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Abstract
The South Asia Seasonal Climate Outlook Forum (SASCOF) issues seasonal tercile precipitation forecasts to provide advance 
warning of anomalously dry or wet monsoon seasons in South Asia. To increase objectivity of the SASCOF seasonal outlook, 
the World Meteorological Organisation recommends using a multi-model ensemble combining the most skilful dynami-
cal seasonal models for the region. We assess the skill of 12 dynamical models at forecasting seasonal precipitation totals 
for 1993–2016 for the southwest (June–July–August–September) and northeast (October–November–December) monsoon 
seasons at regional and national levels for Afghanistan, Bangladesh, Nepal, and Pakistan, using identical forecast periods, 
hindcast initialisation months and domain used at the SASCOF. All models demonstrate positive skill when regionally-
averaged, especially for the southwest monsoon season, noting considerable spatial differences. Models exhibit highest skill 
where correlation between observed precipitation and El Niño Southern Oscillation (ENSO) is highest, e.g., central/north 
India and Nepal during the southwest monsoon, and Afghanistan and north Pakistan during the northeast monsoon. Model 
skill is especially low in northwest India and northeast of South Asia during the southwest monsoon, e.g., Bangladesh (despite 
high precipitation totals) coinciding with a weak ENSO teleconnection. The Indian Ocean Dipole teleconnection is less 
pronounced in the southwest monsoon season, whereas the spatial pattern for the northeast monsoon closely resembles that 
of ENSO. Due to high variability in model skill, we recommend basing the SASCOF forecast on a multi-model ensemble 
of all models but discounting poorly performing models at the national level.

Keywords  Seasonal climate forecast · Climate services · Forecast verification · South Asian monsoon · El Niño Southern 
Oscillation (ENSO) · Regional Climate Outlook Forum

1  Introduction

South Asia is the most densely populated geographical 
region in the world and highly vulnerable to anomalous cli-
matic conditions (Shaw et al. 2022). Droughts and floods 
can lead to widespread adverse impacts on livelihoods and 
the economy, especially in the agriculture (Ray et al. 2015; 
Aryal et al. 2020) and water (Srivastava et al. 2020) sectors. 
Seasonal forecasts, if skilful, can provide information on 

how precipitation may deviate from normal several months 
ahead, supporting governments, organisations, and commu-
nities in preparing for anomalous climatic conditions and 
mitigating humanitarian disasters (e.g., Golding et al. 2019; 
Bett et al. 2020; Daron et al. 2020).

The South Asian monsoon is the principal source of 
precipitation for most of the region. There are two distinct 
monsoon seasons based on the prevailing wind direction: the 
southwest (SW) monsoon and the northeast (NE) monsoon. 
The fundamental driving mechanism of the monsoon circu-
lation is the pressure gradients (ocean to land) established 
by thermal contrasts between the landmass of Asia and the 
large extent of ocean to its south. Precipitation associated 
with the monsoon rarely reaches the far northwest of South 
Asia, for example Afghanistan, where it remains largely 
dry during the SW monsoon season. Precipitation here is 
predominantly driven by low pressure systems, known as 
western disturbances, which originate in the extratropical 
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North Atlantic as well as the Mediterranean and then move 
eastwards across the northwest of South Asia from October 
to June (Hunt et al. 2018).

Even though the chaotic nature of the atmosphere pre-
vents skilful day-to-day forecasts at lead times longer than 
2–3 weeks (Buizza and Leutbecher 2015), it can be possible 
to forecast the average conditions of a season with reason-
able skill. The predictability at seasonal timescales comes 
from variations in more slowly evolving processes, such as 
changes in sea-surface temperatures (SSTs), albedo and soil 
moisture, which interact with large scale atmospheric pro-
cesses (Charney and Shukla 1981). It has been well estab-
lished that seasonal prediction of South Asia precipitation is 
strongly linked with tropical sea surface temperature anoma-
lies (Goddard et al. 2001; Kucharski and Abid 2017), espe-
cially in the central and eastern tropical Pacific; a phenom-
enon known as the El Niño Southern Oscillation (ENSO). 
Through changes in the Walker circulation (Bjerknes 1969), 
during the SW monsoon, El Niño events (the warm phase 
of ENSO) tend to suppress precipitation and La Niña events 
(the cool phase of ENSO) tend to enhance it (Pant and Par-
thasarathy 1981; Rasmusson and Carpenter 1983; Ju and 
Slingo 1995). More recently, irregular oscillations in SSTs 
in the Indian Ocean, where the western part becomes alter-
nately warmer (positive phase) or colder (negative phase) 
than the eastern part, known as the Indian Ocean Dipole 
(IOD; Saji et al. 1999), have also been linked to monsoon 
precipitation variability (Behera et al. 1999; Kripalani and 
Kumar 2004). Several studies suggest that ENSO and IOD 
are closely interconnected; the IOD has been thought to 
enhance or modulate the influence of ENSO on South Asia 
precipitation (e.g., Ashok et al. 2001). Whilst ENSO and 
IOD are understood to be the main source of predictabil-
ity for the region (Johnson et al. 2017), many other drivers 
of variability have been proposed, for example, springtime 
snow depth in the Himalayas (Hahn et al. 1976), aerosols 
(Ramanathan et al. 2005) and SST and atmospheric patterns 
in the North Atlantic Ocean (Pai and Rajeevan 2006; Yadav 
2009; Wang et al. 2018).

Historically, seasonal forecasts for SW monsoon precipi-
tation have been produced using statistical methods (e.g., 
Walker 1924; van den Dool 2006; Rajeevan et al. 2007), but 
in recent years, advances in dynamical general circulation 
models (GCMs) have allowed them to become the predomi-
nant method for producing seasonal forecasts (e.g., Pillai 
et al. 2018; Scaife et al. 2019). GCMs used for seasonal 
forecasts are commonly referred to as seasonal dynamical 
models or prediction systems.

Numerous studies have assessed the ability of seasonal 
dynamical models to simulate and predict precipitation 
associated with the Asian monsoon on different timescales 
(Webster et al. 1998; Rajeevan et al. 2004; Kim et al. 2012; 
Pai et al. 2017; Ramu et al. 2017; Jain et al. 2018; Pillai 

et al. 2018; Mohanty et al. 2019). While improvements have 
been made in predicting the Asian monsoon large scale 
flow patterns, especially with the introduction of coupled 
atmosphere–ocean models, providing skilful predictions of 
seasonal precipitation over South Asia remains a challenge 
and is an active area of research. With the growing demand 
for climate services, a further challenge is to operationally 
assemble seasonal predictions with demonstrable skill from 
available modeling centers to objectively generate climate 
outlooks for the region.

