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Abstract
This study develops a skill evaluation metric for an individual forecast by applying a Taylor expansion to the commonly-used 
temporal correlation skill. In contrast to other individual forecast evaluation metrics, which depend on the amplitude of fore-
casted and observed anomalies, the so-called “association strength (AS) skill” is less affected by the anomaly amplitude and 
mainly depends on the degree of similarity between the forecasted and the observed values. Based on this newly developed 
index, the forecast skill is evaluated for an individual case, then, a group is categorized with respect to the AS skill. The 
cases with the highest AS skill exhibit the highest correlation skill than any group randomly selected, indicating that the AS 
skill is a powerful metric to evaluate the non-dimensionalized forecast skill. This strategy is adopted for the subseasonal East 
Asian summer precipitation forecasts produced by the UK Met Office’s ensemble Global Seasonal forecast system version 
5 (GloSea5). In the group with the highest AS skill of the East Asian summer precipitation index (i.e., highest AS cases), 
the geopotential height anomalies showed quasi-stationary Rossby waves from the North Atlantic to East Asia. The spatial 
distribution of the dominant subseasonal anomalies for cases with the highest AS is distinct from the cases or groups with 
the lowest AS skill. Furthermore, the dominant pattern with the highest AS is not solely explained by any well-known typi-
cal subseasonal climate patterns, such as the Madden–Julian Oscillation, circumglobal teleconnection pattern, Pacific-Japan 
pattern, or the Summer North Atlantic Oscillation. This implies that the excitation of well-known climate patterns only partly 
contributes to increasing the mid-latitude climate predictability in the GloSea5.
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1 Introduction

The forecast skill of the dynamic forecast system is pri-
marily determined by the initialization and realism of the 
model formulations (Koster et al. 2004; Vitart 2014). Fur-
ther, forecast skill of the individual forecast event depends 
on the instability of the dynamical system (Lorenz 1969). 
Generally, the forecast skills are inversely proportional to 
the instability of the system, however, several well-known 
unstable climate modes are now well predicted with a recent 
advance of the dynamical models based on the improvement 
of the community’s scientific understanding. In this respect, 
various sources of subseasonal climate predictability have 

been found (Newman et al. 2003; Vitart 2014; Mariotti et al. 
2020).

The excitation of the well-known large-scale climate 
variability, such as the Madden–Julian Oscillation (MJO), 
Atlantic Oscillation (AO), circumglobal teleconnection 
(CGT) pattern, and Pacific-Japan (PJ) pattern contributed 
to improving the forecast skill over East Asia (Kosaka et al. 
2012; Kim et al. 2014; Lee et al. 2015, 2020; Liu et al. 2021; 
Feng et al. 2021). That means, through the atmospheric tel-
econnections, impacts of the aforementioned well-known 
climate variability are expected to reach East Asia, therefore, 
it contributes to increase the forecast skill. For example, as 
the phase and amplitude of the MJO can be predicted more 
than 20 days in advance (Kim et al. 2018), the East Asian 
summer rainfall variations resulting from the MJO are also 
expected to be predictable with a similar lead time, which 
is systematically longer than its overall forecast skill (Park 
et al. 2017; Liang and Lin 2018). In this respect, the forecast 
skill of the climate variability in any region would depend 
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on whether the predictable large-scale variability is excited. 
However, the contribution of various well-known dominant 
climate variability to the forecast skill of the mid-latitude 
climate variability has never been quantified. In other words, 
it is still unclear what the large-scale variability that is most 
closely linked to the mid-latitude forecast quality are.

To reveal the large-scale climate variability that guaran-
tee the high forecast skill, it must be preceded to evaluate 
the forecast quality of an individual case, then a case or a 
group with high forecast skill should be selected. The tem-
poral correlation between the forecasted and the observed 
anomalies is one of the most common metric to evaluate the 
forecast skill (Peng et al. 2002; Vitart 2014; Robertson et al. 
2015; Liang and Lin 2018; de Andrade et al. 2019); how-
ever, it has an explicit limitation for this purpose. Since the 
correlation skill is defined by the second-moment statistics 
(i.e., covariance and variance), the correlation skill can be 
calculated only for a group, not an individual case. In other 
words, correlation skill might not be proper for evaluating 
the forecast skill of an individual forecast case. One may 
select a case or categorize a group using absolute or squared 
error-based metrics. However, those metrics are dependent 
on the forecasted and observed anomaly amplitudes. There-
fore, it may be an inappropriate indicator of the degree of 
association between two variables.

To assess the forecast skill of an individual forecast case 
independent to the anomaly amplitude, we adopted a strat-
egy to apply a Taylor expansion to the temporal correla-
tion (Geng et al. 2018), and used it as a metric to evaluate 
the skill of the individual forecast. As this forecast metric 
mainly depends on the degree of association between the 
forecasted and observed anomalies while it is less dependent 
on its amplitude, it is referred to as the “association strength 
(AS) skill”. Using the AS skill, an approximated temporal 
anomaly correlation skill can be calculated for each forecast 
case.

The data and methods used in this study are described 
in Sect. 2. The derivation of the AS skill from the formula-
tion of the temporal correlation is given in detail in Sect. 3. 
In Sects. 4 and 5, the application results of the AS skill 
to define a group of high correlation skills over the East 
Asian summer rainfall in hindcast experiments are provided. 
Finally, we summarize the main findings and discuss further 
implications of this research in Sect. 6.

