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Abstract
Improving modeling capacities requires a better understanding of both the physical relationship between the variables 
and climate models with a higher degree of skill than is currently achieved by Global Climate Models (GCMs). Although 
Regional Climate Models (RCMs) are commonly used to resolve finer scales, their application is restricted by the inherent 
systematic biases within the GCM datasets that can be propagated into the RCM simulation through the model input bounda-
ries. Hence, it is advisable to remove the systematic biases in the GCM simulations prior to downscaling, forming improved 
input boundary conditions for the RCMs. Various mathematical approaches have been formulated to correct such biases. 
Most of the techniques, however, correct each variable independently leading to physical inconsistencies across the variables 
in dynamically linked fields. Here, we investigate bias corrections ranging from simple to more complex techniques to cor-
rect biases of RCM input boundary conditions. The results show that substantial improvements in model performance are 
achieved after applying bias correction to the boundaries of RCM. This work identifies that the effectiveness of increasingly 
sophisticated techniques is able to improve the simulated rainfall characteristics. An RCM with multivariate bias correction, 
which corrects temporal persistence and inter-variable relationships, better represents extreme events relative to univariate 
bias correction techniques, which do not account for the physical relationship between the variables.

Keywords Multivariate bias correction · Regional climate model · Lateral boundary conditions · Rainfall characteristics

1 Introduction

The direct use of Global Climate Models (GCMs) is lim-
ited at regional or hydrological catchment scales because 
of the coarse spatial and temporal scales used (Caldwell 
et al. 2009). Regional Climate Models (RCMs) forced with 
GCM simulations through initial, lateral, and lower bound-
ary conditions are more commonly used to simulate detailed 
information at finer scales.

Although the GCM-driven RCM simulations show better 
performance than the raw GCM simulations (Diffenbaugh 
et al. 2005; Leung and Qian 2009; Di Luca et al. 2016; Li 
et al. 2018), systematic biases that can be propagated from 

GCM data into the input boundary conditions of the RCM 
still remain. These improper boundary conditions can affect 
model outputs, leading to biases when compared to observa-
tion (Caldwell et al. 2009; Xu and Yang 2012; Rocheta et al. 
2017; Kim et al. 2020). Applying bias correction, some-
times called bias adjustment but herein as bias correction, 
to climate model outputs is therefore an important step in 
improving model performance. Different approaches for cor-
recting and characterizing systematic bias have been applied 
to either surface variables of the RCM outputs before use for 
impact assessment, or the GCM simulations prior to downs-
caling to remove biases in the RCM input (lateral and lower) 
boundary conditions. The second approach above forms the 
focus of this study.

For the case where bias is removed as a post-processing 
step following the climate model simulation, past studies 
have evaluated various bias-correction approaches that vary 
in complexity in terms of the mathematical operations used, 
as well as the nature of the attributes that are corrected. Most 
common approaches use quantile mapping as the basis for 
adjusting the distribution of a simulated variable to match 
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that of the observations to correct both current and future 
climate simulations (Wood et al. 2004; Li et al. 2010; Piani 
et al. 2010). Alternatives that address the model biases in 
temporal persistence are also widely used given their rel-
evance in hydrological applications (Johnson and Sharma 
2012; Ojha et al. 2013). Recently, bias correction methods 
have evolved toward more advanced techniques that correct 
inter-variable relationships among the atmospheric variables 
of the model outputs, such as precipitation and tempera-
ture, which possess a strong co-dependence (Mehrotra and 
Sharma 2015; Sharma and Mehrotra 2016; Cannon 2016, 
2017; François et al. 2020). The abovementioned studies, 
however, were specifically designed for correcting the sur-
face fields of the climate model output and have not been 
applied to the full atmospheric fields required for RCM lat-
eral boundary inputs.

The method for correcting the RCM input boundary con-
ditions has evolved from simple to more complex techniques 
that attempt to mimic observed multi-scale relationships in 
simulations. Xu and Yang (2012) investigated mean and var-
iance bias correction of the RCM boundary conditions, and 
showed that the bias corrections improved the model per-
formance for climatological means and extremes. Bruyere 
et al. (2014) corrected the RCM boundary conditions to 
investigate simulations of hurricanes, which can produce 
extreme precipitation. The results showed that simple mean 
bias correction produced the greatest improvement.

The bias correction approaches that have been used to 
correct the RCM input boundaries in previous studies, how-
ever, often overlooked the biases in the persistence-related 
attributes in the model outcomes, and corrected the biases 
at a single time scale (Bates et  al. 2008; Nguyen et  al. 
2016). To overcome this limitation, Rocheta et al. (2017) 
investigated correcting low-frequency rainfall variability 
representation using nested bias correction, which includes 
correcting lag1 auto-correlation correction at multiple time 
scales. They showed that this method produced an added 
improvement compared with the simple scaling approach. 
Kim et al. (2020) also used nested bias correction to improve 
RCM simulations of rainfall extremes. They showed that 
even simple bias correction techniques could significantly 
reduce bias in terms of extreme rainfall events. They also 
showed that nested bias correction performed better than 
simple corrections for seasonal extremes, suggesting that 
correcting persistence characteristics is essential for the 
simulations.

While bias corrections of RCM input boundaries have 
shown consistent improvement in mean and extreme events 
in previous studies, these approaches have addressed only 
the correction of individual variables under the assumption 
that inter-variable bias is not of key importance. However, if 
the physical relationships between the variables in dynami-
cally linked fields are not considered, the errors introduced 

can influence the outputs, including precipitation, tempera-
ture, and humidity (Chen et al. 2011; Rocheta et al. 2014). 
The misconception of interacting physical processes across 
multiple temporal and spatial scales can potentially lead to 
the underestimation of extreme events, such as heavy rainfall 
and droughts (Zscheischler et al. 2018).

In a recent study, Kim et al. (2021) investigated whether 
the RCM could reproduce spatio-temporal and inter-variable 
dependence with respect to observed variables. They showed 
that the univariate bias correction techniques improved tem-
poral and spatial dependence but not multivariate depend-
ence. They highlighted that the mismatch in the physical 
relationships among the atmospheric variables was not suf-
ficiently adjusted through the relaxation zone, suggesting 
further investigation to address all systematic biases in the 
boundary conditions.