Supported by the World Meteorological Organisation 
(WMO), many locations around the world hold a Regional 
Climate Outlook Forum to produce a consensus seasonal 
forecast for the upcoming season (Ogallo et al. 2008). In 
South Asia, the forum is known as the South Asian Seasonal 
Climate Outlook Forum (SASCOF). SASCOFs are held 
twice a year; in the last week of April for the SW monsoon 
season forecast period encompassing June to September 
(JJAS) (a lead time of about 1 month) and in September for 
the NE monsoon season referring to October to December 
(OND) forecast period (a lead time of less than 1 month). 
Additionally, a November update for the December to 
February season is held online. The India Meteorological 
Department Pune are the WMO-designated Regional Cli-
mate Centre for the region and have been coordinating the 
preparation and issuing of seasonal consensus forecasts for 
South Asia since inception in 2010. The forecast is presented 
as probabilities of precipitation amounts falling into tercile 
categories of below, near, or above normal, compared to the 
long-term climatological average; an example is provided in 
Fig. 1. The regional forecast is then refined by the National 
Meteorological and Hydrological Services (NMHSs) in each 
country to produce a seasonal forecast specific to their coun-
try and tailored to the requirements of different sector users, 
such as those in agriculture. Hence there is a requirement to 
issue the regional forecast in April, rather than May, to allow 
time for the NMHS to produce their national forecast before 
the monsoon season commences.

Following a global review, the WMO issued guidance 
for the development of objective seasonal forecasts at the 
Regional Climate Outlook Forums, stating the procedure 
should be traceable, reproducible, and well-documented 
(WMO 2020). They recommend producing a primary fore-
cast based on a multi-model ensemble of dynamical climate 
models, which possess sufficient skill for the season and 
domain of interest. Several studies have shown that multi-
model ensembles can be better predictors of observed cli-
mate than any single model over a long period (e.g., Hage-
dorn et al. 2005; Chakraborty and Krishnamurti 2006; Cash 
et al. 2019). Additionally, the WMO guidance recommends 
identifying and monitoring the key drivers of predictable 
climate variability and assessing their representation and 
prediction skill in models (WMO 2020).
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To date, there are no studies that assess the skill of the 
operational models for the entire South Asia region, using 
the forecast period and initialisation month used within the 
SASCOF process, and for both the SW and NE monsoon 
seasons. For example, most skill assessments (e.g., Rajee-
van et al. 2012; Jain et al. 2018) use the forecast with the 
most up to date initialisation month, for example May for 
the SW monsoon period. However, the SASCOF forum for 
the SW monsoon is held at the end of April, and therefore 
the forecasts initialised in May are not yet available. Holding 
the forum further in advance is essential to allow time for 
NMHSs to produce their own country-level seasonal fore-
cast and appropriate national adaptation plans to be put in 
place ahead of the season. To conclude, skill assessments 
using the same domain, hindcast initialisation and forecast 
periods as those used at the SASCOF would directly inform 
the model selection process on which to base the South Asia 
seasonal outlook.

In this study, the skill of 12 dynamical seasonal prediction 
systems in capturing year-to-year precipitation variability in 
South Asia is assessed, with the aim of informing the model 
selection process when producing the seasonal forecast at 
the SASCOF, supporting an objective forecast methodology 
in line with WMO recommendations. Therefore, our focus 
is on the regional seasonal forecast for precipitation during 
the JJAS and OND seasons consistent with the SASCOF 
outlooks. Furthermore, we explore the relationship between 
model skill and the two major climate drivers of South Asia 
precipitation variability: ENSO and IOD.

The following section introduces the observational and 
model data used for this study and methods used in calculat-
ing the verification metrics. Section 3 presents and discusses 
the results of the skill assessment and explores the influence 
of ENSO and IOD. In Sect. 4 we suggest how these results 
could inform the model selection for the SASCOF outlook 
and explain potential reasons for the spatial variability in our 
results, followed by concluding remarks in Sect. 5.

2 � Materials and methods

2.1 � Observations

Observations have been taken from the Climate Hazards 
Group InfraRed Precipitation with Station dataset (CHIRPS) 
(Funk et al. 2015). The CHIRPS dataset is based on pre-
cipitation estimates derived from high-resolution satellite 
imagery, blended with station rain-gauge data to create a 
near real-time gridded daily precipitation time series from 
1981 to present, downloaded as monthly aggregates. The 
dataset covers 50°S to 50°N for land points only and has 
been downloaded from the IRI Climate Data Library (https://​
iridl.​ldeo.​colum​bia.​edu/) at a resolution of 1.0° × 1.0° 
to align with model resolutions (it is also available at 
0.05° × 0.05°). CHIRPS v2.0 was chosen as it covers the 
region and period of interest, is based on both satellite and 
station data, and is commonly used in the SASCOF forecast 
production process. Gridded observational products, such as 
CHIRPS, provide estimates of precipitation, and therefore, 
like models, are not completely reliable. For comparison, 
verification results were also obtained using the gridded 
CRU TS dataset, which are based on station observations 
(Harris et al. 2020). The results exposed some differences, 
which we discuss in Sect. 4.2.4, and consequently obser-
vational uncertainty should be considered when analysing 
the results. For example, precipitation totals can often be 
difficult for observations to capture so care should be taken 
when analysing areas with low precipitation amounts, as 
showers or more sporadic precipitation can be more easily 
missed by a rain gauge than an area of widespread dynamic 
precipitation. Other factors can also contribute to observa-
tional uncertainty, such as, interpolation schemes, temporal 
and spatial resolution of the dataset and poor rain gauge 
maintenance and land coverage, particularly in regions with 
large topographic variations.

2.2 � Seasonal prediction systems

The observational data has been compared with corre-
sponding forecasts from 12 seasonal dynamical prediction 
systems, hereafter referred to as “models”; details about 
each model can be found in Table 1. Models were chosen 

Fig. 1   The regional tercile precipitation outlook for the JJAS 2021 
season issued in April 2021 (SASCOF-19, 2021)

https://iridl.ldeo.columbia.edu/
https://iridl.ldeo.columbia.edu/
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based on them being ocean–atmosphere coupled models, 
the availability of the data at the time of analysis and previ-
ous use in the region. All data has been downloaded from 
the IRI Climate Data Library (https://​iridl.​ldeo.​colum​bia.​
edu/) and regridded to the CHIRPS dataset at a resolution of 
1.0° × 1.0° to ensure a consistent grid. A common hindcast 
period of 1993–2016 has been used from all models. Since 
the purpose of this assessment is to inform the SASCOF 
process, the target period and initialisation months have been 
chosen to align with those used in SASCOF. For the SW 
monsoon, hindcasts are for the forecast period JJAS and ini-
tialised in April (a 2-month lead time). For the NE monsoon, 
hindcasts are for the forecast period OND and initialised in 
September (a 1-month lead time). An ensemble mean has 
been taken from all available members from each model; 
note that, as shown in Table 1, the number of ensemble 
members varies greatly between models.