2  Data and methods

2.1  Observational and hindcast data

We analyzed the hindcast dataset of the UK Met Office’s 
ensemble Global Seasonal forecast system version 5 (Glo-
Sea5, Maclachlan et al. 2015). To evaluate the GloSea5 

prediction skill over East Asia on a subseasonal time scale, 
we used the daily hindcast output of the GloSea5 forecast 
system in May–June–July–August (MJJA) 1991–2010, with 
global coverage at 0.833° × 0.556°, which were analyzed 
after being regridded to 2.5° × 2.5° using box averaging 
with simple bilinear interpolation. The prediction began on 
days 1, 9, 17, and 25 of each month and was integrated for 
60 days; consequently, three ensemble members were pro-
duced, and they were averaged to make ensemble mean in 
this study. Therefore, the number of forecast cases was 320 
for the period of interest [i.e., 4 cases/month × 4 months 
(from May to August) × 20 years]. The analyzed variables 
were daily geopotential height field at 500 hPa; meridional 
and zonal winds at 850, 500, and 200 hPa; precipitation. To 
focus on the subseasonal variability, the interannual vari-
ability was removed by subtracting the average value for 
the previous 120 days from all data after subtracting the 
daily climatology (Wheeler and Hendon 2004). For example, 
for 10-days-lead forecasts, the average for the 10 days of 
predicted values and 110 days of the most recent observed 
values was subtracted to remove the interannual variability. 
Note that this method can be applied for real-time forecast-
ing because we only used observed values before the forecast 
start date (Wheeler and Hendon 2004). All data were pentad 
averaged before analysis.

For reference, the ERA-INTERIM daily reanalysis data 
from the European Centre for Medium Range Weather Fore-
casts (ECMWF) was used with global coverage on 2.5° × 
2.5° grids (Dee et al. 2011). The daily geopotential height 
field of 500 hPa, meridional and zonal winds of 850, 500, 
and 200 hPa, and precipitation were used. For all vari-
ables, the average value for the previous 120 days was sub-
tracted from all data after the daily climatology for MJJA 
1991–2010 was subtracted.

2.2  Climate indices

To evaluate the forecast skill of East Asia precipitation 
anomalies, we used the East Asian Summer Rainfall anom-
aly (EASRA) index, which is defined as the area-averaged 
precipitation at 30°–50° N, 115°–150° E (Lee et al. 2005). 
The circimglobal teleconnection (CGT) pattern is defined 
by the 200 hPa geopotential height anomalies averaged over 
35°–45° N, 55°–75° E (Ding and Wang 2007). The Pacific-
Japan (PJ) pattern is defined by an 850 hPa geopotential 
height from 155°E, 35°N minus 125° E, 22.5° N, multiplied 
by 2 (Nitta 1987). The boreal summer intraseasonal oscilla-
tion (BSISO) index was calculated by Kikuchi (2020). The 
Madden–Julian Oscillation (MJO) index was acquired from 
https:// psl. noaa. gov/ mjo/ mjoin dex/ omi. 1x. txt, and Summer 
North Atlantic Oscillation (SNAO) index from https:// ftp. 
cpc. ncep. noaa. gov/ cwlin ks/ norm. daily. nao. index. b5001 01. 

https://psl.noaa.gov/mjo/mjoindex/omi.1x.txt
https://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii
https://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii
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curre nt. ascii. Each mode was acquired by compositing the 
observed pentad anomalies with respect to climate indices.

2.3  Wave‑activity flux

To determine the wave energy flux associated with the 
EASRA index, the zonal and meridional components of the 
wave-activity flux (WAF) were calculated as follows (Takaya 
and Nakamura 2001).

where W represents the WAF and � ′ is the streamfunction 
anomaly regressed onto the EASRA index. U and V are the 
climatological zonal and meridional fields, respectively, in 
MJJA; � and� are the longitude and latitude, respectively; a 
is the earth radius; p is the pressure normalized by 1000 hPa; 
f0 is the Coriolis force; and N2 is the buoyancy frequency.

3  The association strength (AS) skill

3.1  Mathematical derivations

The AS skill is derived from the temporal anomaly correla-
tion. First, the correlation skill for all forecast cases r at lth 
lead day can be written as follows (Peng et al. 2002; Vitart 
et al. 2012; Robertson et al. 2015; Liang and Lin 2018; de 
Andrade et al. 2019).

Each terms in Eq. (2) are calculated as follows,

XY(l) denotes the covariance between the predicted value 
X(l) and observed value Y(l). X2(l) , Y2(l) denote the variance 
of the predicted and observed values at the lth lead day, respec-
tively. X(n, l), Y(n, l), and nt is the X, Y at lth lead day in the nth 
forecast case, and the number of forecast cases, respectively. 
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X(l),Y(l) is the forecast-case-averaged values of X and Y at lth 
lead day (i.e., X(l) = 1
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∑nt
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X(n, l),Y(l) =
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∑nt
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Y(n, l)).
To evaluate the prediction skill for a subset of forecast cases 

ns (i.e., 1 < ns < nt ), the following are defined.

