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Abstract
A number of recent studies have highlighted the differences in the northern extratropical response to the El Niño-Southern 
Oscillation (ENSO) during the early and late part of the boreal cold season, particularly over the North Atlantic/European 
(NAE) region. Diagnostic analyses of multi-decadal GCM simulations performed as a part of CMIP5 and CMIP6 projects 
have shown that early winter tropical teleconnections are usually simulated with lower fidelity than their late-winter equiva-
lents. Although some results from individual seasonal forecasting systems have been published on this topic, it is still unclear 
to what extent the problems detected in multi-decadal simulations also affect initialised seasonal forecasts from state-of-the 
art models. In this study, we diagnose ENSO teleconnections from the re-forecast ensembles of nine models contributing 
(during winter 2021/22) to the multi-model seasonal forecasting system of the Copernicus Climate Change Service (C3S). 
The re-forecasts cover winters from 1993/94 to 2016/17, and are archived in the C3S Climate Data Store. Regression and 
composite patterns of 500-hPa height are computed separately for El Niño and La Niña winters, based on 2-month averages 
in November–December (ND) and January–February (JF). Model results are compared with the corresponding patterns 
derived from the ERA5 re-analysis. Signal-to-noise ratios are computed from time series of projections of individual winter 
anomalies onto the ENSO regression patterns. The results of this study indicate that initialised seasonal forecasts exhibit 
similar deficiencies to those already diagnosed in multi-decadal simulations, with a significant underestimation of the 
amplitude of early-winter teleconnections between ENSO and the NAE circulation, and of the signal-to-noise ratio in the 
early-winter response to El Niño. Further diagnostics highlight the impact of mis-representing the constructive interference 
of teleconnections from the Indian and Pacific Oceans in the early-winter ENSO response over the North Atlantic.

Keywords Seasonal predictions · Ensemble forecasting · ENSO · Teleconnections · Euro-Atlantic circulation · Tropical-
extratropical interactions

1 Introduction

An accurate simulation of the global circulation response 
to El Niño-Southern Oscillation (ENSO) episodes is a pri-
mary target of any seasonal forecasting system. While the 
response to ENSO in many tropical regions and over the 
North Pacific/North American (PNA) midlatitudes is fairly 
well reproduced by most coupled models used for seasonal 
predictions, simulating the response over the North Atlan-
tic/European (NAE) region has been much more difficult. 
This should actually be expected for a number of reasons: 

in the PNA sector, the ENSO response is the result of direct 
Rossby wave propagation from the tropical Pacific, while 
the NAE response comes from a superposition of tropo-
spheric and stratospheric pathways (Ineson and Scaife 2009; 
Jiménez-Esteve and Domeisen 2018; Domeisen et al. 2019). 
Also, the weaker amplitude of the average wintertime NAE 
response makes it more difficult to emerge from the back-
ground of strong, unforced low-frequency variability of the 
North Atlantic circulation (e.g. Mezzina et al. 2020), leading 
to a low signal-to-noise ratio which is significantly underes-
timated by many models (Scaife et al. 2014; Stockdale et al. 
2015; Scaife and Smith 2018).

Recent studies have pointed to another property of the 
NAE response to ENSO as a source of uncertainty in the 
detection and the prediction of such a response: namely, the 
fact that the associated anomaly pattern changes significantly 
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from the late autumn/early winter period to the latter part of 
the boreal winter (King et al. 2018, 2021). These two peri-
ods are often represented by two-month means in Novem-
ber–December (ND) and January–February (JF). Studies 
that have investigated the ability of global climate models 
(GCMs) to simulate the ENSO response in these periods 
(Ayarzagüena et al 2018; Molteni et al. 2020) have shown 
that multi-decadal GCM simulations show a much higher 
level of fidelity in the simulation of the late winter response, 
while the amplitude of ND response is significantly under-
estimated. Ayarzagüena et al. claimed that initialised sea-
sonal predictions made with the UK Met Office (UKMO) 
coupled model showed improved simulations of the early-
winter response compared to historical multi-decadal runs 
of the same model; also, they argued that in ND connec-
tions between the tropical Pacific and Atlantic basins pro-
duced Rossby wave sources in the Caribbean region, from 
which planetary-scale waves could propagate into the North 
Atlantic.