In brief, RCM outputs with univariate bias-corrected 
boundaries still contain large biases in the multivariate 
dependence even though they exhibit adequate performance 
for simple statistics, leading to substantial anomalies in sim-
ulated extremes. (Kim et al. 2020).

Considering this, the focus of this study is the impact 
that multivariate bias correction can have on lateral bound-
ary conditions (LBCs) and the lower boundary condition, 
which represents the sea surface temperature (SSTs) field, 
particularly for rainfall characteristics. Along with address-
ing biases in the cross-dependence attributes of an inter-var-
iable field, we addressed biases across multiple time scales 
using the nesting approach. We also used mean, mean and 
variance, and univariate nested bias correction methods to 
compare the model performance between the simple scaling 
and the more complex approaches.

The paper is organized as follows. In Sect. 2, the datasets 
and methods which include bias correction approaches and 
the Weather Research and Forecasting (WRF) model setup 
are described. Results are presented in Sect. 3. The discus-
sion and limitations of this work are presented in Sect. 4. 
Conclusions are described in Sect. 5.

2  Methods

2.1  Models and data

This study used the Australian Community Climate and 
Earth System Simulator Earth System Model Version 
1.5 (ACCESS-ESM1.5) GCM simulation made avail-
able by Commonwealth Scientific and Industrial Research 
Organization (CSIRO) for the purpose of contributing to 
the internationally coordinated Coupled Model Intercom-
parison Project Phase 6 (CMIP6) (Ziehn et al. 2020). For 
RCM simulations, the Weather Research and Forecasting 
model (WRF) with dynamical core (ARW), version 4.2.1 
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(Skamarock et al. 2019) was used. The resolution of the 
ACCESS-ESM1.5 is based on the N96 Gaussian grid 
(approximately 1.875°EW × 1.25°NS) with 38 vertical levels 
extending from the surface to 40 km.

The reanalysis data used for correcting GCM biases was 
ERA5 which is the fifth-generation model reanalysis of the 
global climate from the European Centre for Medium-range 
Weather Forecasts (ECMWF) (Hersbach et al. 2020). It has 
a resolution of 31 km with 37 pressure levels. The ERA5-
driven RCM simulation was considered a "perfect" regional 
climate simulation in this study.

The atmospheric variables [specific humidity q (g/kg), 
temperature T (K), zonal wind u (m/s), and meridional wind 
v (m/s)] and the sea surface temperature (SST) in the lat-
eral and lower boundary conditions of RCM were corrected 
towards those of ERA5. The ERA5 boundary variables were 
first regridded using both the conservative (for the specific 
humidity) and bilinear (for the other four variables) remap-
ping methods and then linearly interpolated to match the 
ACCESS-ESM1.5 horizontal and vertical resolution. The 
pressures from the surface to the top were recalculated using 
the bias-corrected fields based on the hypsometric equation. 
Therefore, the pressure field, including the surface pressure, 
is also adjusted during the bias correction procedure. All 
other variables remained identical, and the boundary condi-
tions were built after bias correction. The model was simu-
lated over 31 years from 1 January 1982 to 31 December 
2012. The first year of the model simulation was ignored as 
a spin-up period in order to remove issues associated with 
the equilibrium state for various soil types (Cosgrove et al. 
2003; Chen et al. 2007).

The downscaling was performed over the Australasian 
Coordinated Regional Climate Downscaling Experiment 
(CORDEX) domain (referred to herein as domain, https:// 
cordex. org/ domai ns/ region- 9- austr alasia/). The resolution 
was ~ 50 km with 50 vertical levels.

Based on previous studies that evaluated the model 
performance over the domain (Evans and McCabe 2010; 
Evans et al. 2012), the following parameterizations for the 
WRF simulations were used: Mellor–Yamada–Janjic plan-
etary boundary (Janjić 1994); Betts–Miller–Janjic cumu-
lus parameterization scheme (Janjić 1994); WRF double-
moment 5-class microphysics scheme (Lim and Hong 2010); 
Dudhia shortwave radiation scheme (Dudhia 1989); Rapid 
Radiative Transfer Model (RRTM) longwave radiation 
(Mlawer et al. 1997) and unified Noah land surface scheme 
(Mukul Tewari et al. 2004).

2.2  Bias correction approaches

In this study, four different types of bias correction methods 
were implemented to correct the atmospheric variable (spe-
cific humidity, temperature, zonal and meridional winds) 

and surface fields (sea surface temperature) at the bounda-
ries. Simple scaling methods, which correct climatological 
mean and mean and variance with respect to those of rea-
nalysis data, were used to correct the magnitude of events 
independently for each variable at a single time scale. In this 
study, these corrections were on a daily basis, and the daily 
statistics were calculated using the data falling within a cen-
tered moving window of 31 days (Sharma and Lall 1999). A 
more sophisticated alternative that also corrected lag1 auto- 
and lag0 cross-correlation across variables with respect to 
those of reanalysis data, was applied at multiple time scales 
using a nesting approach which can correct the biases in the 
persistence related attributes in the model outcomes (John-
son and Sharma 2012). The bias corrections were imple-
mented at 6-hourly time scale over the 31 years GCM data-
set. Here we denote Xg

()
 is the GCM data, Xo

()
 is the reanalysis 

data, and X́g

()
 is the transformed GCM variable. The sub-

scripts 6h , d , m , s , y indicate the time scale for 6-h, day, 
month, season, and year, respectively. The superscripts g , o 
indicate the model and observation, respectively.

2.2.1  Mean bias correction

This correction was implemented to calculate climatological 
means in which each of the GCM simulations was trans-
formed toward that of the reanalysis data. The transforma-
tion function can be expressed as follows:

where X̄g

d
 and X̄o

d
 are the climatological means of the original 

GCM and the reanalysis data at the daily time scales, respec-
tively. The daily statistics were calculated using a centered 
moving window of 31 days.