Furthermore, a multi-model ensemble (MME) has been 
produced. To ensure the ensemble is equally weighted for 
the ROC score calculations (which groups each ensemble 
member into a tercile category), we replicate the model 
ensembles until they reach 42 (the maximum ensemble size 
from our models in Table 1). If the number of ensemble 
members does not multiply into 42 exactly, the additional 
ensemble members are chosen at random. For example, 
for the CanCM4i model with 10 ensemble members, we 
replicate the members as they are 4 times, then randomly 
pick another 2 members to make 42 total members. Note 
that once those members have been chosen at random, the 
ensemble is fixed so that the members are consistent for each 
skill plot (including between seasons).

2.3 � Verification metrics

To display the spatial variations of deterministic skill, 
the Pearson correlation coefficient is calculated at each 

grid-point by comparing the total seasonal precipitation 
in the model hindcast ensemble mean with observations 
at each time step. All references to ‘correlation’ and/or 
‘r’ throughout this document use the Pearson correla-
tion. Pearson correlation has been chosen for its common 
usage and simplicity. For robustness, results have been 
compared to correlation maps using Kendall’s tau (not 
shown), which relies on ranking and is less susceptible 
to extremes as it weights each year equally. The sets of 
results are spatially similar and therefore Pearson correla-
tion is deemed acceptable for this purpose. Note that, we 
also calculate the correlation of the average precipitation 
over the specified domain, which has been calculated by 
first averaging both the observed and model precipitation 
over the specified area, and second calculating the correla-
tion between these two values.

As discussed in Sect. 1, the SASCOF forecast presents 
the probability of the seasonal precipitation totals falling 
into one of three tercile categories, and thus, an assess-
ment of how well models predict the correct tercile cat-
egory probabilistically is vital for the SASCOF forecasts. 
This is achieved by using the relative operating character-
istic (ROC; Mason 1982; Marzban 2004). In this study we 
calculate the ROC score which quantifies the probabilistic 
skill in terms of the occurrence or non-occurrence of a 
specific forecast “event”. In this study, events are classified 
according to the climatological tercile category into which 
the seasonal precipitation total falls. We only present the 
above- and below-normal events, as  seasonal prediction 
systems typically perform poorly in the near-normal ter-
cile category due to a lack of signal in large-scale climate 
drivers. ROC curves and reliability diagrams were also 
computed for each tercile category; these results are not 
shown here but can be found in Stacey et al. (2021).

Table 1   Dynamical seasonal 
prediction systems included in 
the skill assessment and their 
configurations (as of Feb 2021)

System name Centre/country Hindcast ensem-
ble size

References

CFS2 NCEP NOAA, USA 24 Saha et al. (2014)
CanCM4i (cmci) Canadian Met. Center 10 von Salzen et al. (2013)
CMCC SPSv3 Italy 40 Sanna et al. (2017)
COLA-CCSM4 NCAR​ 10 https://​www.​cesm.​ucar.​edu
DWD-GCFS2p0 Offenbach, Germany 30 Fröhlich et al. (2021)
ECMWF-S5 ECMWF 25 Johnson et al. (2019)
GEM-NEMO Canada 10 http://​iridl.​ldeo.​colum​bia.​edu/
GFDL-SPEAR NOAA 30 Delworth et al. (2020)
GloSea-6 Met Office, UK 42 https://​www.​metof​fi ce.​gov.​uk
JMA-MRI-CPS2 MRI-JMA, Japan 10 Masutomi et al. (2021)
Meteo-France 7 Meteo-France, France 25 https://​www.​wmolc.​org/
NASA—GEOSS2S NASA 4 Vernieres et al. (2012)

https://iridl.ldeo.columbia.edu/
https://iridl.ldeo.columbia.edu/
https://www.cesm.ucar.edu
http://iridl.ldeo.columbia.edu/
https://www.metoffice.gov.uk
https://www.wmolc.org/
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2.4 � Study area and country domains

This analysis covers the South Asia region, encompassing 
Afghanistan, Bangladesh, Bhutan, India, Myanmar, Nepal, 
Pakistan, and Sri Lanka. An outline of the study area is 
shown in Fig. 2a. Due to limited observational data, the 
Maldives has not been included in this study.

To assess the variation in skill spatially, more in-depth 
analyses have been provided for Afghanistan, Bangladesh, 
Nepal, and Pakistan. These countries have been chosen spe-
cifically as are the four focal countries of the project fund-
ing this study. In consultation with their National Mete-
orological and Hydrological Services, rectangular boxes 
surrounding the countries have been used when calculating 
our area averages, rather than using the detailed borders, 
as presented in Fig. 2b. We take a larger domain box as an 
outline, firstly, to capture the large-scale climate features 
surrounding each of the countries. Secondly, precipitation 
falling in areas around the selected countries could also 
of interest. For example, precipitation may run into rivers 
within a country from the surrounding mountains (Fig. 2a); 
this is particularly important for Bangladesh. Also note that 
Pakistan has been divided into north and south domains due 
to its diverse climate, as requested by the Pakistan Meteoro-
logical department.

2.5 � Teleconnection indices

The relationship between South Asian precipitation and its 
strongest climate drivers, ENSO and IOD, are investigated 

using observed and model SST data. Firstly, observational 
data for the Oceanic Niño Index (ONI) has been used as 
a proxy for ENSO and taken from the NOAA Climate 
Prediction Center (https://​origin.​cpc.​ncep.​noaa.​gov). The 
ONI is the rolling 3-month average temperature anomaly 
of the surface waters of the Niño 3.4 region in east-central 
tropical Pacific (5°N–5°S, 120°–170°W). A positive index 
over 5-month typically signifies an El Niño event, and a 
La Niña event is represented by a similar negative index. 
The Indian Ocean Dipole Mode Index (IODMI) represents 
IOD phase and captures SST anomalies between the west 
(50°E–70°E, 10°S–10°N) and southeast (90°E–110°E, 
10°S-equator) of the tropical Indian Ocean. Observational 
data has been sourced from the NOAA Physical Science 
Laboratory (https://​psl.​noaa.​gov). Second, SST data for 
each of the 12 models has been obtained using the IRI 
Climate Data Library (https://​iridl.​ldeo.​colum​bia.​edu/) 
over the Niño 3.4 region, and spatially averaged with a 
resolution of 1.0° × 1.0°. The Pearson correlation has been 
used to assess the strength of the teleconnection between 
mean SST and precipitation for both observations and the 
12 models. Each of the indices has been averaged for the 
concurrent period used for precipitation, i.e., no time lag 
has been used.