X̃Y(l) , X̃2(l) , Ỹ2(l) denote the covariance between X and Y, 
the variance of the X, and Y at the lth lead day for a subset of 
forecast cases ( ns ). ΔXY(l) , ΔX2(l) , ΔY2(l) denote the devia-
tion of the X̃Y(l) , X̃2(l) , Ỹ2(l) from the corresponding values 
with all cases at the lth lead day, respectively. Then, correlation 
skill for a subset of forecast case can be defined as follows.

Here, r̃(l) refers to the correlation skill for a subset of fore-
cast cases at the lth lead day. The AS skill can be obtained by 
Taylor series expansion of Eq. (9), where only the first order 
is retained, as follows (Geng et al. 2018).

The first term on the right-hand side is the correlation skill 
over all prediction cases as defined in Eq. (2). If we normalize 
the predicted and observed values by the standard deviation 
as follows,

then x2(l) = y2(l) = 1 , and xy(l) = r(l) . Finally, to define 
the AS skill to evaluate the forecast skill of an individual fore-
cast case, we defined Δxy , Δx2 , and Δy2 terms from a single 
forecast case (i.e., ns = 1 ) as follows.

(6)ΔXY(l) = X̃Y(l) − XY(l)

(7)ΔX2(l) = X̃2(l) − X2(l)

(8)ΔY2(l) = Ỹ2(l) − Y2(l)

(9)
r̃(l) =

XY(l) + ΔXY(l)
√

(
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)
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−
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2
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}

(11)x(n, l) =
X(n, l) − X(l)

√

X2(l)

(12)y(n, l) =
Y(n, l) − Y(l)

√

Y2(l)

(13)Δxy(n, l) = x(n, l) ∙ y(n, l) − xy(l)

(14)Δx2(n, l) = x2(n, l) − x2(l)

https://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii
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The AS skill can be obtained as follows by modifying 
Eq. (10).

As the denominator in Eq. (16) is a constant, the AS skill 
can be considered a linearized version of Eq. (9). Therefore, 
the correlation skill and the case-averaged AS skill in any 
group are expected to be equivalent for any group. However, 
it should be emphasized that, with the AS skill, the forecast 
skill can be calculated for the individual forecast case. In 
contrast, the correlation skill for the individual case is hardly 
reasonable.

3.2  Interpretation

The advantages of the AS skill are demonstrated by compar-
ing its characteristics with the nondimensional squared error 
defined as follows.

To fairly compare the nondimensional squared error to 
the AS skill, we first modified Eq. (17) by applying Eqs. 
(13)–(15) as follows.

Finally, Eq. (19) can be obtained as follows.

Note that this derivation is possible with the assumption 
x(l)2 = y(l)2 = 1 , x(l) = y(l) = 0 , which is true for the entire 
set, while it is normally not the case for any subset. A left-
hand term of Eq. (19) (i.e., 1 − Nondim_sqerr(n, l)∕2 ) will 
be referred to as a ‘transformed squared error.’

Both AS skill and the transformed squared error are cal-
culated as the covariance between x and y (i.e., Δxy(n, l) ) 
diminished by the summed variance terms of x and y (i.e., 
−

1

2
{Δx2(n, l) + Δy2(n, l)} ). The covariance term exhibits a 

large value once the sign of the forecasted value is matched 
to the observed. In other words, with the fixed summed 
variance terms, the covariance term is maximized when the 
values of x and y are the same. If only either x or y has a 
large value while the other is kept the same, it increases the 
variance terms to a greater degree than the covariance term. 

(15)Δy2(n, l) = y2(n, l) − y2(l)

(16)
AS(n, l) = r(l) + Δxy(n, l) −

r(l)

2
{Δx2(n, l) + Δy2(n, l)}

(17)Nondim_sqerr(n, l) = {x(n, l) − y(n, l)}2

(18)

Nondim_sqerr(n, l) = x2(l) + Δx2(n, l) + y2(l)

+ Δy2(n, l) − 2xy(l) − Δ2xy(n, l)

(19)
1 −

Nondim_sqerr(n, l)

2
= r(l) + Δxy(n, l)

−
1

2

{

Δx2(n, l) + Δy2(n, l)
}

This means that both AS skill and transformed squared error 
tends to decrease once the forecasted value is apart from the 
observed value.

While the contribution of the covariance term is the same 
between AS skill and the transformed squared error, the con-
tribution of the variance terms is systematically different. 
The variance terms are multiplied by the fixed amplitude of 
the 0.5 in transformed squared error, the amplitude of the 
variance terms in AS skill is proportional to r

2
 . In AS skill, 

the both the covariance term and summed variance terms 
can affect the AS skill with a similar degree as the overall 
amplitude difference between the covariance and the vari-
ances are matched by multiplying r

2
 . On the other hand, in 

transformed squared error, the summed variance terms affect 
much strongly than covariance as the variances are larger 
than the covariance (i.e., 1

2
(x2 + y2) ≥ xy).

In other words, the most distinct feature of the AS skill 
is that it is less affected by the amplitude of the observed 
and forecasted values than transformed sqaured error. The 
increase in the amplitude of x and y tends to increase the 
covariance term, however, it is canceled out to some extent 
by the variance terms. That is, the AS skill is less depend-
ent on the amplitude of the forecasted/observed anomalies.