2.2.2  Mean and variance bias correction

Another simple approach for correcting biases in bound-
ary variables was the mean and variance bias correction. 
This approach is similar to the mean bias correction, but 
it is extended to include the variability of the atmospheric 
variables and surface fields. This can be expressed as below 
by applying a standard deviation correction to the mean 
correction:

where sg
d
 and so

d
 represent the standard deviation of the origi-

nal GCM and the reanalysis variables at the daily time scale, 
respectively. After this bias correction, the mean and vari-
ance of bias-corrected GCM simulations ( X́g

6h
 ) are similar to 

those of reanalysis data. These statistics were estimated on 

(1)X́
g

6h
=
(
X
g

6h
− X̄

g

d

)
+ X̄o

d

(2)X́
g

6h
= so

d

(
X
g

6h
− X̄

g

d

)
∕s

g

d
+ X̄o

d

https://cordex.org/domains/region-9-australasia/
https://cordex.org/domains/region-9-australasia/
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6-hourly GCM data in a daily group over 31 years, and the 
centered 31 days moving window was applied.

2.2.3  Nested bias correction (NBC)

A more comprehensive alternative extended to include 
lag1 auto-correlation attributes on multiple nested time-
scales was used. This approach has shown an improve-
ment in the rainfall mean and variability at multiple time 
scales (monthly, seasonal, and annual time scale) in the 
previous studies (Johnson and Sharma 2012; Kim et al. 
2020). Based on a standard autoregressive lag1 model, 
lag1 auto-correlation of GCM was replaced by the 
observed lag1 auto-correlation as follows:

where zgt  is standardized GCM variable for time step t, ro
t
 

and rgt  are lag1 auto-correlation of the reanalysis and GCM 
variables, respectively. The corrections were applied at 
daily, monthly, seasonal, and annual time scales, which are 
extended to the daily time scale with respect to the previous 
studies. These different sets of bias-corrected time series are 
then combined with the nesting approach. This means that 
the bias-corrected daily GCM data is aggregated to a longer 
timescale (month, season, and year) and follows the same 
procedures for other timescales as well. The daily GCM data 
thus incorporates the effect of bias correction at longer time 
scales, which include nested bias-corrected monthly, sea-
sonal, and annual time scales. The general process of the 
nesting approach is described in (Johnson and Sharma 2012; 
Mehrotra and Sharma 2012). From Srikanthan and Pegram 
(2009), the corrected variables at different time scales can be 
applied to the raw 6-hourly GCM data as a form of weight-
ing factor:

where X́g

6h
 is the 6-hourly corrected value and Xg

6h
 is the 

original 6-hourly value, Xd,m,s,y is the daily GCM data for day 
d, month m, season s, and year y. Xm,s,y is the aggregated 
monthly value, Xs,y is the aggregated seasonal value, and Xy 
is the aggregated yearly value. Finally, X́g

h
 exhibits the same 

persistence attributes as Xo
()
 across the nesting time scale. 

These bias corrections were carried out at each grid cell over 
the 31 years GCM dataset. The full details of the nested bias 
correction can be found in Johnson and Sharma (2012).

(3)ź
g

t = ro
t
ź
g

t−1
+

�
1 −

�
rot
�2
�

z
g
t −r

g
t z

g

t−1√
1−(rgt )

2

�

(4)X́
g

6h
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(
X́
g

d,m,s,y

X
g

d,m,s,y

)
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(

X́
g
m,s,y

X
g
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)
×
(
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g
s,y

X
g
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)
×
(

X́
g
y

X
g
y

)
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g
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2.2.4  Multivariate bias correction (MBC)

The univariate bias correction methods as described above 
are designed to correct variables independently. Although 
univariate distribution features can be adjusted toward ref-
erence data, they can generate inappropriate cross-depend-
ence structures among multiple variables simulated by 
GCMs, leading to substantial anomalies in the simulation.

To correct the inter-variable relationships, we investi-
gate the multivariate recursive nesting bias correction 
method which is extended to also include lag0 and lag1 
auto- and cross-correlations among the variables. This 
approach was presented by Mehrotra and Sharma (2015) 
and has shown that it can correct for variability and per-
sistence biases in the atmospheric variables on a range of 
timescales. A large number of parameters, however, may 
cause large estimation errors and possibly hide (overesti-
mate) the true quality of the model (Ehret et al. 2012; 
Mehrotra and Sharma 2021). In this study thus some sim-
plifications in the model structure were applied and lag1 
cross-correlations are assumed to be unimportant and are 
ignored. We investigate the distributional attributes—
mean and variance and the dependence attributes—the 
lag1 auto- and lag0 cross-correlation coefficients were 
calculated at four selected time scales, daily, monthly, sea-
sonal, and annual. Three iterations (for the recursive 
scheme) were adopted to reduce biases in the nesting pro-
cedure across all timescales (Mehrotra and Sharma 2012). 
We denote the vectors Zg

()
 and Zo

()
 are the standardized 

GCM and reanalysis variables with zero mean and unit 
variance, respectively.

A multivariate transformation for the day t  is based on 
a standard Multivariate AutoRegressive order 1 (MAR1) 
model and can be expressed as follows (Salas 1980):

and

where � , � and � , � are coefficient matrices of the lag1 and 
lag0 cross-correlations of the reanalysis and GCM data, 
respectively. The random vector εt is assumed to be mutually 
independent, indicating that �

[
�
i
t
�
j

t

]
= 0 for i ≠ j or 

�
[
�t�

T
t

]
= � where � is the identity matrix, and T denotes the 

transpose of the matrix.
Since the elements of εt are mutually independent having 

a zero mean and unit variance, the coefficient matrices � and 
� or � and � can be expressed as follows (Matalas 1967):

(5a)Zo
t
= CZo

t−1
+ Dεt

(5b)Z
g

t = EZ
g

t−1
+ Fεt
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and

where �0 = �
[
ZtZ

T
t

]
 and �1 = �

[
Zt+1Z

T
t

]
 , which are the lag0 

and lag1 cross-correlation matrices. The elements of these 
matrices corresponding to variables i and j are obtained 
from:

where N  is the total number of samples. The coefficient 
matrices � and � are obtained by singular value decompo-
sition, which is a method of decomposing a matrix into three 
component matrices that are easy to manipulate and analyze.