Fig. 2   a Topographic map of the study area, also highlighting the main geographic features referred to in this study and b visual outline of 
domain boxes used for Afghanistan (blue), Bangladesh (green), Nepal (red), Pakistan North (magenta) and Pakistan South (cyan)

https://origin.cpc.ncep.noaa.gov
https://psl.noaa.gov
https://iridl.ldeo.columbia.edu/
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3 � Results

3.1 � Precipitation observations

The SW monsoon from June to September is the wettest 
season for most of the region (Fig. 3a), with the highest pre-
cipitation totals occurring in Bangladesh, Nepal, the western 
Ghats of India, and the Arakan Mountains of Myanmar. In 
contrast, the monsoon does not affect the far northwest of the 
region, namely Afghanistan and southern Pakistan, where it 
is one of their driest seasons. The NE monsoon season from 
October to December is much drier for most of South Asia 
(Fig. 3b), with rainfall predominantly affecting the far south 
and southeast. Afghanistan and Pakistan receive precipita-
tion with the passage of western disturbances, although this 
is still minimal compared to the NE monsoon rains in the 
southeast.

The coefficient of variance (CV) for year-to-year precipi-
tation (Fig. S1) is useful for identifying the extent of the var-
iability in relation to the total precipitation. Typically, areas 
where CV are high (low) tend to coincide with areas of low 
(high) precipitation totals. For the SW monsoon season, CV 
is low (below 0.5) for much of South Asia but high (above 
0.5) for southern Pakistan and northeastern India. Whereas 
for the NE monsoon season, CV is above 0.5 for most of the 
region, which is unsurprising given the lower precipitation 
totals, and it is especially high (above 0.8) in mid-west India.

3.2 � Model skill

The different models vary greatly in terms of their mean 
biases (i.e., differences from the observed mean; Fig. S2). 

In the SW monsoon season, most of the models have a dry 
bias, especially in the areas that receive high precipitation. 
For example, most of the models exhibit a dry bias over 
the western Ghats of India, the Arakan mountains, and the 
Indo-Gangetic plains. In the NE monsoon season, nearly 
all models have a slight wet bias over most of the region. 
However, in areas such as the far south and southeast of the 
region and Myanmar, most models exhibit a dry bias. During 
both seasons the MME seems to exhibit lower biases than 
most models.

The correlations for the SW and NE monsoon seasons 
between precipitation observations and the 12 models 
demonstrates considerable spatial and seasonal variability 
(Fig. 4). In general, areas that receive more precipitation 
correspond to higher and significant correlation (> 0.4) 
compared to areas with less precipitation. For instance, the 
SW monsoon precipitation is well captured by almost all 
models, as well as the MME, for large swathes of India, 
especially in central and northern areas, and for much of 
Nepal, especially in the west, with correlations of 0.4 to 0.8. 
Areas which receive greater rainfall during the NE monsoon 
season, such as Afghanistan and north Pakistan, also display 
positive and significant correlations (> 0.4) in many of the 
models and the MME, although precipitation totals are still 
relatively low and thus observational uncertainty could be a 
factor in these regions during both seasons. In the SW mon-
soon season, the far northwest of India exhibits especially 
low correlations, and even significantly negative (< − 0.4) 
in several models, including CFS2_NCEP and ECMWF-S5. 
This area of poor skill coincides with an area of high year-
to-year CV in the observations (Fig. S1), and furthermore 
the corresponding CV simulated by the models (not shown) 
is much lower than seen in the observations (Fig. S1). In 

Fig. 3   Mean precipitation in mm/day from the CHIRPS dataset for period 1993 to 2016 for a JJAS and b OND
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contrast, correlations for the NE monsoon season results for 
the northwest India are mostly positive and interestingly, 
some of the same models that performed poorly in that area 
for the SW monsoon (e.g., ECMWF-S5) show significant 
positive correlations in the NE monsoon, highlighting the 
lack of consistency between seasons. Southern India and Sri 
Lanka receive significant rainfall during the NE monsoon 
season and results show mainly positive and significant cor-
relations, particularly in GEM-NEMO and ECMWF-S5, but 
in the SW monsoon season, when comparatively less rain 
falls, correlations are lower and not significant in all models. 
One area that receives high precipitation amounts, especially 
in the SW monsoon season, but where models represent 
precipitation variability poorly, is in the east of the region 
encompassing Myanmar, Bhutan, Bangladesh and northeast 
India. In the SW monsoon season, Bangladesh, Bhutan and 
northeast India have very low correlations (< 0.4), although 
some moderate correlation (0.4–0.6) is shown over Myan-
mar. In the NE monsoon season, correlations are more mixed 
but generally higher in this area. For example, Bangladesh 
ranges from positive and significant correlation exceeding 
0.4 in models such as CFS2 and ECMWF-S5, to negative 
and significant correlation (< − 0.4) in CanCM4. An area 
that has noticeably high skill in the models is the Gujarat 
region in far west Indi,a despite low precipitation amounts, 

which interestingly coincides with an area of high year-to-
year CV (Fig. S1). In both seasons, the MME is a helpful 
indication of the areas where models generally perform well 
and not so well, and it looks to perform relatively well when 
compared to most models individually.

The spatial patterns of ROC scores show how well the 
models can predict the tercile category of the observed pre-
cipitation over a range of forecast probabilities, which is 
relevant for informing the SASCOF tercile forecast. Here, 
for brevity, we present ROC scores for the MME only; indi-
vidual model ROC scores can be found in Figs. S3 and S4.