4  Application of the AS skill to evaluate 
the forecast skill of East Asian summer 
precipitation

To verify the similarity between the correlation skill and the 
case-averaged AS skill for any group, the all-case-averaged 
AS skill of the EASRA index was firstly compared with the 
correlation skill using all the forecast cases. The all-case-
averaged AS skill of the EASRA index between the obser-
vations and forecasts are 0.84, 0.60, and 0.44 at 1-, 2-, and 
3-pentad leads, respectively. Those AS skill are identical to 
the correlation skill, which is 0.84, 0.60, and 0.44 at 1-, 2-, 
and 3-pentad leads, respectively. This shows that the AS skill 
can be used to evaluate the correlation skill of any group.

The forecast skill of the EASRA index is roughly com-
parable to the often-used criteria for a reliable forecast (i.e., 
correlation skill > 0.5) at 3-pentad leads (Park et al. 2017; 
Liang and Lin 2018). Thus, we focus on the forecast skill 
at 3-pentad leads as it is a key measure for determining the 
period of a reliable forecast.

As aforementioned, the advantage of using the AS skill 
is that the forecast skill of the individual forecast cases can 
be evaluated. To demonstrate this point, Fig. 1 shows the 
AS skill of the EASRA index at 3-pentad lead (black line). 
The x-axis represents the case number of the GloSea5 hind-
cast. For example, the leftmost, and the second value denotes 
the forecast initiated on May 1, and 9, 1991, and the value 
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denotes the AS skill at the third pentad after the forecast 
began (i.e., average from May 11–15, and 19–23, 1991), 
respectively. Most values vary within the magnitude of 2, 
and the minimum, and maximum values reached up to about 
– 6, and + 4, respectively.

To examine the impact of each term on the AS skill, we 
calculated the anomalous AS skill, covariance term, and the 
sum of variance term for individual forecast cases in Fig. 2. 
Anomalous AS skill and covariance terms have a linear rela-
tionship, implying that the AS skill tends to increase as the 
predicted and observed value commonly increase (Fig. 2a). 
An asymmetric feature is shown because variance terms 
consistently contribute to lower the AS skill. For example, 
when the signs of x and y are the same, the covariance is 

positive, the variance term partially cancels out the covari-
ance. On the other hand, when the signs of x and y are oppo-
site, the covariance term is negative, and the variance term 
contribute to amplify the negative AS skill. (Fig. 2b).

Based on the skill evaluation of the individual forecasts 
using the AS skill, we identified two groups according to the 
AS skill. The first group is the highest AS cases, which are 
defined as those where the AS skill subtracted from the all-
case-averaged value is greater than 0.5 standard deviation; 
represented as red dots in Fig. 1. The second group is the 
lowest AS cases, which are defined as those where the AS 
skill subtracted from the all-case-averaged value is smaller 
than − 0.5 standard deviation; represented as blue dots in 
Fig. 1. The number of the highest, and lowest AS cases is 
69, and 70, respectively.

To verify that these two groups are well separated accord-
ing to the forecast quality of the EASRA index, we evalu-
ated the characteristics of the EASRA index for each group 
(Fig. 3). Figure 3a shows the regression coefficient of the 
5-days-moving-averaged observed and predicted EASRA 
indices at lead times of 1 to 5 pentads, with respect to the 
observed EASRA index at 3-pentad lead. In the highest 
AS cases (red lines in Fig. 3), the observed and predicted 
EASRA indices show similar time evolutions; both the 
observed and predicted EASRA indices begin to develop 
at 2-pentad lead and show a peak phase at 3-pentad lead. 
This indicates that the GloSea5 successfully simulated 
the observed evolution of the EASRA index in the highest 
AS cases. In the lowest AS cases (blue lines in Fig. 3), the 
observed EASRA coefficient at 3-pentad lead is positive, 
whereas the predicted EASRA coefficient is negative. This 
is consistent with the fact that the forecasts of the EASRA 
index in the lowest AS cases are systematically erroneous.

Fig. 1  Association Strength (AS) skill of EASRA index (precipitation 
averaged over 30–50°N, 115–150°E) between GloSea5 and observa-
tions at 3-pentad lead (black line) in MJJA 1991–2010. The highest 
AS cases (red dots) are defined as those where the AS skill subtracted 
from the all-case-average value is greater than 0.5 times the standard 
deviation. The lowest AS cases (blue dots) are those where the AS 
skill subtracted from the all-case-average value is smaller than − 0.5 
times the standard deviation

Fig. 2  Scatter plot between the anomalous AS skill (x-axis) and a the covariance term (i.e., second term on the right-hand side of Eq.  (16), 
y-axis) and b the variance terms (i.e., sum of third and fourth term on the right-hand side of Eq. (16), y-axis) for individual forecast case
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Figure 3b shows the probability density function (PDF) of 
the anomalous EASRA index in the highest AS cases (red 
line), lowest AS cases (blue line), and remaining cases (gray 
bars, 181 cases). In the remaining cases, the PDF of the pre-
cipitation anomalies had the largest value for the small-ampli-
tude anomalies. In contrast, for both the highest and lowest 
AS cases, the probability is relatively high at relatively strong 
precipitation anomalies. This feature is much more prominent 
for the highest AS case; this finding is consistent with previous 
studies, which found that the forecast skill tends to be better 
when the target amplitude is strong (van den Dool and Toth 
1991; Kim et al. 2014; Mason et al. 2021).