These procedures are applied by rearranging the Eq. (5b) 
for εt:

where εt represents a standardized vector that has removed 
the lag0 and lag1 auto- and cross-correlations obtained from 
the Zg

t  series. This vector is then used to modify Zg

t  to Źg

t  that 
has the lag0 and lag1 attributes of reanalysis data.

Finally, by adding back the means and standard devia-
tions of reanalysis data, the bias-corrected output provides 
appropriate attributes in means, standard deviations, lag1 
auto-, and lag0 and lag1 cross-correlations.

Similarly, MAR1 with periodic parameters can be cal-
culated as:

where Zg
y,� represents the vectors of the standardized GCM 

periodic series in time interval � , and year y , indicating that 
the series all contain the seasonal cycle. The matrix param-
eters of this model can be obtained following as:

and

� ∨ � = �1�
−1
0

(6)��T ∨ ��
T = �0 − �1�

−1
0
�
T
1

(7a)b
i,j

0
=

1

N

N∑
t=1

zi
t
z
j

t

(7b)b
i,j

1
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1

N−1

N∑
t=2
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t
z
j

t−1

(8)εt = �−1
[
Z
g

t − �Z
g

t−1

]

(9)Ź
g
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+ ��−1Z
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t − ��−1�Z
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(10)Ź
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g

y,𝜏−1
+ �

𝜏
�−1
𝜏
Z
g
y,𝜏 − �

𝜏
�−1
𝜏
�
𝜏
Z
g
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�
�
∨ �

�
= �1,��

−1
0,�−1

(11)�
�
�T

�
∨ �

�
�T
�
= �0,� − �1,��

−1
0,�−1

�
T
1,�

where �0,� and �1,� are the periodic lag0 and lag1 matrix 
correlation matrices. The elements of these matrices are 
obtained as similar to those with constant parameters.

As abovementioned, some simplifications in the MAR1 
model structure are applied in this study to avoid a large 
number of parameters, which may hide the true quality of 
the model simulations. The lag1 cross-correlations are thus 
assumed to be unimportant, and the parameters � and � 
are considered as diagonal matrices in which the elements 
outside the main diagonal are all zero. This simplification 
is also applied to the periodic model. The elements of these 
matrices corresponding to variables i and j can be obtained 
as:

These different sets of bias-corrected time series are then 
combined with the nesting approach as abovementioned in 
the Eq. (4).

2.3  Performance assessment

Three statistics were used to quantify the impact of bias cor-
rection: mean absolute error (MAE), Pearson correlation 
coefficient (R), and bias. The MAE is defined as

where N  is the total number of grid cells, Xmod
n

 and Xobs
n

 
represent the climatological WRF outputs and observation 
data at each grid cell, respectively.

The differences of the means between the model simula-
tion and observation can be defined by mean bias as:

The biases are calculated for each vertical level at each 
grid cell.

To assess the ability of the model simulations in terms of 
multivariate aspect, Fisher z-transformation was used here to 
convert the correlation coefficient to a transformed variable 
(Fisher 1915, 1921). The test statistic ( z ) can be represented 
as a standard normal deviate

where zM
r

 and zO
r
 are Fisher's z transformation of the model 

and observed correlation coefficient ( zr =
1

2
ln

1+r

1−r
 ), and sM 

and sO are sample sizes of the model outputs and observa-
tion, respectively. This study assumed a 5% significance is a 
criterion for rejecting the null hypothesis, which means that 

(12)
ci,j ∨ ei,j = b

i,j

1
, if i = j

= 0, otherwise

}
.

(13)MAE =
∑N

n=1 �Xmod
n

−Xobs
n �

N

(14)Bias =
∑N

n=1 (X
mod
n

−Xobs
n )

N
.

(15)z =
zM
r
−zO

r√
1

sM−3
+

1

sO−3
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there is a significant difference in the correlation between 
the two simulations if the computed z-value is not in the z
-value distribution table. Full details of this formulation can 
be found in Kim et al. (2021).

3  Results

This section will first evaluate the statistics of the bias-
corrected atmospheric variables in the boundary condi-
tions with respect to the ERA5 datasets. RCM simulations 
are then compared to the ERA5-driven RCM outputs over 
the Australasia CORDEX domain to reveal the effective-
ness of bias correction in terms of the climatological mean, 
standard deviation, lag1 auto-correlation, and multivariate 
dependence measures. The ERA5-driven RCM simulation is 
treated as a simulation with "perfect" boundary conditions. 
To evaluate the model performance, the outermost five grid 
cells from the boundary were trimmed off as the relaxation 
zone to avoid a bias due to boundary effects.

3.1  Evaluation of bias‑corrected GCM datasets

This section evaluates the impact of bias correction on 
the GCM outputs that have been subsetted along the lat-
eral boundary conditions. Four different bias correction 
approaches introduced in Sect. 2 were applied to the atmos-
pheric variables (u, v, T, q) and sea surface temperature 
(SST) to the raw GCM datasets. From the results presented 
here, we can evaluate whether the bias correction approaches 
reduce a bias before downscaling. Figure 1 shows a scat-
terplot for specific humidity q (g/kg) comparing ERA5 to 
the four bias correction techniques: GCM(M), GCM(MSD), 
GCM(NBC), and GCM(MBC). These indicate the raw GCM 
datasets, GCM with mean bias-corrected boundary condi-
tions, GCM with mean and standard deviation bias-corrected 
boundary conditions, GCM with nested bias correction, and 
GCM with multivariate bias-corrected boundary conditions, 
respectively. The results show the effect of each bias correc-
tion approach at daily, monthly, seasonal, and annual time 
scales for the three statistics over 38 vertical levels along the 
western boundary. Details regarding the other variables, T 

Fig. 1  Scatterplot for specific humidity q (g/kg) along the west-
ern boundary over all vertical levels for 31  years comparing ERA5 
to GCM, GCM(M), GCM(MSD), GCM(NBC), and GCM(MBC), 
indicating the raw GCM datasets, GCM with mean bias-corrected 
boundary conditions, GCM with mean and standard deviation bias-
corrected boundary conditions, GCM with nested bias-corrected 

boundary conditions, and GCM with multivariate bias-corrected 
boundary conditions respectively, for the three statistics: mean, 
standard deviation, and lag1 auto-correlation, at multiple time 
scales: daily, monthly, seasonal, and annual. For example, there are 
(days) × (years) × (levels) × (GCM grid cells along the RCM western 
boundary) points for daily plots, which are 365 × 31 × 38 × 69
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and w, along the eastern, northern, and southern boundaries 
can be found in the online supplemental material: Fig. A1 to 
A10. Each statistic presented in the figure shows a separate 
point for each day, month, season, and year; hence there is a 
single point for each grid cell at each time scale.