A different dynamical connection was advocated by Abid 
et al. (2021) to explain the difference between the early- and 
late-winter response to ENSO. They noted that connections 
between rainfall in the western/central Indian Ocean (WCIO) 
and in the central Pacific were stronger in early winter, and 
that teleconnections from Indian Ocean heating anoma-
lies could generate a Rossby wave train leading to a NAE 
response resembling the positive phase of the North Atlantic 
Oscillation (NAO). Therefore, they argued that while the 
negative-NAO signature of the late-winter El Niño response 
was a direct response to Rossby waves emanating from the 
Pacific, the positive-NAO projection (although meridionally 
shifted) of the early-winter response was mainly a conse-
quence of the Indian Ocean-NAO teleconnection.

Even though the seasonality in the ENSO response over 
the North Pacific and North America is not specifically 
investigated in this study, seasonal and sub-seasonal vari-
ations in the phase and amplitude of the Pacific/American 
response and the associated model biases have also been 
documented (Kumar and Hoerling 1998; Spencer and Slingo 
2003; Bladé et al. 2008; Chen et al. 2020, 2022 and ref-
erences within), as well as the combined effect of tropical 
Indian and Pacific anomalies on the North Pacific and north-
ern hemispheric response (Deser and Phillips 2006; Anna-
malai et al. 2007; Fletcher and Cassou 2015).

Because of the difficulty in the simulation of the early-
winter response to ENSO, many recent papers investigating 
the performance of one or more modelling systems have 
focussed on the late-winter response (e.g. López-Parages 
et al. 2016; Benassi et al. 2022; Mezzina et al. 2022). In this 
study, we exploit the opportunity provided by the archive of 
the multi-model ensemble (MME) system of the Copernicus 
Climate Change Service (C3S; see http:// coper nicus. clima te. 
eu) to diagnose the early- and late-winter response to ENSO 

in re-forecast ensembles covering a 24-year period and pro-
duced by 9 state-of-the-art GCMs from 8 institutions, with 
a specific focus on the NAE region. Since the individual 
models contributing to the C3S MME are updated relatively 
frequently, we use re-forecasts from those versions that were 
operational in winter 2021–22.

A comprehensive description of the data and models used 
in this study is provided in Sect. 2 of the paper, together with 
a description of the statistical methodology. Results on com-
posite anomalies for El Niño and La Niña events, and signal-
to-noise ratios for the projections of individual anomalies on 
such patterns, are presented in Sect. 3. Section 4 investigates 
how separate contributions from anomalies in the Indian and 
Pacific Oceans contribute to the total extra-tropical signal in 
early-winter ENSO events. Conclusions are drawn in Sect. 5.

2  Data and methodology

2.1  Available models, reference data, and selection 
of ENSO years

Data from re-forecast ensembles from 9 different coupled 
models were available in the C3S Climate Data Store at the 
time of writing. These are listed in Table 1, where they are 
ordered according to the date in which they joined the C3S 
MME. Note that Environment and Climate Change Canada 
(ECCC) is the only institution providing data from two dif-
ferent models; their re-forecast ensembles, as well as those 
of the Japan Meteorological Agency (JMA), consist of a 
much smaller number of members than those from the other 
six institutions.

As mentioned above, the contributing models have been 
updated one or more times since the start of the C3S MME 
operational activities; re-forecasts from the versions opera-
tional in winter 2021–22 were selected. While in operational 
practice the performance of seasonal forecasts for the boreal 
winter is usually assessed from ensembles initialised on 1 
November, here we wanted to compare the ability of simu-
lating the ND and the JF response to ENSO with the same 
lead time. Therefore, for all available years in the re-forecast 
archive (1993–2016), ND data were extracted from ensem-
bles initialised on 1 September, while JF data were extracted 
from ensembles initialised on 1 November, corresponding 
to forecast months 3 and 4 in both cases. It should be noted, 
however, that for those ensemble systems which are initial-
ised in lagged mode using start dates preceding the  1st day 
of each month, the average forecast time corresponding to 
ND and JF is actually longer than for ensembles initialised 
in “burst” mode at the beginning of the month. Our choice 
of selecting a forecast range of 3–4 months, rather than 
2–3, reduces the impact of the differences in initialisation 
strategy.

http://copernicus.climate.eu
http://copernicus.climate.eu
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In the following sections, statistics derived from model 
data are compared with the corresponding ones computed 
from the ERA5 re-analysis (Hersbach et al. 2020). Using 
sea-surface temperature (SST) from ERA5 from 1980 to 
2020, the average Niño3.4 index was computed for each of 
the 40 ‘extended’ winters (November-to-February); from 
this series, the 13 winters within the upper-third of the dis-
tribution were classified as El Niño (EN) episodes, the 13 
winters within the lower-third were classified as La Niña 
(LN) episodes. Out of these, 8 EN winters and 9 LN winters 
fall within the MME re-forecast period. The selected EN and 
LN winters are listed in Table 2.