The ROC scores for the MME exhibit similar, albeit 
noisier, patterns to the spatial patterns of the correlations 
in Fig. 4, and display considerable variability between 
models and between seasons (Figs. 5, 6). In general, the 
ROC scores for the SW monsoon are higher (Figs. 5a, 
6a) than ROC scores for the NE monsoon in both tercile 
categories. For the SW monsoon season, Nepal, central/
northern India and northern Afghanistan have good skill 
(ROC scores of 0.6–1.0), particularly in the lower tercile. 
Interestingly, ROC scores appear higher for the lower ter-
cile in the SW monsoon season and the upper tercile in the 
NE monsoon season. During the NE monsoon (Fig. 5b, 
6b), the MME has particularly good skill at predicting the 

Fig. 4   Pearson correlation between precipitation in observations and the 12 models plus the MME in a JJAS and b OND from 1993 to 2016, 
stippling marks statistical significance at the 5% level (correlations stronger than ± 0.4)
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correct tercile across Afghanistan. Furthermore, for the 
upper tercile, ROC scores are high (0.6–0.9) in much of 
Sri Lanka, the east coast of India, Bangladesh and coastal 
Myanmar; whereas, ROC scores are generally lower for 
much of these areas for the lower tercile. Although note 
that there is considerable variability between the models 
in this area for both terciles (Figs. S3b, S4b).

3.3 � Spatially averaged correlation for region 
and country domains

Correlations have been averaged over the South Asia domain 
(the area outlined in Fig. 2a) as well as for the country-spe-
cific domains (outlined in Fig. 2b), to further explore model 
and spatial variability in skill. These results are also useful to 
assess the strength of the operational models at the national 

Fig. 5   ROC score for the lower (i.e., drier-than-normal) tercile category for a JJAS and b OND, values greater than 0.5 indicate a skilful forecast

Fig. 6   ROC score for the upper (i.e., wetter-than-normal) tercile category for a JJAS and b OND, values greater than 0.5 indicate a skilful fore-
cast
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level for climate services on the seasonal timescale. Note 
that only correlations stronger than ± 0.4 (to the outside of 
the orange dashed lines in Fig. 7) are significantly different 
to zero at the 5% level.

The correlations averaged over the entire South Asia 
region for the SW monsoon season (Fig. 7a; top-left panel) 
are significant and positive for 8 of the 12 models, with 
CMCC, GEM-NEMO, ECMWF-S5 and the MME having 
values over 0.5. However, this general picture masks a high 
degree of variability in the correlations for the individual 
country domain, in terms of the model rankings as well as 
the correlation magnitudes. All correlations for Afghani-
stan and both Pakistan domains fail to reach the 0.4 sig-
nificance line, although some models such as CFS2, CMCC 
and GFDL-SPEAR come close. As seen in the skill maps, 
average correlations around Nepal are particularly high, 
with most models possessing significant skill, except for 
COLA-4 and CFS2. In contrast, correlations for the Bangla-
desh domain are especially low and even negative for about 
half of the models. The MME demonstrates typically above 
average skill scores relative to the individual models, per-
forming especially well over the Nepal domain and South 
Asia regional domain.

Correlations averaged over the South Asia region are 
generally lower for the NE monsoon season (Fig.  7b; 
top-left panel), with 5 models having significant skill 
and Meteo-France-7, COLA-4 and ECMWF-S5 having 
the highest average correlations. In contrast to the SW 

monsoon season, Afghanistan and Pakistan North have 
higher and, in some models, significant, correlations, 
with Meteo-France-7 exhibiting the highest correlation 
for both. While the Pakistan North domain correlations 
are higher for this season, the Pakistan South domain cor-
relations are comparatively much lower and not signifi-
cant. Similarly, the correlations for Nepal are especially 
low, although this is a very dry season. Correlations are 
also much higher in this season for Bangladesh, although 
only CFS2 demonstrates significant positive correlation. 
The MME has significant skill for the South Asia regional 
domain and performs particularly well over North Pakistan 
and Afghanistan domains.

3.4 � Teleconnections

We explore the link between observed and model precipi-
tation, and the two main climate drivers in the region: 
ENSO and IOD. Unless otherwise stated, we take the ONI 
and IODMI indices to be synonymous with their asso-
ciated climate drivers, ENSO and IOD respectively (see 
Sect. 2.5). For brevity, only precipitation links with ENSO 
and IOD are covered in this section, but it is important to 
note that other teleconnections could also affect model 
skill; see Stacey et al. (2019) for descriptions of other cli-
mate drivers of South Asia precipitation.

Fig. 7   The 12 seasonal prediction systems and MME ranked by their correlation with observations in the South Asia and country specific 
domains from 1993 to 2016 for a JJAS and b OND, correlations stronger than ± 0.4 are significantly different from zero
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3.4.1 � El Niño Southern Oscillation (ENSO)

The observed ENSO-precipitation relationship is investi-
gated by calculating the correlation between observed pre-
cipitation and the observed ONI index (our proxy for ENSO) 
from 1993 to 2016 for the SW and NE monsoon season. 
During the SW monsoon (Fig. 8a), there is a largely negative 
correlation between ENSO and observed precipitation for 
much of South Asia, indicating El Niño events correspond 
with anomalously low precipitation, and La Niña events with 
anomalously high precipitation. The negative correlation is 
significant in parts of Nepal as well as central and southern 
India. Elsewhere, the correlations are much weaker. During 
the NE monsoon season, the relationship between ENSO 
and observed precipitation ranges from significant positive 
correlations over Afghanistan, north Pakistan, and Sri Lanka 
to significant negative correlations over western India, 
Bangladesh, and western Myanmar (Fig. 8b). Lower, less 
significant correlation values extend across most of Nepal 
and India, although precipitation totals are low during this 
season. The spatial patterns between the ENSO-precipitation 
observed relationship are broadly similar to spatial patterns 
in model skill (Figs. 4, 5, 6), most likely because a stronger 
ENSO teleconnection means there is higher predictability 
in that location.

The correlation between the simulated mean SST aver-
aged over the Niño 3.4 region and precipitation in the 12 
models (Fig. 9) exhibits broadly similar patterns to those 
found in the observations in Fig. 8, although the models 
appear to exaggerate the ENSO teleconnection. For the 
SW monsoon season, all the models simulate the wide-
spread negative and significant correlation across most of 

the region, but with pockets of positive correlation in the 
northeast areas, although the details of the spatial patterns 
vary greatly between the models. Notably, MeteoFrance-7 
has an area of positive correlation across central India, and 
incidentally has low skill scores in this area. For the NE 
monsoon, again the teleconnections look much more exag-
gerated for both the positive and negative correlations, with 
most of the models adequately resembling the pattern shown 
in the observations. Interestingly, the models which capture 
the positive relationship over Sri Lanka tend to also have 
more skill in this area, for example, ECMWF-S5 and GEM-
NEMO. Similarly, models with higher skill over northern 
Afghanistan and Pakistan, such as GloSea-6 and MeteoF-
rance-7, also appear to pick up on the strong, positive ENSO 
teleconnection.