The next question is whether the forecast cases in the 
highest AS cases actually exhibit the highest correlation 
skill. To examine this point, we randomly selected a same 
number of cases as for the highest AS cases (i.e., 69 cases) 
among total forecast cases without replacement, then, cal-
culated the case-averaged AS skill and the correlation skill. 
This procedure was repeated 1,000 times. Note that the AS 
skill was pre-calculated for individual forecast events, then, 
a simple average for the selected cases was taken, while the 
correlation skill was calculated after the cases were selected. 
The scatter plot between the randomly selected case-aver-
aged AS skill and the correlation skill exhibited a strong 
linear positive relationship (Fig. 4a). As the AS skill suc-
cessfully measured the correlation skill for any particular 
group, the cases with high AS skill tended to exhibit a high 
correlation skill (Fig. 4b).

One can wonder about the accuracy of the AS skill 
with the zeroth-order approximation (i.e., only with the 
covariance term, the second term on the right-hand side 

in Eq. (16)). We checked the root-mean-square-difference 
between the zeroth-order or first-order AS skill and the 
correlation skill for the randomly selected cases; it was 
0.06 and 0.021 in the zeroth- and first-order approxima-
tion, respectively. This clearly demonstrates that the AS 
skill becomes more accurate with the first-order approxi-
mations as in Eq. (16) rather than the formulation only 
with the zeroth-order (i.e., only with the covariance term).

Interestingly, the highest AS cases exhibited the high-
est correlation skill (red dot in Fig. 4). Both the AS and 
the correlation skills in the highest AS cases were clearly 
beyond the range of the skill in the randomly defined 
groups. This means that the evaluation of the individual 
forecast skills based on the AS skill extracted the most 
well-predicted cases that guaranteed the highest corre-
lation skill, which could hardly be achieved by random 
selection of the cases.

For comparison, Fig. 5 shows the scatter plot of the 
correlation skill and the case-averaged squared errors, 
transformed squared error for the randomly selected 
cases. There is an inverse relationship between the case-
averaged squared errors and the correlation skill, and 
this relationship is not strong as those between AS skill 
and the correlation skill. In transformed squared error, 
even though squared error transformed to the correla-
tion dimension, variance terms affect forecast skill much 
more strongly than covariance. For these reasons, the 
forecast skill measured based on squared error or its non-
dimensional transformed form still exhibited less agree-
ment with the correlation skill than the AS skill does 
(Fig. 5b). Therefore, the cases with low squared errors do 
not always guarantee high correlation skill (Fig. 5c). This 
supports our notion that the previous individual forecast 
skill evaluation metric, such as the squared errors, might 
not be optimal for evaluating the degree of association 
between the forecasted and the observed anomalies, even 
though it might still be useful when evaluating the simu-
lation quality considering up to anomaly amplitude.

5  Dominant climate variability 
in the highest AS cases

5.1  Spatial distribution of the EASRA‑related 
anomalies

In this section, we examined a dominant large-scale sub-
seasonal variability associated with the EASRA index in 
highest AS cases. To consider the time-lags that the remote 
large-scale climate variability results in East Asian precipita-
tion variations, we exhibited large-scale climate anomalies 
averaged for 2–3 pentad leads. Figure 6 shows the 10-day 
averaged (for 2–3 pentad leads) precipitation anomalies 

Fig. 3  a Lead/lag-regression coefficients between the observed 
EASRA index at 3-pentad lead and the observed (solid line) and fore-
casted (dashed line) EASRA index in the highest AS cases (red) and 
lowest AS cases (blue) cases. b PDF of anomalous EASRA index for 
highest AS cases (red line), lowest AS cases (blue line), and remain-
ing (gray bars) cases
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regressed onto the observed EASRA index at 3-pentad lead 
in highest AS cases. The observed and predicted precipita-
tion anomalies related to the EASRA index show a positive 
precipitation anomaly over eastern China-Korean peninsula-
southern Japan and a negative precipitation anomaly over 
the subtropical western Pacific. The spatial pattern of the 
precipitation anomalies resembles a typical rainband pat-
tern over East Asia during boreal summer (Kang et al. 1999; 
Chen et al. 2004; Seo et al. 2011).

Figure 7 shows the geopotential height anomalies at 
500 hPa (Z500) and the WAF, zonal wind at 200 hPa 
(U200), the streamfunction at 850 hPa (Strm850), and 
horizontal wind anomalies at 850 hPa (UV850) regressed 
onto the observed EASRA index anomaly in the highest 
AS cases. The regressed Z500 anomalies in the observa-
tions exhibited low-pressure anomalies over the northern 
Korean peninsula, and high-pressure anomalies over the 

southern Japan. This dipole pattern of the upper-level 
geopotential height anomalies amplifies the climatologi-
cal land-sea pressure gradient to enhance the summer 
monsoonal structure (Lee et al. 2017). Interestingly, the 
regressed Z500 anomalies also show low-pressure anoma-
lies over the Norwegian Sea and high-pressure anoma-
lies over the mid-latitude North Atlantic, western Rus-
sia (Fig. 7a), indicating that the low-pressure anomalies 
over the northern Korean peninsula are part of the wave 
train patterns originating from the North Atlantic. The 
regressed WAF anomalies (vectors in Fig. 7a), which flow 
from the North Atlantic to East Asia, support this notion. 
The overall spatial distribution of Z500 anomalies is well 
simulated by GloSea5 (Fig. 7d).