2.2  Statistical definitions

Let x be a spatial variable spanning a 2-dimensional domain, 
τ an index of events spanning time and (for model data) 
ensemble member, A (x, τ) the anomaly of an atmospheric 
variable A with respect to its climatological mean, and s(τ) 
the SST anomaly in the Niño3.4 region. The regression pat-
tern of A on the Niño3.4 index is defined by:

Once R(x) is computed, each anomaly A (x, τ) can be 
decomposed into a component proportional to s(τ) and a 

(1)R(x) =
∑

�

A(x, �) s(�)∕
∑

�

s2(�)

residual field O (x, τ) such that, at any grid point x, its time 
series is uncorrelated (i.e. temporally orthogonal) to s(τ):

On the other hand, at any time τ, O (x, τ) may have a 
non-null spatial projection ε(τ) onto R(x) within a given 
spatial domain D; since ε(τ) is a linear combination of grid-
point data which are all uncorrelated with s(τ), it will also 
be uncorrelated with s(τ). If, for any τ, we further divide O 
(x, τ) into its projection onto R(x) and a spatially orthogonal 
residual O’ (x, τ), we obtain

where b(τ) is the total spatial projection of A (x, τ) onto R 
(x) at any given time, and O’ (x, τ) is spatially orthogonal to 
R (x). It should be noted that while R (x) is defined at each 
spatial grid-point, and therefore Eq. (2a) is valid for any spa-
tial domain considered, the decomposition given by Eq. (2b) 
is dependent on the domain D selected for the computation 
of spatial projections. Equation (2b) can be interpreted as a 
separation between the linear response to ENSO [R (x) s(τ)], 
the component of unforced variability which projects on the 
same spatial patterns as the ENSO response [R (x) ε(τ)], and 
the remaining (spatially orthogonal) part of unforced vari-
ability [O’ (x, τ)].

(2a)A(x, �) = R(x) s(�) + O(x, �)

(2b)
A(x, �) = R(x)[ s(�) + �(�)] + O

�(x, �) = R(x) b(�) + O
�(x, �)

Table 1  Seasonal forecasting systems providing re-forecasts diagnosed in this study

All systems contributed to the operational C3S MME in winter 2021/22. ‘Burst’ and ‘lagged’ initialisation refer to the use of a single or multiple 
initial dates preceding the nominal start date. Detailed information on the systems is found on the web page: https:// confl uence. ecmwf. int/ displ 
ay/ CKB/ Descr iption+ of+ the+ C3S+ seaso nal+ multi- system with further links to pages devoted to individual systems, including lists of relevant 
publications

Institution System no Acronym No. of re-fc. 
members

Ini-
tialisation 
strategy

European Centre for Medium-range Weather Forecasts 5 ECMWF 25 Burst
Météo-France 8 MeteoFr 25 Lagged
UK Met Office 600 UKMO 28 Lagged
Centro Euro-Mediterraneo per i Cambiamenti Climatici (Italy) 35 CMCC 40 Burst
Deutscher Wetterdienst 21 DWD 30 Burst
National Centers for Environmental Prediction (USA) 2 NCEP 24 Lagged
Japan Meteorological Agency 2 JMA 10 Lagged
Environment and Climate Change Canada 1 ECCC-1 10 Burst
Environment and Climate Change Canada 2 ECCC-2 10 Burst

Table 2  List of El Niño and La Niña winters (indicated by the year of November) in the ERA5 re-analysis record

Years noted in bold are included in the MME re-forecast dataset

El Niño winters 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2004, 2006, 2009, 2014, 2015, 2018
La Niña winters 1983, 1984, 1988, 1995, 1998, 1999, 2000, 2005, 2007, 2008, 2010, 2011, 2017

https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system
https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system
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While usually regression patterns are computed using the 
full range of anomalies, for the results presented in Sect. 3 
we have applied Eqs. (1) and (2a, 2b) separately to the data 
from El Niño winters and from La Niña winters, even though 
anomalies are defined with respect to the climatological 
mean of the full sample. Since ERA5 data only include one 
realization per year, instead of the multiple realizations pro-
vided by the forecast ensembles, the regression patterns for 
ERA5 have been computed from all the El Niño and La Niña 
years available in the 40-year re-analysis record, in order to 
increase their statistical significance.