It is clear that the bias corrections produce an improve-
ment as expected by the construction of each formulation 
that is specified to adjust in the mean, standard deviation, 
and lag1 auto-correlation fields. We see that there is a large 
difference between before and after bias correction for lag1 
auto-correlation, particularly for the annual time scale, 
which can affect the model performance in simulating per-
sistence characteristics and the temporal variability of the 
rainfall. Despite the GCM being different in all statistics, the 
biases for the simple statistics, mean and standard deviation, 
are noticeably reduced compared to the old versions of simu-
lations (Rocheta et al. 2017; Kim et al. 2020). This indicates 
that the GCM performance has been improved in CMIP6 as 
it represents state-of-the-art climate modeling.

Figure 2 shows a scatter plot comparing the bias-cor-
rected and uncorrected atmospheric variables to ERA5 in 
terms of multivariate relationships among the three atmos-
pheric variables over all vertical levels. Specific humidity 
above the 24th level has been ignored during multivariate 
bias correction as it is always close to zero which can lead to 
an unstable output. Unlike the model performance shown in 
Fig. 1, there are large biases even after the bias corrections, 
GCM(M), GCM(MSD), and GCM(NBC), particularly in the 
annual time scale. This indicates that the univariate bias cor-
rections are not capable of correcting physical relationships, 
which may cause unrealistic behavior of the atmospheric 
variables. On the other hand, GCM(MBC) performs well, 
showing most points are spread around the 45-degree line, 
meaning that bias in the relationships among the variables 
is well corrected. Details along the eastern, northern, and 
southern boundaries can be found in the online supplemental 
material: Fig. B1 to B3.

Figure 3 shows a bias map of seasonal SST over 31 years 
comparing the bias-corrected and uncorrected SST to ERA5 
covering the research domain for three statistics. The results 
show that the raw GCM contains a large positive bias for 
mean and standard deviation over the domain and a negative 
bias in the tropics. The results show that each bias correc-
tion performs well with regard to the statistics as they are 
constructed.

3.2  Evaluation of RCM simulations 
over the Australasia CORDEX domain

This section presents the RCM outputs to assess whether 
the influence of the bias-corrected boundary conditions is 
preserved even after the RCM simulations in terms of four 

aspects: mean, standard deviation, extremes, and the multi-
variate relationship.

3.2.1  Climatological mean

We first evaluate the RCM simulations with regard to the cli-
matological mean. Figure 4 shows a bias map of RCM simu-
lations compared with ERA5-driven RCM outputs for three 
surface variables for monthly mean statistics over 30 years. 
The results show that RCM(GCM) produces a large posi-
tive bias for the specific humidity and temperature over the 
domain. It can also be seen that the RCM output with the 
raw GCM boundary conditions are significantly different for 
precipitation showing a significant negative (dry) bias over 
the Western Pacific Warm Pool and positive (wet) bias along 
the South Pacific Convergence Zone.

In contrast, the RCM with bias-corrected boundary condi-
tions shows a noticeable improvement across the variables. 
While negative biases are shown in western and southern 
Australia for the specific humidity, a bias is substantially 
reduced with the 0.1 mean absolute error over the domain. 
We see that the specific humidity and temperature are quite 
insensitive to the bias correction approaches with respect 
to a monthly climatological mean. It is clear that correcting 
variability of the atmospheric variables along the bounda-
ries can better represent the monthly mean precipitation in 
the tropics compared to the simple mean bias correction 
technique.

3.2.2  Inter‑annual variability

We then evaluate the model performance in terms of the 
standard deviation aspect. Figure 5 shows a bias map of the 
coefficient of variation (CV) of annual precipitation. The 
higher the CV, the more variable the inter-annual precipi-
tation of a location is. The mean absolute error over the 
domain is represented in the bottom right of each map. We 
see that RCM(GCM) produces a large positive bias com-
pared to the ERA5-driven RCM outputs in the tropics, 
Indian Ocean, and South Australia. This rainfall variabil-
ity can be influenced by several global and local climate 
drivers, such as the Indian Ocean Dipole, El Niño Southern 
Oscillation, and northwest cloudbands (Risbey et al. 2009). 
Whereas the RCM outputs with bias-corrected boundary 
conditions show improvement, biases still remain in the 
tropics and on Australia’s northwest coast. The results show 
that RCM(M) can improve rainfall variability even though 
the boundary variables were corrected without regard to the 
standard deviation. From the results we see that RCM(MBC) 
performs well with the lowest mean absolute error, 4.5, over 
the domain.

Figure  6 compares the models and RCM(ERA5) for 
standard deviation of the three surface variables at the 
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Fig. 2  Scatterplot showing a multivariate relationship between the 
specific humidity q (g/kg), temperature T (K), and wind speed w 
(m/s) along the western boundary over all vertical except for q (from 
1st to 24th) levels for 31 years comparing ERA5 to GCM, GCM(M), 

GCM(MSD), GCM(NBC), and GCM(MBC) at multiple time scales: 
daily, monthly, seasonal, and annual. The horizontal and vertical axis 
indicate the correlation coefficients between the variables of ERA5 
and the models, respectively
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multiple time scales over the domain. Here we see that 
RCM(GCM) contains large systematic biases showing the 
highest bias levels across most time scales. The RCM(M) 
presented here shows some degradations in MAM for pre-
cipitation, suggesting that correction on mean statistics only 
may increase the model uncertainty in capturing output var-
iability. The figure shows that RCM(MSD), RCM(NBC), 
and RCM(MBC) improve most time scales for the mean 
absolute error compared to RCM(GCM). While the com-
plex approaches often show a marginal improvement, and 
can be worse than the simple approaches for some variables 
in some seasons (DJF for specific humidity and SON for 

precipitation), we see that they generally perform better over 
the domain. This means a corresponding improvement in the 
statistics of RCM outputs over the domain, indicating that 
the rainfall simulation can be changed as a result of changes 
in the atmospheric variables in the boundary conditions.