The spatial distribution of the Z500 anomalies is dynami-
cally coupled to the upper-level zonal wind, which also con-
tributes to the increase in rainfall anomalies over East Asia. 

Fig. 4  a Scatter plot between the correlation skill (x-axis) and case-
averaged AS skill (y-axis) of a group with 69 randomly selected 
forecast cases. b Scatter plot between the rank in the forecast skill 
evaluated by the correlation skill (x-axis) and case-averaged AS skill 

(y-axis). Note that we selected the same number of forecast cases 
(i.e., 69 cases) to the cases for the highest AS cases, and the random 
selection of the forecast cases is repeated 1000 times. The red dots 
represent the skill and rank of the highest AS cases

Fig. 5  Same as Fig.  4, but for the case-averaged a squared error, b 
transformed squared error (y-axis)  and the correlation skill  (x-axis), 
c ranks for the squared error, transformed squared error (y-axis), and 

the correlation skill (x-axis). The red dots represent the skill and rank 
of the highest AS cases
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The regressed U200 in observation and GloSea5 (Figs. 7b, e) 
show prominent westerlies over northern China and Japan; 
they are located between the negative Z500 anomalies over 
northern Korean peninsula and positive Z500 anomalies 
over southern Japan (Fig. 7a). Over the south of the jet 
stream entrance, the upward motion is induced as a second-
ary circulation (Shapiro 1981; Sanders and Hoskins 1990); 
therefore, the anomalous upward motion contributes to the 
increased precipitation over Korea.

The low-tropospheric responses associated with the 
EASRA index were examined (Fig. 7c, f). The regressed 
Strm850 shows a dipole pattern consisting of negative 
streamfunction anomalies over Korea and positive stream-
function anomalies over the Kuroshio Extension region in 
both the observations and GloSea5. The positive stream-
function anomalies over the Kuroshio Extension region 
(140◦–160◦ E, 25◦–35◦ N), which coincide with the in situ 
anticyclonic anomalies (Fig. 7a), resulting in an anomalous 
southerly flow and lead to an intrusion of warm humid air 
from the lower latitudes (Ham et al. 2019, 2021). This intru-
sion contributes to leading an upward motion to balance the 
moist energy budget and eventually increases precipitation 
over Korea (Ham et al. 2007).

To examine whether the dominant climate variability 
associated with the EASRA index is linked to one of the 
well-known atmospheric teleconnection patterns during 
boreal summer, we calculated pattern correlation coeffi-
cients (PCCs) between the EASRA-regressed anomalies in 
the highest AS cases with respect to the typical pattern of 
the SNAO, CGT, PJ, MJO, or BSISO (Table 1). Note that 
we used the student's t-test for the significance test, whose 
degree of freedom depends on the number of grid points to 
calculate the PCCs.

The PCCs between the EASRA-regressed Z500 anoma-
lies in highest AS cases (Fig. 7a) and the Z500 anomalies 
during the positive (negative) phase of SNAO above 10° 
S–90° N, 40° W–160° E is only 0.00 (+ 0.04). The PCCs 
is − 0.36 (+ 0.45) with the Z500 anomalies during the posi-
tive (negative) phase of the CGT. Additionally, the PCCs 
between EASRA-regressed Strm850 anomalies in highest 
AS cases (Fig. 7c) and the positive (negative) phase of the PJ 
pattern above 0°–55° N, 80°–190° E is + 0.35 (− 0.40), and 
the magnitude of the absolute PCCs between U200 anoma-
lies in highest AS cases (Fig. 7b) and each phase of the 
MJO or the BSISO over 10S°–50° N, 40°–160° E are less 
than 0.4. Even though the degree of similarity between the 
EASRA-regressed pattern in highest AS cases and the CGT 
pattern is significant, however, the determination coefficient 
calculated by a squared pattern correlation coefficient r2 is 
not high enough (i.e., 13 and 20% for positive and nega-
tive CGT patterns, respectively). The results suggest that 
the dominant EASRA-related anomalies in the highest AS 
cases are not explained by any single previously-known cli-
mate variability.

Figure 8 shows the regressed atmospheric variables with 
respect to the observed EASRA index anomaly at 3-pentad 
lead for all forecast cases (Figs. 8a–c), and lowest AS cases 
(Figs. 8d–f) in the observations. Although the regressed-
Z500, U200, and Strm850 anomalies in all cases are similar 
to those in the highest AS cases over East Asia, the large-
scale wave train patterns emanating from the North Atlantic 
is unclear. For example, while the negative Z500 anomalies 
were clearly shown over the western Europe in the highest 
AS cases, they are not shown in all cases. This indicates that 
the remote atmospheric teleconnection can be a key feature 
to improve the forecast skill over East Asia.