Given the regression patterns for El Niño and La Niña 
events, we define the composite anomalies during such 
events as:

where μ denotes the time average and the EN or LN subscript 
indicates the sample of El Niño or La Niña events. With 
respect to the traditional definition of composites as simple 
averages, here they are defined by a weighted average, the 
weight being proportional to the amplitude of the Niño3.4 
index.

Using a regression-based definition of composites 
reduces a potential inconsistency in comparing observed 
and re-forecast data for years selected on the basis of the 
observed Niño3.4 index: because of the ensemble disper-
sion and loss of predictability with increasing forecast time, 
some members started from ENSO conditions of moderate 
amplitude may not maintain an SST anomaly of sufficient 
amplitude (or even the same sign) to be still classified as an 
El Niño or La Niña event (as shown in the scatter diagrams 
for model data in Fig. 6, Sect. 3). However, in these cases 
the anomalies A (x, τ) are multiplied by a near-zero value of 
s(τ) in the regression (Eq. 1), and therefore have a negligible 
impact on the result.

Since the focus of our analysis is on the Euro-Atlantic 
response to ENSO, the decomposition of anomalies into 
a component proportional to the Niño3.4 index and one 
orthogonal to this index, as in Eq. (2a, 2b), is performed 
on the NAE domain (70W-30E, 25N-80N). This domain is 
also used to quantify the similarity between re-analysis and 
model composites, by computing (for each model) the pat-
tern correlation between the two composites and the model-
to-ERA5 amplitude ratio.

A number of studies have addressed the issue of incon-
sistency between the actual skill of seasonal predictions in 
the North Atlantic region during winter (Eade et al. 2014; 
Stockdale et al. 2015; Scaife and Smith 2018; Strommen and 
Palmer 2019; Zhang and Kirtman 2019) and the expected 
skill derived from the spread of individual members around 

(3a)C
EN
(x) = R

EN
(x)�

[

s(�)
EN

]

(3b)C
LN
(x) = R

LN
(x)�

[

s(�)
LN

]

the ensemble mean. This issue is often referred to as the 
“signal-to-noise paradox”, since in this space and time 
domain the ensemble-mean forecasts appear to be in better 
agreement with observations than with individual ensemble 
members. In this context, ‘signal’ refers to the component 
of extra-tropical atmospheric variability forced by slowly-
varying elements of the climate system (e.g. tropical SST), 
while ‘noise’ refers to the variability generated by internal 
atmospheric dynamics, which is supposed to be unpredict-
able beyond a few weeks into the forecast.

Focussing on the time series of a specific variability index 
(for example, an NAO or Arctic Oscillation index obtained 
by projecting model anomalies on a pre-defined pattern), the 
signal-to-noise ratio is a function of the standard deviation 
of the ensemble-mean forecast and the root-mean-square 
deviation of individual members’ values from the ensemble 
mean (e.g., Scaife and Smith 2018). Since observations pro-
vide a single realisation for each season, these terms cannot 
be computed from observed data. However, the decomposi-
tion of anomalies given by Eq. (2b) provides a way to define 
a measure of signal-to-noise that can be applied to both re-
analysis and model data. Specifically, if we assume that the 
‘signal’ is defined by the linear response to the Niño3.4 SST 
anomalies (as computed by the regression), the noise can be 
estimated as the difference ε(τ) between the total projection 
onto the regression pattern R(x) and the value proportional 
to the Niño3.4 index. Using the terminology introduced by 
Eq. (2b), and applying this definition separately to El Niño 
and La Niña years (as denoted by the EN and LN subscripts), 
we get:

where σ indicates the standard deviation of a given time 
series, from either re-analysis or model data.