3.2.3  Extreme events

In order to evaluate the effect of bias-corrected boundary 
conditions on extreme events, we used the 99th percentile 
determined for each grid cell and each variable at a daily 
time scale individually. Figure 7 shows a bar plot similar 

Fig. 3  Bias maps of seasonal SST (K) over 31 years comparing the 
bias-corrected and uncorrected SST to ERA5 covering the research 
domain for three statistics: mean, standard deviation, and lag1 auto-

correlation. The number in the lower right of each map indicates the 
mean absolute error over the domain. A gray area adjacent to land 
indicates missing value caused by the GCM resolution
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to Fig. 6, but for the 99th percentile of the surface varia-
bles to present the model performance for extremes. It can 
be seen from the results that RCM(MSD), RCM(NBC), 

and RCM(MBC) show a substantial improvement in the 
mean absolute error. While the complex approaches show 
a marginal improvement compared with RCM(MSD) 

Fig. 4  Bias map showing monthly mean RCM outputs over 30 years 
covering the Australasian CORDEX domain for the three surface var-
iables: specific humidity (g/kg), temperature (Celsius), and precipita-
tion (mm). RCM(GCM), RCM(M), RCM(MSD), RCM(NBC), and 

RCM(MBC). The number in the lower right of each map represents 
the mean absolute error. Stippling indicates the bias at the 5% signifi-
cance level
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Fig. 5  Bias map showing coefficient of variation (CV) of annual precipitation (mm) over 30 years covering the Australasian CORDEX domain. 
The number in the lower right of each map represents the mean absolute error

Fig. 6  Bar graph of mean absolute error (MAE) for the standard devi-
ation of the three surface variables: specific humidity (g/kg), tempera-
ture (Celsius), and precipitation (mm) at the monthly, seasonal, and 
annual time scales over the Australian CORDEX domain comparing 

ERA5-driven RCM outputs to RCM(GCM), RCM(M), RCM(MSD), 
RCM(NBC), RCM(MBC), represented as GCM, M, MSD, NBC, and 
MBC, respectively
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similar to the Fig. 6, we broadly see that the better rep-
resentation of relationships between the atmospheric 
variables in the boundaries translates effectively to the 
fine-scale extreme events. RCM(NBC) shows worse per-
formance for precipitation in DJF than the RCM(MSD), 
even though it includes the lag1 auto-correlation attribute, 
indicating that using more complex techniques without 
regard to the physical relationship between the variables 
does not guarantee the better performance for rainfall 
extremes.

3.2.4  Multivariate relationship

This section investigates the effect of bias correction with 
regard to multivariate dependence in the RCM outputs 
to assess whether or not the relationship among the vari-
ables is preserved even after passing through the boundary 
relaxation zone.

The impact of lateral boundary conditions is linearly 
reduced through the relaxation zone (from the outermost 
specified zone to the inner zone). One can expect that the 
mismatch in the multivariate relationship will be increased 
when compared to that of ERA5. Here pairwise correlation 
of the atmospheric variables was computed for each RCM 
simulation and then compared against RCM(ERA5) with a 
5% significance level. Grid cells in the specified zone and 
the sixth grid cells, which are just inside the relaxation zone, 
were assessed along the boundaries as suggested in Kim 
et al. (2021).

Table 1 shows the results of the multivariate cross-cor-
relation between the RCM simulations and RCM(ERA5) at 
the 5% significance level as a criterion for rejecting the null 
hypothesis that the correlation is equal. For example, one 
can test the hypothesis that the correlation between tem-
perature ‘a’ and specific humidity ‘b’ of an RCM simulation 
is the same as that for temperature ‘c’ and specific humid-
ity ‘d’ of observation (i.e., H0 ∶ �ab = �cd ). The percentage 
indicates a number of grid cells showing a significant differ-
ence in multivariate relationship compared to RCM(ERA5). 
As mentioned above, specific humidity close to zero was 
ignored during calculation. The results show that 79.9% of 
RCM(GCM) grid cells are significantly different compared 
to RCM(ERA5) for the variable wind speed (w) and tem-
perature (T) at a daily time scale along the specified zone at 
western boundary. Although the RCM(M), RCM(MSD), and 
RCM(NBC) marginally improve the multivariate aspects of 
the variable combination, large differences for all three rela-
tionships are still shown ranging from 62.7 to 78.3% along 
the western boundary. This indicates that those bias correc-
tions lack the ability to capture the inter-variable relationship 
presented in RCM(ERA5). On the other hand, RCM(MBC) 
reduces the bias by showing 21.6–72.0%, and substantial 
improvements are shown in correlations with wind speed. 
While the improvement falls into 50.0–63.5% after passing 
through the relaxation zone as expected, RCM(MBC) still 
shows better correlations between the variables. Although 
there are some exceptions where the effect of multivariate 
bias correction is reduced in the interior model domain, w 
and q at 6th grid line in the north and T and q at 6th grid 

Fig. 7  Same as Fig. 6, but for the 99th percentile of the three surface variables
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line in the south, RCM(MBC) produces a lower bias than 
the univariate bias-corrected models in all other boundary 
conditions, indicating that the influence of multivariate bias 
correction can be preserved even inside the domain.

4  Discussion

The work presented in this study demonstrates the influence 
of bias correction techniques on the input boundary condi-
tions of an RCM. The focus here is whether multivariate 
bias correction can reduce bias with respect to the inter-
variable relationships and, if so, whether this improvement 
is preserved through the relaxation zone where the model is 
nudged or relaxed towards the driving model. This section 
is divided into three parts. Section 4.1 discusses the perfor-
mance of the different versions of the raw GCM simulations. 
Section 4.2 evaluates the effect of the relaxation zone, Sect.  
4.3 discusses the implications of the bias correction tech-
niques used in this study, and Sect.  4.4 evaluates the advan-
tages of the multivariate bias correction approach. Finally, 
Sect. 4.5 discusses the limitations and future work.