Fig. 6  Regression map of 10-days averaged precipitation anomalies in observation (a) and GloSea5 (b) onto observed EASRA index at 3-pentad 
lead in highest AS cases
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In the lowest AS cases, the EASRA-regressed anoma-
lies also exhibited a systematic difference from those in the 
highest AS cases. The EASRA-regressed anomalies in the 
lowest AS cases show a positive Arctic Oscillation (AO)-like 
Z500 pattern, and the direction of the WAF is distinct from 
those in the highest AS cases. The wavy structure is shown 
in U200 anomalies with weaker amplitude, even though the 
dipole structure of the strm850 is still clear in the lowest 
AS cases. It demonstrates a clear difference in the remote 

large-scale climate variability associated with the EASRA 
between the highest and the lowest AS cases, implying that 
the forecast skill of the mid-latitude climate variability can 
depend on the remote large-scale climate variability.

Lastly, Fig. 9 shows the regressed atmospheric variables 
for the observed EASRA index anomaly at 3-pentad lead for 
all forecast cases and lowest AS cases in GloSea5. In lowest 
AS cases, the regressed Z500 anomalies exhibit negative 
over the Korean peninsula but are more zonally elongated 

Fig. 7  Regression map of a, d 10-days averaged geopotential height 
anomalies at 500  hPa [shading, unit: m (mm  day−1)−1] and WAF 
[green vectors, unit:  m2  s−2 (mm  day−1)−1] at 500  hPa, b, e zonal 
wind anomalies at 200 hPa [shading, unit: m  s−1 (mm  day−1)−1], c, f 
streamfunction anomalies at 850 hPa [shading, unit: kg (ms)−1 (mm 

 day−1)−1] and anomalous wind field at 850 hPa [green vectors, unit: 
m  s−1 (mm  day−1)−1] in observations (left panel) and GloSea5 (right 
panel) onto observed EASRA index at 3-pentad lead in highest AS 
cases
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Table 1  The pattern correlation 
coefficients between the highest 
AS cases and each mode

A positive (negative) phase is defined when the climate index value is greater (smaller) than the one (minus 
one) standard deviation from mean. Note that two stars (**) denote more than 95% confidence level

Positive Negative

SNAO 0.00 0.04
CGT − 0.36** 0.45**
PJ 0.35 − 0.40

Phase
1 2 3 4 5 6 7 8

MJO – 0.21 0.27 0.27 0.24 0.23 – 0.40 – 0.40 – 0.34
BSISO 0.22 0.23 0.16 0.29 0.07 – 0.37 – 0.27 – 0.34

Fig. 8  Same as Fig. 7, but for all cases (a, b, c) and the lowest AS cases (d, e, f) in the observation
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and weaker than observed. In addition, the negative Z500 
anomalies are manifested over the Arctic as in observation, 
but the WAF flows from the Arctic to East Asia are weaker 
than observation. In the upper-level, the spatial distribution 
of regressed U200 anomalies over the western Pacific has the 
opposite sign to the highest AS cases (Fig. 7b, e). The west-
erlies are exhibited over southern Japan, located between 
low-pressure anomalies over Korea and high-pressure anom-
alies over the subtropical western Pacific. The downward 
motion is induced over the north of the jet stream entrance 
as a secondary circulation, contributing to the decreased pre-
cipitation over Korea. In the low-tropospheric, the regressed 
Strm850 anomalies show negative streamfunction anomalies 
over Japan and Kuroshio Extension region, which coincide 
with the in situ cyclonic anomalies (Fig. 9d), resulting in 

northerly wind anomalies over Korea. The northerly wind 
anomalies bring relatively dry and cold air from the higher 
latitudes, leading to less northward transport of moisture to 
East Asia and inducing anomalous downward motion during 
boreal summer (Wu 2002; Yihui and Chan 2005; Zhang and 
Zhou 2015). These features tend to contribute to a decrease 
the precipitation over East Asia.

These spatial distributions of the lowest AS cases in Glo-
Sea5 are quite different from observations, while all cases 
are relatively well simulated in GloSea5. Since lowest AS 
case is a selection of cases in which covariance between 
EASRA of observation and GloSea5 tends to be opposite, 
the climate patterns of the lowest AS cases in GloSea5 relate 
to negative precipitation anomalies over East Asia. It clearly 

Fig. 9  Same as Fig. 8, but for all cases (a, b, c) and the lowest AS cases (d, e, f) in GloSea5
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demonstrates that AS skill can successfully categorize not 
only the highest AS cases but also the lowest AS cases.

5.2  Possible implication for the real‑time forecasts

The dominant modes revealed in the highest AS cases can 
be used to predict the reliability of real-time forecasts in 
advance. As a simple example, one can suppose that the 
forecasts that exhibited a similar pattern shown in the high-
est AS cases would be more reliable. To support this idea, 
Fig. 10 shows the prediction skill of the EASRA index at 
3-pentad lead in groups categorized based on the degree 
of spatial similarity between each individual forecast and 
the EASRA-related Z500 in the highest AS cases (Fig. 7d) 
at 40◦W–170 ◦E , 10◦ S–90 ◦N . The correlation skill of the 
EASRA index at the 3-pentad lead in 57 cases that the 
amplitude of the pattern correlation between the predicted 
Z500 anomalies and EASRA-regressed Z500 anomalies in 
the highest AS cases exceeds 0.4 is 0.65. In contrast, the 
correlation skill of the EASRA index at the 3-pentad lead is 
only 0.38 when the predicted Z500 anomalies are not similar 
to the EASRA-related Z500 in the highest AS cases (i.e., 
|pattern correlation|< 0.4). As its 95% confidence range is 
0.19 to 0.57, the forecast skill of 0.65 for the group with 
a predicted Z500, which is similar to the EASRA-related 
Z500 in the highest AS case, is significantly higher than 
that of the other group. This type of approach can increase 
the utilization of dynamic forecast results without further 
post-processing.