3  Results

3.1  ENSO composites

Figure 1 shows the composites of 500-hPa geopotential 
height for El Niño and La Niña events, computed from 
ERA5 data in ND and JF according to Eqs. (3a–3b). Dif-
ferences between the composites in positive and negative 
ENSO events are also shown in the right-hand column. The 
thick black line defines the border of the NAE domain used 
to compute projections, scores and signal-to-noise ratios. 
As expected, these composites are very similar to those 
computed in previous studies (see e.g. Deser et al. 2017; 
Ayarzagüena et al. 2018; King et al. 2021, which include 

(4a)S∕NEN = �

[

s(�)EN
]

∕�
[

�(�)EN
]

(4b)S∕NLN = �

[

s(�)LN
]

∕�
[

�(�)LN
]
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extensive analyses of the associated uncertainty; see also 
Fig. S1 in Supplementary Information for a comparison 
with ERA5 composites defined as simple averages); here 
we focus our comments on the features of the North Atlantic/
European response:

• During El Niño winters, the response in the Euro-Atlantic 
region has a larger amplitude in ND than in JF, especially 
over Europe.

• In both sub-seasons and ENSO phases, the response 
is shifted meridionally with respect to the canonical 
NAO pattern, especially when the latter is defined by 
the traditional Iceland-Azores (or Lisbon) index. As 
shown in Molteni et al. (2020), a NAO definition based 
on the meridional height gradient over a wider (and 
more western) sector of the North Atlantic provides 
a better match to the response in JF. Also, in ND the 

response shows a wave pattern with stronger zonal gra-
dients than in JF, leading to anomalous meridional flow 
over Europe.

• The spatial anti-correlation of the El Niño and La Niña 
composites is stronger in ND than in JF in the NAE sec-
tor (see the lin coefficients above panels 1c and f), while 
the opposite is true over the Pacific.

We now look at how composites computed from re-fore-
cast ensembles match those from ERA5 data; the similar-
ity is quantified by the spatial correlation between model 
and ERA5 patterns, and the ratio of their root-mean-square 
(r.m.s.) amplitudes in the NAE sector. For brevity, in this 
section we show the full set of maps only for the ECMWF 
and UKMO models (Figs. 2 and 3, respectively), with maps 
for other models being included in Supplementary Informa-
tion. Statistics for all models are summarised in Fig. 4 below.

Fig. 1  Composites of 500-hPa height (m) in the ND (top row) and JF 
(bottom row) sub-seasons, from ERA5 data. Left (a and d): El Niño 
composites; centre  (b and e): La Niña composites; right  (c and f): 
difference between El Niño and La Niña composites. The NAE sec-
tor used for further calculations is delimited by the black border. The 

two red boxes in panel c show the areas used to compute the Eastern 
Atlantic Gradient (EAG) indices listed in Table 3. The lin. coefficient 
listed above panels c and f is the absolute value of the spatial correla-
tion between the El Niño and La Niña composites
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At first glance, it is evident that both models reproduce 
the JF composites with better accuracy than in the ND com-
posites, the amplitudes of the latter ones being substantially 
under-estimated. In JF, these two models provide similar 
(and very good) results over the Pacific region, while in 
the NAE sector the agreement with ERA5 is better for El 
Niño than for La Niña events (this is further discussed in 
Sect. 3.2). In this region, the UKMO composites in JF have 
a larger amplitude, closer to the observed values, while the 
ECMWF model shows a very weak signal during La Niña 
winters. On the other hand, the ECMWF model does a bet-
ter job in ND, particularly during El Niño years, when the 
UKMO composite shows a much weaker amplitude.

Correlation and amplitude ratios from all available mod-
els are used to compute the so-called Taylor diagrams (Tay-
lor 2001) shown in Fig. 4, where the ERA5 composites in 
the NAE region are used as reference. These diagrams show 
that the deficiencies discussed above are present in re-fore-
casts from all models, in particular the under-estimation of 

the amplitude of ND composites. While for JF the points 
representing the 9 models tend to cluster around the circle of 
(relative) amplitude 1, with a wider dispersion for La Niña 
events, the points for the ND composites are close to the 0.5 
amplitude circle.

Since we have chosen to compute the ERA5 composites 
from a 40-year sample, instead of using only the 24 years 
included in the re-forecast, one may question if the discrep-
ancies between model and re-analysis data may be attrib-
uted to the different selection of years. We argue that the 
‘noise’ generated by the single realization per year in the 
re-analysis sample is likely to increase the differences with 
respect to the smoother ensemble composites, so reducing 
such noise by extending the re-analysis sample is expected 
to produce better statistics for the model composites. To 
test this hypothesis, we recomputed all the correlations and 
amplitude ratios used for the generation of Fig. 4 by com-
paring the model composites to re-analysis composites from 
the same 24 years covered by the reforecasts. The results of 