To investigate the relationship between the strength of 
the ENSO teleconnection and model skill, the correlation 
between the spatially-averaged model and observed pre-
cipitation (a proxy for model skill) against the correlation 
between model SSTs in the Niño 3.4 region and model pre-
cipitation (a proxy for the ENSO teleconnection) is plot-
ted in Fig. 10. Note that the uncertainty in these correla-
tions is large because of the small sample size (24 years, 
1993–2016).

During the SW monsoon season, the exaggerated ENSO 
teleconnection in the models apparent in Fig.  9 is also 
demonstrated in the scatter plot for the South Asia domain 
(Fig. 10a; top-left panel). The observation line suggests that 
in the “real world” (albeit limited by the precision of the 
CHIRPS observations dataset) the ENSO-precipitation rela-
tionship is much weaker than many of the skilful models sug-
gest. Therefore, even though the models appear oversensitive 

Fig. 8   Correlation between ONI index and precipitation observations from 1993 to 2016 for a JJAS and b OND, stippling marks statistical sig-
nificance at 5% level
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Fig. 9   Correlation between model mean SST in the Niño 3.4 region and model precipitation in each of the 12 models for a JJAS and b OND 
from 1993 to 2016, stippling marks statistical significance at the 5% level

Fig. 10   Correlation between the strength of the ENSO teleconnection 
(y-axis) plotted against model skill (x-axis) for the 12 different mod-
els averaged over the whole South Asia region and each domain for a 

JJAS and b OND, the dashed grey line marked “observations” repre-
sents correlation between observed ONI index and precipitation
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to the influence of ENSO, this oversensitivity also appears 
to improve their skill in forecasting precipitation. This is 
likely because if the variability is largely driven by ENSO, 
then models that capture the ENSO response are likely to be 
more skilful than those that do not, even if they overestimate 
it. For the country-specific domains during the SW monsoon 
season (Fig. 10a), the ENSO teleconnection appears to have 
little influence on model skill. Although, the observation line 
for Nepal suggests a strong correlation between observed 
precipitation and ENSO, and the most skilful models also 
have a strong ENSO teleconnection. Thus, these results, 
alongside those showing the observed ENSO-precipitation 
correlation in Fig. 8a, suggest that ENSO is a major driver 
of precipitation variability in Nepal during JJAS. The cor-
relations in the Afghanistan and Pakistan North domains 
are weaker, with the observation line near to zero for both 
domains, suggesting ENSO has negligible influence in this 
area. Our previous analyses have shown that both precipita-
tion amount and skill are low here, especially in Afghani-
stan. However, interestingly CFS2 seems to perform well 
in the Afghanistan and Pakistan North domains and is the 
only model which has a highly positive ENSO-precipitation 
correlation. For the Bangladesh and Pakistan South domains 
there is no significant relationship between model skill and 
the ENSO teleconnection in the SW monsoon season, sug-
gesting ENSO has less influence in these areas and thus there 
is less predictability for models to exploit.

The lack of ENSO teleconnection for the South Asia 
region during the NE monsoon (Fig. 10b, top left panel) is 
likely an averaging artefact of the mixed positive and nega-
tive correlations, as seen in the observations (Fig. 8b). The 
scatter plots for the Afghanistan and Pakistan North domains 
show a positive correlation between ENSO and precipitation, 

also shown by the observations. Our results suggest that all 
of the models appear to pick up on this teleconnection in 
these two domains, with the most skilful models typically 
simulating a slightly higher ENSO-precipitation correlation 
than the others. The results for the Pakistan South domain 
imply a positive relationship between model performance 
and the ENSO teleconnection. However, note that some 
models suggest a negative ENSO-precipitation correlation, 
whilst the models with most skill suggest a positive cor-
relation; closer to the observations line, which is weakly 
positive. For the Bangladesh domain, the ENSO teleconnec-
tion looks to have more of an influence in the OND season 
than JJAS, with the most skilful models appearing to capture 
the negative ENSO-precipitation correlation as seen in the 
observations. Negligible ENSO influence is detected by the 
results for the Nepal domain, which is unsurprising given 
the low precipitation amounts during OND.

3.4.2 � Indian ocean dipole (IOD)

There is a much weaker relationship between observed South 
Asia precipitation and the IOD compared with ENSO for 
the SW monsoon season, indicated by the low correlations 
(between − 0.4 and + 0.4) for much of the area (Fig. 11a). 
A positive and significant correlation between the IOD and 
observed precipitation is apparent for south Pakistan and 
part of east India, although model skill is low in these areas 
(correlations below 0.4) suggesting the models are not cap-
turing the IOD teleconnection. For the NE monsoon season, 
there appear to be more areas with a significant relationship 
(Fig. 11b); although interestingly, the pattern is remarkably 
similar to the relationship with ENSO shown in Fig. 8b for 
the same season; this is discussed further in Sect. 4.2.1.

Fig. 11   Correlation between observed IOD index and precipitation over 1993–2016 for a JJAS and b OND, stippling marks statistical signifi-
cance at the 5% level
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Similarly, the model simulations of the relationship 
between observed IOD and model precipitation (not shown) 
depict much weaker correlation values than those for ENSO 
(Fig. 9). For the SW monsoon season the picture is for a 
widespread, weak negative relationship. While most of the 
models appear to pick up on the positive correlation in the 
east of the region, the location and shape of this area var-
ies greatly between models, plus all models fail to simulate 
the area of significant positive correlation over the south of 
Pakistan. For the NE monsoon season, again, patterns look 
very similar to those for ENSO but with slightly weaker 
correlations.

Scatterplots like those in Fig.  10 but comparing the 
observed IOD and model precipitation relationship with 
model skill for the SW and NE monsoon season (not shown) 
are unsurprising given the results so far. For the SW mon-
soon season, the relationship between model precipitation 
and the observed IOD is generally weak for all domains and 
does not appear to be linked to model skill. Whereas for the 
NE monsoon season, the results look similar to those for the 
ENSO relationship in Fig. 10b.

4 � Discussion

4.1 � Which models should be incorporated 
into the SASCOF seasonal outlook?