4.1  Comparison with previous research

This study used state-of-the-art GCM simulations and 
the WRF model to assess the performance of RCM sim-
ulations using various bias-correction alternatives. The 

ACCESS-ESM1.5 model used here represents Australia’s 
contribution in CMIP6 and has shown significant improve-
ments over the historical period against observations over 
the previous version, ACCESS-ESM1 (Ziehn et al. 2020). 
One can expect that the systematic bias will decrease as the 
model is updated; the newer the model, the lower the bias. 
The results of this study also agree with this expectation by 
showing that the RCM simulation without bias correction 
over the domain has improved when compared to previous 
studies that have used older generation GCMs (Rocheta et al. 
2017; Kim et al. 2020, 2021).

However, it is also clear that the newer model still con-
tains biases even though it has been updated. Although the 
GCM used here shows a relatively good performance in 
the climatological mean, there are significant differences 
in other statistics: standard deviation, lag1 auto-, and lag0 
cross-correlation, leading to considerable anomalies in simu-
lation of extremes.

It should be noted that correcting RCM boundary condi-
tions before downscaling is important to reduce the biases in 
the outputs, and more complex techniques, which extend to 
lag1 auto- and lag0 cross-correlation, appear to be improv-
ing details that are important in capturing persistence and 
maintaining physical consistency (Fig. C1 to C4). This is 
expected to provide a complete picture of the efficacy of the 
ACCESS models in simulating the historical climate, as well 
as a better estimation of future climate change as noted in 
(Sharma and Mehrotra 2016).

Table 1  Percentage of the 
grid cells that are different in 
the correlation between the 
RCMs and RCM(ERA5) at 
the 5% significance level at 
the outermost (specified) zone 
(1st) and inner (adjacent to the 
relaxation zone) zone (6th) from 
the boundaries

Variable pair Model Significantly different % of cells

West East North South

1st 6th 1st 6th 1st 6th 1st 6th

w & T RCM(GCM) 79.9 79.9 78.8 72.6 88.0 84.4 84.1 85.7
RCM(M) 69.7 66.7 70.5 66.7 79.2 76.2 78.3 86.3
RCM(MSD) 73.3 68.2 67.5 66.3 77.5 76.2 77.9 86.8
RCM(NBC) 71.9 66.1 66.9 71.2 74.8 75.3 79.5 88.3
RCM(MBC) 33.8 63.5 38.2 69.4 37.7 64.5 10.1 69.8

w & q RCM(GCM) 75.5 74.6 65.6 66.8 79.0 79.4 70.0 66.3
RCM(M) 78.3 67.0 64.5 65.0 81.8 66.9 67.6 76.5
RCM(MSD) 67.0 63.8 58.8 68.9 69.7 69.7 67.3 73.2
RCM(NBC) 62.7 61.5 57.1 67.5 68.9 65.9 68.6 68.6
RCM(MBC) 21.6 50.0 21.1 63.4 20.4 66.3 9.2 49.8

T & q RCM(GCM) 76.9 70.6 83.5 83.5 88.9 86.6 81.0 73.4
RCM(M) 77.0 66.6 80.9 72.8 74.2 80.9 81.5 60.6
RCM(MSD) 77.7 69.2 78.2 67.1 77.4 73.3 85.5 56.8
RCM(NBC) 75.0 66.8 77.6 69.4 79.9 70.3 79.7 55.3
RCM(MBC) 72.0 59.7 71.6 60.1 68.0 70.1 72.9 59.7
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4.2  Can the impact of the bias correction 
along the outermost zone be preserved 
inside the RCM domain?

The results in Table 1 showed that improvements are cer-
tainly evident, and MBC reduces the bias related to physi-
cal inconsistency by up to 53.9% in the western boundary 
compared to those obtained from RCM(GCM). We see 
that MBC is capable of preserving the inter-variable rela-
tionships even after passing through the relaxation zone, 
showing up to 24.5% improvement. This indicates that the 
bias-corrected dependent structure in the boundaries of 
the RCM can be preserved inside the domain despite the 
influence of the internal dynamics of WRF that propagate 
into the atmospheric fields in complex ways. This result is 
in line with a previous study (Rocheta et al. 2020) that has 
shown that a large portion of bias-corrected information 
infiltrating into the model interior is lost in the process of 
generating the lateral boundary conditions and through 
relaxation zones where GCM data is passed into the 
RCM. We see that although MBC still shows the greatest 
improvement at the specified zone and adjacent grid cells 
to the relaxation zone, the effect of bias correction, which 
was almost perfectly corrected toward ERA5, immediately 
deteriorates after generation of the boundary conditions. 
This indicates that the multiple interpolations for the pur-
pose of bias correction and the model configuration may 
introduce additional bias in the creation of the lateral and 
lower boundary conditions. These are generally unavoid-
able limitations of a regional numerical model that has 
boundaries where the model could suffer from changes 
in resolution with differing parameterizations and physics 
schemes derived from the GCM, and further assessment 
is needed to address such issues (Warner et al. 1997; Wu 
et al. 2005).

4.3  Can the sophisticated bias correction 
of the GCM outputs effectively improve the RCM 
rainfall simulation?

Improvements in the model performance relative to sim-
ple bias correction techniques, which do not account for the 
dependence structure, are shown in the RCM(NBC) and 
RCM(MBC) outputs over the Australian CORDEX domain, 
particularly for precipitation. We see that the RCM performs 
better in capturing the rainfall coefficient of variation and 
standard deviation (Figs. 5 and 6) with the increasing com-
plexity of the bias correction techniques. In contrast, RCM 
with uncorrected boundary conditions introduces a large bias 
across the variables used in this study. Although RCM with 
complex bias-corrected boundary conditions, RCM(NBC) 
and RCM(MBC), show degradation in comparison with 

RCM(MSD) for precipitation in SON, they broadly perform 
better at different time scales. We see that the RCM simu-
lations tend to produce more bias in the ocean than inland 
areas. RCMs with simple bias correction, RCM(M) and 
RCM(MSD), present larger bias in rainfall climatological 
mean and variability in the ocean, indicating that they may 
be weak to capture the seasonal SST variation affected by a 
large-scale circulation. (Table A1 in the online supplemental 
material). Previous studies have shown that complex correc-
tion techniques affect the model’s internal process and can 
correct details for rainfall extremes as well as its magnitude 
(Kim et al. 2020). This work represents that the effective-
ness of increasingly sophisticated techniques, which aim to 
correct temporal persistence and physical consistency, adds 
improvement to rainfall characteristics, particularly in the 
simulation of rainfall variability and extremes.