Fig. 2  As in Fig. 1, for the height composites (in m) computed from ECMWF re-forecasts. Spatial correlations and amplitude ratios with respect 
to the ERA5 patterns are listed above each panel
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this comparison mostly confirm our hypothesis; specifically, 
when using the 24-year ERA5 sample:

• the spatial correlation of La Niña composites is decreased 
for all models, in both ND and JF;

• the amplitude ratios are never improved in ND compos-
ites, while for JF data these statistics are improved only 
when one model overestimates the observed amplitude 
(this only occurs in 3 cases out of 18);

• The only score for which some marginal improvement 
is found is the spatial correlation of ND El Niño com-
posites: 5 out of 9 model have a higher correlation using 
the reduced ERA5 sample, but overall the average cor-
relation (across all 9 models) only shows a negligible 
increase from 0.591 to 0.594.

Indeed, the consistency in the reduced amplitude of the 
ND composites across the 9 models raises the question of 
whether the stronger anomalies in the ERA5 composites 

may have resulted from the limited sample of re-analysis 
record, even when using 40 years. In other words, may the 
ND composites from ERA5 have a larger amplitude simply 
because they are computed from 13 El Niño and La Niña 
anomalies, instead of the much larger sample produced by 
the ensembles? Would model composites only computed 
from 13 realizations match the ERA5 amplitude?

Since the main feature of the ND composites is the 
increased/decreased geopotential gradient in the eastern part 
of the North Atlantic during the El Niño/La Niña events, we 
have tested this hypothesis using a re-sampling approach, as 
in Deser et al. (2017 and King et al. (2021):

• An index of the geopotential height gradient in the 
eastern Atlantic (EAG) was defined as the difference 
between the average height anomaly in the two regions 
(25W-5E, 25N-40N) and (50W-10W, 50N-65N), where 
positive and negative anomalies are found in the ERA5 
composites for ND (see top-right panel in Fig. 1). Note 

Fig. 3  As in Fig. 1, for the height composites (in m) computed from UKMO re-forecasts. Spatial correlations and amplitude ratios with respect 
to the ERA5 patterns are listed above each panel
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that the two areas are centred approximately 5 degrees 
south of the points traditionally used to define an NAO 
index.

• From the re-forecast data of each model, for both El 
Niño and La Niña events, 5000 sub-samples were 
created including SST and height anomalies from 13 
ensemble members, randomly selected from different 
years, in order to have the same number of realisations 
as in the 40-year ERA5 record; the selection was con-
strained to include at least one member for each ENSO 
year in the re-forecast dataset, and to select only mem-
bers with a Niño3.4 index exceeding (in absolute value) 
a suitable threshold.

• The EAG index was computed from the ERA5 compos-
ites shown in Fig. 1 (obtained from 13 El Niño and 13 
La Niña winters), from the model composites including 
all available members in El Niño and La Niña years, 
and from all the pseudo-random samples obtained by 
selecting 13 ensemble members as described above.

• For each model, we have computed the probability of 
getting a 13-member composite with an EAG index of 
greater (or equal) amplitude than the ERA5 index.

The results of this test are shown in Table 3, where the 
EAG from the full ERA5 record and the model ensembles 
are listed, together with the probabilities defined above. In 
the case of La Niña composites, for all models (except one) 
there is a probability exceeding 10% that the difference from 
the ERA5 composite may be accounted for by random dif-
ferences among 13-case samples. However, for the El Niño 
composites, only for 3 models there is a 5-to-6% chance 
to obtain an EAG index larger than the ERA5 value from 
13-member samples; for all other models, this probability 
is less than 1%. Therefore, at least for the El Niño events, 
we can state that there is only a very small chance that the 
weaker anomalies in the model composites, compared to the 
ERA5 results, are compatible with the sampling error of the 
re-analysis composites.

Fig. 4  Taylor diagrams representing the ENSO composites from 
model ensembles as a sum of two components, one parallel (x-axis) 
and one orthogonal (y-axis) to the ERA5 composites. ERA5 compos-

ites are represented by the black squares at coordinates (1,0). Coor-
dinates are non-dimensional, as they represent ratios of amplitudes 
between model and re-analysis composites
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Of course, no statistical test is totally reliable, and here it 
may be argued that by using data from models with weaker-
than-observed teleconnections we actually overestimate the 
“noise” associated with such teleconnections in the real 
world. The implication of this argument is that the chance 
of ND model composites matching the observed amplitude 
is likely to be even lower than what suggested by the val-
ues in Table 3. In Table S1 in Supplementary Information, 
we show a similar table obtained by re-sampling the ERA5 
values of EAG, instead of model data (this approach will 
also be used in Sect. 3.2 below). Although, as expected, the 
estimated probabilities of model results being compatible 
with ERA5 data are lower than in Table 3, the main message 
about the much higher significance of the differences for El 
Niño events remains valid.