The variation in model skill supports the WMO’s case for 
using a multi-model ensemble as a basis for the SASCOF 
regional outlook (WMO 2020). We do not suggest dismiss-
ing any of the 12 models in the study since no single model 
performs consistently poorly in all areas. For example, one 
method for model selection could be to discount the models 
with lowest correlation when regionally averaged. However, 
these models still perform well in certain locations, e.g., skill 
for CanCM4 in the NE monsoon is low (correlation < 0.2) 
when regionally averaged (Fig. 7b; top-left panel), but posi-
tive and significant (correlation > 0.4) for the Afghanistan 
domain (Fig. 7b; top-right panel). The results also show 
stark differences in model skill from one season to the 
other; for instance, when averaged over the entire region, 
MeteoFrance-7 has the lowest correlation in the SW mon-
soon season (Fig. 7a) but highest in the NE monsoon sea-
son (Fig. 7b). At the country-level, there are clearly models 
that exhibit substantially more skill than others, and there-
fore, poorly performing models could be disregarded at the 
national level, such as DWD and CanCM4I over Bangladesh. 
One way to incorporate this into SASCOF, would be for 
each National Meteorological and Hydrological Service to 
produce their own national forecast based on the most skil-
ful models for their country and use this to make appropriate 
recommendations for the regional outlook at the SASCOF.

4.2 � What is driving the spatial variability in model 
skill?

The complex combination of influencing factors at seasonal 
and sub-seasonal scales that determine the spatial and tem-
poral variability of monsoon precipitation are not always 
clear. In this section, we discuss some potential factors driv-
ing the variation in the results.

4.2.1 � The ENSO and IOD teleconnections

For both the SW and NE monsoon seasons, we find similari-
ties between the spatial patterns in model skill (Figs. 4, 5, 
6) and the observed ENSO teleconnection (Fig. 8). When 
averaged over the entire region for the SW monsoon season 
(Fig. 10a; top-left panel), we find, in general, that the skilful 
models simulate an even stronger teleconnection than in the 
observations. The strength of the ENSO and SW monsoon 
precipitation relationship has long been debated; Kumar 
et al. (1999) suggest the relationship has weakened since 
the 1980s, although other studies (e.g., Pai 2004; Delsole 
and Shukla 2012) attribute the apparent breakdown to other 
factors, such as sampling variability. The results in this study 
concur that ENSO is a major driver of seasonal precipitation 
variability when assessing the entire South Asia region from 
1993 to 2016. For example, Nepal is an area where high 
model skill coincides with a strong ENSO teleconnection, 
particularly in the west (Fig. 8a), in agreement with other 
studies (e.g., Bohlinger and Sorteberg 2018; Sharma et al. 
2020). The high model skill is impressive given the highly 
varied topography and climate of Nepal and is potentially 
highlighting the predictive power of the models when a 
strong ENSO teleconnection is present.

The difference in the ROC scores between the lower 
(Fig. 5) and upper (Fig. 6) tercile categories suggest that 
in some places the MME has more skill at predicting one 
tercile over another. For example, around central India in 
the SW monsoon, higher ROC scores are seen for the lower 
tercile category than the upper tercile category, which could 
suggest that the models are typically more skilful at predict-
ing the teleconnection during the warm phase of ENSO, i.e., 
an El Niño event, which is typically associated with drier 
years, as shown by the observations in Fig. 8a.

In our results, the IOD teleconnection appears less pro-
nounced than ENSO for the SW monsoon season (Fig. 11a). 
However, a positive and significant IOD-precipitation rela-
tionship is observed in parts of south Pakistan and east India. 
The teleconnection in these areas is supported by studies 
(e.g., Ashok et al. 2001) that detect a correlation between 
positive (negative) IOD events and increased (decreased) 
SW monsoon precipitation totals over the monsoon trough 
region which on average runs from Pakistan to Myanmar. 
Models typically have low skill here and thus the IOD 
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teleconnection could provide more predictability in this 
area; however, the monsoon trough region is also associ-
ated with considerable intraseasonal variability, as discussed 
in Sect. 4.2.2.

Interestingly, during the NE monsoon season, a strong 
ENSO and IOD teleconnection is observed across much of 
Afghanistan and north Pakistan (Fig. 8b), despite low pre-
cipitation totals during OND. The results suggest a positive 
and significant correlation with ENSO and IOD, with some 
models demonstrating significant correlation (> 0.4), such as 
MeteoFrance-7, suggesting a detectable source of predicta-
bility in this region. There have been very few studies on the 
influence of ENSO and IOD during the OND season; how-
ever, Kar and Rana (2014) find that ENSO is the dominant 
mode of variability from December to February. Similarly, 
our results suggest a strong ENSO and IOD teleconnection 
surrounding the Bay of Bengal coast and northwest India 
(Figs. 8b, 10b). These are both areas influenced by tropical 
cyclone activity during the NE monsoon season, which has 
also been found to negatively correlate with ENSO (Fel-
ton et al. 2013). Replicating this teleconnection appears to 
be important for model skill, as the models that perform 
well in these areas (Figs. 4b, 5b, 6b) are typically those that 
appear to capture this teleconnection (Fig. 9b). For exam-
ple, in the areas surrounding the coastlines of Bangladesh 
and Myanmar, GloSea-6 possesses significant correlation 
(> 0.4; Figs. 4b, 5b, 6b) alongside a significant and negative 
ENSO-precipitation correlation (Fig. 9b), albeit more wide-
spread and exaggerated than apparent in the observations 
(Fig. 8b). In contrast, CanCM4I has poor skill in this area 
(correlations < 0; Figs. 4b, 5b, 6b) and simulates a weakly 
positive ENSO-precipitation correlation conflicting with the 
observed relationship.

4.2.2 � Intraseasonal variability

Some of the areas of low model skill also coincide with areas 
of high intraseasonal variability since seasonal models still 
have limited ability to capture these short-range oscillations 
a season ahead (Lee et al. 2015). The South Asian monsoon 
exhibits substantial variability on the sub-seasonal time-
scale with active (enhanced) and break (suppressed) phases 
in precipitation, related to westward (10–20-day period) and 
northward (25–60-day period) propagation of convection and 
circulation anomalies (Yasunari 1979, 1981; Krishnamurti 
and Ardanuy 1980; Annamalai and Slingo 2001). Variability 
around the monsoon trough region is particularly complicated, 
due to the north–south swing of the trough about its normal 
location and low-pressure systems from the Bay of Bengal 
moving along the trough axis. Some northeastern areas, such 
as Bangladesh, northeast India, and Myanmar, also lie in the 
monsoon trough region, and are therefore subject to consid-
erable intraseasonal variability (Fujinami et al. 2011) which, 

alongside a lack of obvious teleconnections, is likely to play a 
factor in the low model skill there.