6  Summary and discussion

In this study, we formulated the AS skill to measure the 
forecast skill of the individual case. As the AS skill can 
be defined for the individual case, one can select the cases 
which exhibit the highest correlation skill in a linearized 
form. For the cases with the highest AS, the correlation 
skill is superior to any randomly chosen group. Therefore, 
with AS skill, one can group the well-predicted (or poorly-
predicted) forecasts to examine their characteristics. Fur-
thermore, once the group with highest AS cases is defined, 
one might expect that the corresponding group exhibits the 
highest correlation skill, as the correlation skill and the case-
averaged AS skill in any group are almost equivalent by 
definition of the AS skill.

In the highest AS cases, the Rossby wave trains emanat-
ing from the North Atlantic to East Asia are prominent to 
enhance the precipitation amount over the Korean peninsula 
(Ham et al. 2018; Hu et al. 2020). Those EASRA-related 
atmospheric teleconnection patterns in the highest AS cases 
cannot be solely explained by any of the previously known 
atmospheric variability of SNAO, CGT, PJ, MJO, or BSISO 
(Madden and Julian 1971; Nitta 1987; Ding and Wang 2007; 
Bollasina and Messori 2018; Kikuchi 2020; Liu et al. 2020). 
Additionally, those EASRA-related large-scale teleconnec-
tion features in the highest AS cases are not shown in the 
lowest AS case or all cases. For example, in the lowest AS 
cases, the EASRA-related wave trains resemble the Arctic 
Oscillation (He et al. 2017), and wave-trains propagating 
from the North Atlantic are not shown. Those results sup-
port our notion that the dominant climate variability in the 
most skillful forecast is clearly different from the previously 
known climate variability.

This study utilized a methodology to evaluate the forecast 
skill of the individual cases based on the association between 
the observed and the predicted values. AS skill is a success-
ful approximation of correlation skills because the AS skill 
is a linearized form of correlation skill. The most distinct 
feature of the AS skill from the squared error-based metrics 
is that the AS skill is less affected by the amplitude of the 
observed and forecasted values as the correlation skill is.

As the AS skill is a successful approximation of the cor-
relation skill, the physical meaning of the AS skill with a 
certain amplitude is similar to that of the correlation skill. 
For example, once one defines a criterion for the skillful 
forecast as the correlation skill of 0.5, the corresponding 
AS skill also exhibits a similar amplitude. To confirm this 
point, we arranged the forecast cases of the EASRA index 
in descending orders of the AS skill, then correlation skill 
with 11-cases-moving window is calculated. The correla-
tion skill for each subset with 11 cases and the

Fig. 10  Correlation skill of EASRA index at 3-pentad lead in groups 
categorized by amplitude of pattern correlation coefficient between 
individual forecast and spatial distribution of EASRA-related Z500 
in highest AS cases (i.e., Fig.  7d at 40° W–170° E, 10° S–90° N). 
Bars represent groups with a degree of similarity > 0.4 (red bar, 57 
cases) and < 0.4 (gray bar). Note that the gray bar represents the aver-
age skill for random samples of 57 cases without replacement from 
all forecast cases except for cases corresponding to a degree of simi-
larity > 0.4, which were obtained from 1000 samplings. The error bar 
on the gray bar represents the range of the top 2.5% and to the bottom 
2.5% of correlation skill in random samples
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AS skill of an individual forecast case whose AS skill is 
at 6th largest is compared. The AS skills generally exhibits 
similar values with the correlation skill, even though AS 
skill tends to be slightly higher than the corresponding 
correlation skill. The value of 0.5, 0.6 for the correlation 
skill corresponds to approximately 0.59, 0.65 for the AS 
skill, respectively.

Even though various advantages of the AS skill, it 
should be noted that it requires an assumption to expand 
the Taylor series in Eq. (9) that delta terms should be suf-
ficiently smaller than the total mean. In other words, AS 
skill requires the similarity of moment between the subset 
and total: the mean and variance of the subset should be 
similar to that of the total set, which is 0 and 1 in this 
study, respectively.

The AS skill would be utilized to detect a linkage of 
the forecast skill between different regions. For example, 
the spatial distribution of the difference in the AS skill of 
the 10-days averaged precipitation between highest and 
lowest AS cases shows an apparent positive AS skill not 
only over Korea, but also over the eastern Eurasia and 
Barents-Kara sea (Figure not shown). This implies that 
AS skill can be a useful tool to examine the covariations 
in the forecast skill between East Asia and remote regions 
as large-scale climate variability determines the forecast 
skill of precipitation over East Asia.
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