and 
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Fig. 3  Validation of reconstructed annual cycles over the period 
between 2010 and 2019. The reconstructions are obtained by cross-
validation. The dashed lines represent annual cycles computed from 

proxies as discussed in Sect. 5. The thick lines in the foreground are a 
smoothed version of the values for the day of the season (thin lines in 
the background.)
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June. The resulting disparate annual cycles (center panel 
in Fig. 5) can be summarized as follows. In the 2010s 
the season starts earlier and lasts longer. The smoothed 
annual cycle crosses the 2.5% mark 30 days earlier in the 

2010s than in the 1980s. Also, the seasonal peak is reached 
earlier and has an amplitude of more than one percentage 
point higher than in the 1980s and 1990s.
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Fig. 4  Reconstructed diurnal cycles of probabilities for lightning events averaged over the four decades from 1980s to 2010s (color coded). Col-
umns present diurnal cycles for each month, rows for each region
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Fig. 5  Reconstructed annual cycles of probabilities for lightning 
events averaged over the four decades from 1980s to 2010s (color 
coded). The light curves in the background are aggregations to the 

day of the year. The dark curves in the foreground are smoothed ver-
sions of the light curves
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At the southern Alpine rim, lightning activity increases 
throughout the investigated season from May until Septem-
ber (bottom row in Fig. 4). Over the whole season relative 
changes of around 50% are not exceptional. As it was the 
case in the other subdomains, strong changes especially take 
place after the diurnal peak that extend lightning activity 
into the evening and night hours. The annual cycle recon-
structed for the southern Alpine rim (right panel in Fig. 5) 
exhibits that the lightning season in the 2010s is stronger 
with an earlier onset and extended tail compared to the 
1980s.

In the surrounding flatlands an increase over the past four 
decades of around 0.5–1.0 percentage points has been recon-
structed for the second halves of the diurnal cycles from May 
until July (Fig. 4). The aggregation of the reconstructions to 
the annual cycles further reveals that lightning activity in 
the second half of the season has been lower in the 1990s.

4.4  Climate trends

The analysis of diurnal and annual cycles reveals a strong 
increase of lightning activity especially in late spring and 
early summer. Therefore, further investigation of trends over 
the period 1980–2019 is performed. The focus will be on 
afternoon lightning between 13 and 19 UTC as this time 
of the day exhibits the largest absolute values for lightning 
probability in the whole domain. To investigate the trends, 
the reconstructed lightning probabilities for June afternoons 
are averaged for each year. Then the evolution of the aggre-
gated probabilities over time is explained by linear regres-
sions. The slope coefficients of the linear regressions serve 
as measures for the trends. Inference for the slope coeffi-
cients is provided by testing the hypothesis that the slope 
coefficient is not equal to zero against the null hypothesis 

that the slope coefficient is equal to zero. The results are first 
presented on the scale of the 32 km grid boxes (Fig. 6), and 
subsequently, on the scale of the four subdomains (Fig. 7).

Not a single cell in the whole domain has a negative 
trend. Almost all grids south of 47.5◦ N show significant 
increase at the 5% level. Only at the very southeast where the 
topography flattens into plains the lightning trends are lower 
and insignificant. Another remarkable outcome is that more 
than a quarter of cells exceed an increase of one percentage 
point per decade.

The shape of the region with significant trends matches 
well the regions with complex topography. In particular 
the high Alps are witnessing large increases. The strong-
est trends reaching up to 2.0 percentage points per decade 
are found on the southern foothills in Italy. Another local 
hotspot is the region in the very east of the Alps between 
14◦ and 16◦ E and around 47◦ N. Trends North of the Alps in 
the Bavarian-Bohemian Forest around 14◦ E and 48.5◦ N are 
weaker but still significant and positive. 

Aggregating the probabilities on the scale of the subdo-
mains (Fig. 7) strengthens the results of the trend analysis. 
In the high Alps, the increase is highest with 1.1 percentage 
points per decade, which explains 29.4% of the variance in 
this time series. For the southern and northern Alpine rim, 
the analyses gives trends of 0.89 and 0.45 percentage points 
per decade, respectively. For these three domains the trends 
are significant at the 5% level. The trend for the flatlands of 
0.25 percentage points per decade is not significant.

The additive form of the statistical model (Eq. 1) allows one 
to further analyze the contributions of the individual functions 
g∗() to logit(�) . Note that the additive contributions act on the 
logit scale, not on the probability scale. Figure 8 shows the 
mean contributions of the five most important additive terms for 
June afternoons. They are the contributions to the trends shown 

Fig. 6  Linear climate trends: 
Color luminance gives the slope 
per decade of a linear regression 
for mean probability of light-
ning within an hour in percent. 
Desaturated colors in the grids 
indicate that the linear trends 
for these grids are not signifi-
cant at the 5% level. Only June 
and afternoons between 13 and 
19 UTC are considered
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Fig. 7  Linear trends for June afternoons (13–19 UTC) aggregated for the subdomains. The gray intervals around the black lines give the uncer-
tainty obtained by the ten-fold cross-validation. The red intervals give the uncertainty of the liner fit

Fig. 8  Mean contributions 
of additive terms on the logit 
scale for June afternoons 
(13–19 UTC) aggregated for the 
subdomains. The thin lines refer 
to values for individual years. 
For smoothing the thick lines 
show a local polynomial regres-
sion fit to the yearly values
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in Fig. 7. The strongest trend was found for the high Alps. The 
second panel in Fig. 8 reveals that the 2 m-temperature has a 
dominating contribution to this trend in the statistical model. 
For the Northern and Southern Alpine rim, 2 m-temperature 
and CAPE equally contribute to the reconstructed increase in 
lightning activity.