4.2.3 � Geographical features

Models cannot accurately represent local geographical fea-
tures, such as the diverse topography seen in South Asia as 
shown in Fig. 2a, in fine detail. Seasonal models have limited 
horizontal and vertical resolution on which to capture these 
local effects accurately (in this study, models are regridded 
to a 1.0° × 1.0° horizontal grid). For example, precipitation 
is typically enhanced on the windward side and suppressed 
on the leeward side of high ground, evident in the relatively 
higher precipitation totals along the Western Ghats of India 
and the Arakan Mountains in Myanmar in the SW monsoon 
season (Fig. 3a). In our results, the places where models pos-
sess higher skill are generally those with less complex ter-
rain, for example over the more homogeneous Indo-Gangetic 
Plains and the Deccan Plateau during the SW monsoon. The 
terrain in the northwest of India consists of relatively low-
lying terrain to the south rising to the Himalayan-mountain 
range in the north, which exhibits high year-to-year vari-
ability (Fig. S1) and may explain the consistent area of poor 
skill here for the SW monsoon (Figs. 4a, 5a, 6a). In contrast, 
models exhibit good skill in the SW monsoon season over 
west Nepal, which similarly has an extreme range in eleva-
tion; however, compared with northwest India, predictability 
may be enhanced by the stronger and more homogeneous 
prevailing winds from the flatter Indo-Gangetic Plain region 
and the notable ENSO teleconnection. For improved model 
skill, the sharp mountain ranges and vast coastlines of South 
Asia should be well represented to capture the complicated 
precipitation effects and further analysis could assess if skill 
improvements come from increasing model resolution.

4.2.4 � Observational uncertainties

All results have been replicated using the CRU TS dataset 
(not shown) to compare with those using CHIRPS, and while 
the spatial patterns in model skill are similar to those with 
CHIRPS, skill is generally lower in the results with the CRU 
TS dataset. The ordering of the models in the regionally 
averaged bar plots (not shown) are also slightly different. 
This observational uncertainty within our results highlights 
the need to check skill results against additional observation 
datasets before making any decisions to disregard models 
from the multi-model ensemble.

4.3 � Similarities between the ENSO and IOD 
teleconnection patterns for NE monsoon season

The remarkable likeness between the influence of ENSO and 
IOD on precipitation for the NE monsoon season (Figs. 8b, 
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10b), suggests that ENSO and IOD events can co-occur and/
or a positive (negative) IOD event has a similar influence 
on precipitation to an El Niño (La Niña) event. Although 
some studies have argued the IOD is an independent mode of 
interannual variability (Saji et al. 1999), other studies have 
found an observable influence from ENSO on the IOD (e.g., 
Allan et al. 2001; Krishnamurthy and Kirtman 2003; Yang 
et al. 2015). Furthermore, the basin wide warming or cool-
ing in the Indian Ocean becomes more dominant during the 
boreal winter, which has been seen to have an ENSO correla-
tion (Behera et al. 2006) and therefore this could amplify the 
similarities in the correlation patterns. While the combined 
influence of ENSO and IOD on South Asia monsoon pre-
cipitation has been well studied for the SW monsoon period, 
particularly over India (e.g., Ashok et al. 2001; Cherchi and 
Navarra 2013) we were unable to find similar studies for the 
NE monsoon period. Improving understanding of how the 
two main climate drivers affect NE monsoon precipitation 
could prove vital for improving model skill, especially for 
the east and southeast parts of the region where precipitation 
totals are highest (Fig. 3b).

5 � Conclusions

In this study, the ability of 12 seasonal prediction sys-
tems to capture precipitation variability in South Asia has 
been assessed for both the southwest (June to September) 
and northeast (October to December) monsoon seasons, 
with further analysis into how spatial variability in model 
skill is influenced by the strength of the ENSO and IOD 
teleconnections.

There is a substantial range in model skill spatially for 
both seasons. In general, model skill is higher where a strong 
ENSO teleconnection exists, for example, in central and 
northern India and Nepal during the SW monsoon season, 
and in Afghanistan, northern Pakistan and southeast India 
in the NE monsoon season. When averaged over the region 
for the SW monsoon season, the models that simulate the 
strongest ENSO-precipitation relationship appear to exhibit 
more skill. In contrast, in places where the connection with 
ENSO is weaker, such as Bangladesh and northwest India 
during the SW monsoon, most models exhibit much lower 
skill. The IOD teleconnection is less pronounced than that 
for ENSO in the SW monsoon season, but stronger in places 
for the NE monsoon, when the spatial pattern looks very 
similar to the ENSO teleconnection. Most places with low 
skill coincide with low precipitation amounts, for example, 
Nepal and central India in the NE monsoon season. The 
places where skill is low but precipitation is high, for exam-
ple, in the northeast of the region during the SW monsoon 
season, are areas where model improvements could be espe-
cially beneficial. However, the explanations for low skill are 

varied and complicated and may be partly explained by a 
combination of lack of identifiable climate drivers, high 
intraseasonal variability, observational uncertainty and/or 
the complex geographical features in the region. Our results 
highlight the importance of models accurately simulating 
the ENSO and IOD teleconnections to enhance their skill 
as well as improving our understanding of how the models 
behave in different locations when selecting models for the 
SASCOF forecast.

Assessing the spatially averaged skill over regional and 
national domains demonstrates the high variability in model 
skill depending on the chosen domain and season. When 
spatially averaged over the South Asia region, all models 
have positive skill in replicating precipitation totals in the 
SW and NE monsoon seasons, with 8 of these models hav-
ing significant correlation for the SW monsoon season, and 
5 for the NE monsoon. Since there are no standout high or 
low skilled models for all areas, we recommend including 
all 12 models in the multi-model ensemble as a basis for 
the SASCOF seasonal outlook. However, poorly perform-
ing models could be dismissed when considering forecasts 
at the national level. Further skill assessments comparing 
multi-model ensembles with differing model combinations 
could support this process.

The ability for models to accurately simulate large-scale 
climate drivers and their complex relationship with South 
Asia precipitation will be a continued challenge for many 
years to come. With further research, more widespread 
and reliable observations, and model developments from 
improved resolutions, parameterisations and data assimila-
tion techniques, forecast skill will continue to improve into 
the future. While enhancing our understanding of model 
skill is vital, future work should also focus on producing 
subseasonal and seasonal forecasts which are user-relevant 
to increase their uptake and usability. By working closely 
with sector users to improve understanding on how forecasts 
are interpreted and applied in practice, seasonal forecasts 
can be co-developed to have the greatest societal impact for 
the South Asia region.
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