3.2  Signal‑to‑noise ratios

We now examine how well the projections of individual 
NAE anomalies of 500-hPa height onto the ENSO regres-
sion patterns are approximated by a linear relationship with 
the Niño3.4 index; the signal-to-noise ratio defined in Eqs. 
(4a–4b) provide a quantitative measure of such a relation-
ship. Figure 5 shows scatter diagrams for the b(τ) projections 
of individual height anomalies onto the R(x) pattern (see 
Eq. 2b), plotted against the Niño3.4 index s(τ); these values 
are shown for both the El Niño and La Niña cases, using red 
and blue coloured marks respectively. A straight diagonal 
line, representing an exact linear relationship, is also plotted 
as a reference; the ε(τ) term in Eqs. (2b) and (4a–4b) cor-
responds to the difference between the individual points and 
the diagonal line at the same s(τ) value.

Figure  5 shows results for ERA5 data in the full 
1980–2020 record, and for the ECMWF and UKMO re-fore-
cast ensembles started in years 1993 to 2016 (each ensem-
ble including 25 and 28 members respectively). Above each 
scatter plot, the signal-to-noise (S/N) ratio is shown for both 
El Niño and La Niña events. It should be noted that, because 
of the spread of solutions within the ensembles, the range 
of observed Niño3.4 values is fully covered by the model 
realizations. As for the composite patterns, scatter diagrams 
for other models are shown in Supplementary Information.

In ERA5 data, the S/N ratio is larger for the El Niño than 
for La Niña winters, in both ND and JF sub-seasons. This is 
also the case for the ECMWF ensembles, while the UKMO 
re-forecasts reproduce this feature in JF but not in ND. Also, 
in ERA5 data, projections for El Niño events have a larger 
S/N ratio in ND than in JF (consistent with the larger ampli-
tude of the composite response in the former period), while 
the ND and JF ratios are very similar for La Niña events. 
The S/N ratios from the ECMWF and UKMO models are 
remarkably close to each other, with the exception of El 
Niño events in ND, when the ECMWF model has a higher 
S/N ratio (although well below the observed value). Again, 
this difference has a correspondence in the better simulation 
of the anomaly composite for El Niño events in ND by the 
ECMWF model (see Fig. 2).

A summary of S/N ratios for all model contributing to 
the C3S MME is given by the histograms shown in Fig. 6. 
Looking at the two top panels, showing ratios for El Niño 
and La Niña in ND and JF respectively, two positive con-
clusions can be reached regarding the agreement between 
model and ERA5 data:

• The larger S/N ratio in El Niño than in La Niña events, 
shown by ERA5 data, is reproduced in both sub-seasons 
by all models (with just one exception).

• The S/N ratios from ERA5 data are well within the range 
of values from the 9 models, for both ENSO phases in JF 
and for the La Niña events in ND.

However, when S/N ratio for El Niño events in ND and 
JF are compared (bottom panel in Fig. 6), the re-forecasts 
shows either negligible differences between the two sub-
seasons (for three models), or a larger S/N ratio during JF, 
contrarily to ERA5 data. On average, the S/N ratios for El 
Niño events in ND is almost twice as large in ERA5 than in 
model re-forecasts. Since the ERA5 ratios are obtained from 
just 13 values in either period, it is natural to ask what is the 
probability that the higher ERA5 value in ND is just a result 
of insufficient sampling.

To address this question, we have recomputed the ERA5 
S/N ratios from all possible sub-samples obtained by remov-
ing either 3 or 4 events out of the 13 El Niño winters in the 
ERA5 record. With this procedure, 1001 subsamples were 

Table 3  Values of the Eastern 
Atlantic Gradient (EAG) 
of 500-hPa geopotential 
height anomaly [(25W/5E, 
25N/40N) – (50W/10W, 
50N/65N)] in the ND ENSO 
composites from ERA5 and 
model re-forecasts The percentages indicate the probability to obtain a value equal or greater (in absolute value) than the 

ERA5 EAG from sub-sampling of the model data. Probabilities greater than 5% are in bold fonts