4.4  What are the advantages of multivariate bias 
correction over the univariate bias correction?

This work focuses on the inter-variable relationships in RCM 
input variables and the expected improvement in simulations 
by correcting multivariate dependence at the boundaries. A 
combination of interacting physical processes across mul-
tiple climate variables, such as relative humidity, tempera-
ture, and wind speed, often leads to floods, wildfires, heat-
waves, droughts, and even compound events (Zscheischler 
et al. 2018; Kim et al. 2023). Poor representation of these 
dependencies makes them challenging to foresee, leading to 
a significant impact on the risk assessment. These implica-
tions could be understood through the results presented in 
this study. Although simple techniques show comparable 
performance to the complex ones in the mean-field, they 
produce large biases in the tropics and the Indian Ocean. 
Although RCM(NBC) shows good performance in the attrib-
utes used here (Fig. 1), it should be noted that more complex 
techniques that do not take into account inter-variable cor-
relations do not guarantee better performance for extreme 
events. This identifies the importance of multivariate bias 
correction, especially when persistence biases are accounted 
for. It is observed that RCM(MBC) better preserves the 
physical relationships between the atmospheric variables 
(Table 1) in the specified zone and after passing through 
the relaxation zone, generally showing a better representa-
tion of rainfall variability and extreme events (as shown in 
Figs. 5, 6, and 7).

5  Limitations and future work

Several limitations may influence the results presented here. 
While this work has used newer models to assess model per-
formance with several bias correction approaches, we only 
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focused on one RCM (WRF) driven by one GCM (ACCESS-
ESM1.5). Hence, coupling different GCM and RCM may 
change the results. Based on previous work that investigated 
the models' performance for CORDEX dynamical downscal-
ing, even the updated models still contain biases (Di Virgilio 
et al. 2022). This indicates that the impact of the bias cor-
rection on the RCM boundaries is not significantly different 
if alternate GCMs are used.

The RCM used in this study was WRF4.2.1 which has 
complex internal dynamics, alternative options and an elab-
orate setup. Although the parameterizations for the WRF 
simulations were chosen following past evaluations, different 
setups would affect the model outputs.

In this study, the bias corrections were applied towards 
ERA5 fields, meaning that the ERA5-driven WRF outputs 
were used as ideal cases to assess the model performance 
against. Although reanalysis produces the most accurate out-
puts overall compared to the in-situ data (Kim et al. 2020), 
the model performance can be limited by the bias that comes 
from the reanalysis data, in particular for precipitation (Moa-
lafhi et al. 2016, 2017).

It should also be noted that specific humidity at higher 
levels where it is always close to zero was ignored during the 
multivariate bias correction as it makes the models unsta-
ble and creates physically unrealistic values. The param-
eters in the correlation structure, for example, including the 
lag1 auto- and lag0 cross-correlation in a contemporaneous 
model, are applied to a normalized variable. These changes, 
even if minor, influence the original value that was very 
close to zero to become unrealistic. The sea surface tem-
perature was also corrected by nested bias correction only 
for RCM(MBC) as it shows high seasonal and annual vari-
ability but relatively much lower daily variability than the 
atmospheric variables. This large difference in variability 
between the daily and the longer time scales can cause unre-
alistic monthly variation during the multivariate correction.

Furthermore, the structure of the bias correction model 
makes implicit assumptions where biases are significant. 
For instance, correcting bias at daily and longer time scales 
implicitly assumes that diurnal patterns are simulated accu-
rately. While these assumptions may not impact the over-
all results, there can be situations where their implications 
become important.

As mentioned above, for a better understanding of the 
underlying physical consistency and interaction between the 
variables under climate change, this study can be extended 
to future simulations. We note that the performance of MBC 
applied to future climate projections will be affected by any 
non-stationarity in the inter-variable correlation (Sharma 
and Mehrotra 2016; Guo et al. 2019, 2020; Nguyen et al. 
2020). Future work should investigate the impact of this 
effect. Additionally, it would be of interest to extend the bias 

correction approaches presented here to consider the spatial 
dependence across grid cells to reduce the uncertainty in 
the bias estimates (Kim et al. 2021; Switanek et al. 2022).

6  Conclusions

Despite the efforts to understand single drivers of 
extremes, most major weather and climate-related catas-
trophes are caused by a joint occurrence of different types 
of extreme events (Zscheischler et al. 2018). Correcting 
single variables independently, as many previous studies 
have done under the assumption that there is no (or negli-
gible) bias in the dependence structure, limits the model 
performance in the simulation of extreme events. Although 
several studies have used sophisticated approaches that 
also corrected lag1 auto- and lag0 cross-correlation across 
variables to deal with inter-variable relationships, only the 
surface variables of the model outputs, such as precipita-
tion and temperature, have been addressed.

This study investigated whether correcting the RCM 
input boundary conditions could reduce bias inside the 
domain. Several bias correction techniques, from sim-
ple scaling, which has been used in previous studies, to 
sophisticated techniques, which can correct persistence 
and physical relationships between the variables compared 
to the reanalysis data, have been applied. The corrections 
were applied to all the vertical levels of GCM based on 
four statistics: mean, standard deviation, lag1 auto-corre-
lation, and lag0 cross-correlation.

Substantial improvements in model performance are 
shown after applying bias correction to the boundaries of 
the RCM in the statistics used here. This work shows that 
the effectiveness of increasingly sophisticated techniques 
substantially improves rainfall characteristics. The RCM 
with multivariate bias-corrected input boundary conditions 
represents extreme events better than univariate bias cor-
rection techniques, which do not account for the physical 
relationship between the variables, and considerably better 
than the approach of using uncorrected GCM simulations 
to serve as the lateral or lower boundary inputs into an 
RCM.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00382- 023- 06718-6.
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