5  Discussion

The lightning-MOS approach successfully replicates diurnal 
and seasonal cycles of observed cloud-to-ground lightning 
and reconstructs lightning for pre-measurement periods. Three 
recent advances contribute to its success: Long enough high-
quality and homogeneous lightning measurements, physically 
consistent atmospheric conditions extending prior to lightning 
records, and statistical/machine learning techniques to weave 
the two together, correct the weaknesses of the atmospheric 
reanalysis and apply their good out-of-sample predictive skill 
to extend lightning records into the past.

Lightning strikes are locally rare events. Even at the peak of 
convective season and time of day, probabilities for the occur-
rence linger mostly in the single digits (cf. Figs. 2, 3, 4 and 5) 
and spatio-temporal variation is high. However, the additive 
nature of GAMs allows adding information from grid cells that 
share spatial characteristics (location, altitude), temporal char-
acteristics (diurnal and seasonal), and the state of the atmos-
phere to achieve a successful replication of the lightning meas-
urements. GAMs allow a functional dependence on all these 
variables. The shape of these functions is directly derived from 
the data and thus potentially non-linear. This flexibility permits 
to properly account for the diurnal cycle of lightning, which 
simple, single proxy variables (Finney et al. 2014; Taszarek 
et al. 2021, among others) cannot accomplish. This flexibility 
is also sufficient to achieve good out-of-sample performance 
with “only” a decade’s worth of lightning measurements as 
the cross-validation (Sect. 4.2) demonstrates. The additive and 
functional nature of GAMs makes it possible to incorporate 
approximations of the effects of multiple processes known to 
lead to lightning that can be derived from the available location, 
temporal and atmospheric state information—including favora-
ble environments, triggers and electrical charge separation.

GAMs also compensate for weaknesses of the observational 
data. They allow to extend the relatively short duration of auto-
mated and spatially continuous lightning measurements, derive 
phenomenona that are not resolved in the reanalysis data, and 
correct the somewhat misrepresented diurnal cycle of convec-
tion in ERA5. As the blue curves for CAPE conditional on 
convective precipitation in Fig. 2 show, convection in ERA5 
has a premature peak and too strong an amplitude, a result that 
Watters et al. (2021) also found. Yet with a GAM (red curves in 
Fig. 2), phase and amplitude become well reproduced.

All models presented here have to rely on the assumption 
that the functions mapping the explanatory variables (ERA5) 
to the target variable (ALDIS cloud-to-ground lightning occur-
rence) are stationary. This requires both the explanatory and 
the target variables to be homogeneously detected/modelled 
over time. The period for the lightning data (2010–2019) has 
been selected, to avoid effects of upgrades in the detection hard-
ware and software. ERA5, spanning 40 years here, is by design 
physically consistent, but its accuracy is influenced by the num-
ber and kind of observations assimilated, which has changed 
over time and can potentially have noticeable consequences 
(Gleixner et al. 2020). This inherent limitation of ERA5 has to 
be kept in mind while looking at the trends found in this study.

The proposed technique using a flexible regression model 
to describe lightning is in general transferable to other regions 
(Ukkonen and Mäkelä 2019). For the new region lightning 
observations and model outputs have to be available in sufficient 
amount and quality as the regression model has to be re-fitted 
to the new domain. One advantage of this re-fitting is that the 
regression model learns processes specific to the new region.

Besides reconstructing lightning activity down to diurnal 
and annual cycles and analyzing trends, the additive structure 
of the GAM (Eq. 1) enabled the investigation of the contribu-
tions of the individual functions g∗() . The processes captured 
by lightning-MOS include favorable environments for thun-
derstorms ( ���� and �� ), charge separation ( �������� and 
������� ), and triggers ( ���� ). The investigation of the con-
tributions revealed that in the high Alps the 2 m-temperature 
explains the majority of the increase, followed by CAPE. At 
the northern and southern rim these two parameters contrib-
ute equally to the positive trends. This finding suggests a con-
nection to the observation that the Alpine region is stronger 
affected by climate warming than the remainder of Europe 
(Kuhn and Olefs 2020; Brugnara 2020).

Finally, one has to note that using cloud-to-ground flashes in 
the development of the lightning-MOS necessarily means that 
the resulting reconstructions have no way of knowing about 
or addressing any potential climate-related effect on the more 
abundant intracloud lightning. This is in particular important 
with respect to the production of NOx and ozone by lightning 
(DeCaria et al. 2005; Zhang et al. 2020).

6  Conclusion

Lightning in the European Eastern Alps is probabilistically 
reconstructed back to 1980 by building a generalized additive 
model (GAM, Wood 2017) that takes atmospheric reanalysis 
output (ERA5, Hersbach et al. 2020) to explain the occur-
rence of lightning from the lightning location system ALDIS 
(Schulz et al. 2016). To honor the roots of this approach in the 
model output statistics (MOS) post-processing of numerical 
weather prediction models (Glahn and Lowry 1972), we call 
our approach lightning-MOS.
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The hourly resolution of ERA5 allows one to reconstruct 
and investigate diurnal cycles of thunderstorms. Further, its 
high vertical resolution including that of cloud micro-physics 
makes it possible to incorporate a wide range of atmospheric 
processes. The lightning-MOS outperforms a baseline climatol-
ogy and reconstructs the diurnal and annual cycles more accu-
rately than state-of-the-art proxies for convective environments.

The reconstruction over 40 years (1980–2019) reveals 
amplification of the diurnal and annual cycles. This is espe-
cially pronounced in spring in the high Alps where lightning 
activity doubled, and at the southern Alpine rim throughout the 
season. A trend analysis reveals that the strongest trend is found 
in the high Alps. This sensible region is prone to climate change 
as measurements show that the warming signal is stronger in 
this region compared to other parts of Europe (Kuhn and Olefs 
2020; Brugnara 2020).
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