ERA5 ECMWF MeteoFr UKMO CMCC DWD NCEP JMA ECCC1 ECCC2

El Niño 46.1 24.4
5.2%

16.7
0.9%

11.7
0.6%

12.6
0.2%

9.6
0.2%

22.2
5.6%

14.6
0.3%

22.3
6.2%

6.5
< 0.1%

La Niña − 26.1 − 20.7
35.5%

− 16.0
26.7%

− 11.9
17.3%

− 12.1
15.4%

− 13.9
22.4%

− 11.9
14.0%

− 15.1
19.2%

− 15.5
24.7%

− 6.8
2.5%
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Fig. 5  Scatter diagrams of 
projections of 500-hPa height 
anomalies in the NAE region 
onto the regression patterns 
for El Niño (red points) and La 
Niña (blue points) events, plot-
ted against the Niño3.4 index 
(on x-axis). Top: from ERA5 
data; centre: from ECMWF 
ensembles; bottom: from 
UKMO ensembles. Left column 
for Nov-Dec. data, right column 
for Jan-Feb. data. The S/N 
ratios on the left and right side 
of each panel refer to La Niña 
and El Niño events respectively
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obtained, including a number of El Niño events (9 or 10) 
comparable to those occurring in a 30-year period. It turned 
out that a larger S/N ratio in ND than in JF is reproduced 
in 98.9% of the cases; therefore, there is only a negligible 
chance that the discrepancy between model and ERA5 data 
is due to a sampling issue. We have also checked if this 
result was reproduced in ERA5 near-surface data, by recom-
puting regression patterns and the projections of individual 
anomaly from mean-sea-level pressure (MSLP) data instead 
of 500-hPa height. We found that the difference in S/N ratio 
between El Niño events in ND and JF is actually larger using 
MSLP instead of 500-hPa height data, with a 1.21 value for 
ND events and a 0.73 value for JF events, and a 100% con-
fidence value obtained from 9- or -10-winter sub-sampling. 
(Scatter plots for MSLP anomalies from ERA5, ECMWF 
and UKMO data are shown in Supplementary Information).

As noticed above, in JF most models reproduce quite well 
the lower S/N ratio in La Niña episodes compared to El Niño 
events, as found in ERA5 data. This difference (which is 
also reproduced with very high significance in re-sampled 
data) implies that La Niña composites are more affected by 
unforced atmospheric variability than the El Niño compos-
ites, which may (at least partially) explain the weaker agree-
ment of ERA5 and model composites for La Niña versus El 
Niño events over the NAE region.

4  Connections with Indian Ocean rainfall

The results in Sect. 3 clearly reveal a serious deficiency in 
the way seasonal forecast models represent the early-winter 
teleconnection of ENSO with the North Atlantic circula-
tion. In this section, we explore the hypothesis that the early-
winter deficiency is originated by the superposition of tel-
econnections originated from different parts of the tropical 
ocean, and specifically by the models’ failure to represent the 
constructive interference between signals originated from 
the central Pacific and the Indian Ocean.

In a recent paper, Abid et al. (2021) argued that the 
North Atlantic response to ENSO in early winter is due 
to a superposition of Rossby waves originated from the 
central Pacific and from a dipolar heating anomaly in the 
Indian Ocean, with opposite signs over the western/cen-
tral Indian Ocean (WCIO) and the Maritime Continents. 
This was shown using both statistical diagnostics from 
re-analysis data, and the results of a modelling experi-
ment based on two large ensemble of simulations, one of 
which included an additional, idealised heating dipole in 
the Indian Ocean. During El Niño events, the anomalies 
in the Walker circulation induce upward motion in the 
WCIO region, leading to increased rainfall and diabatic 
heating, while rainfall over the Maritime Continents is 
reduced. Abid et al. (2021) showed that the planetary wave 

originated from this heating dipole is the main source of 
the upper-tropospheric (NAO-like) response over the 
North Atlantic.

To illustrate these connections using the same meth-
odology used in Sect. 2, the top panels on Fig. 7 shows 
the difference between El Niño and La Niña composites 
of ERA5 rainfall in the Indo-Pacific region, during ND 
(Fig. 7a) and JF (Fig. 7b). It is evident that the rainfall 
anomaly associated with ENSO events in the WCIO region 
(west of  90oE) is much stronger in ND than in JF, and 
therefore the contribution of teleconnections originated 
from WCIO is more important in the former period. In the 
bottom row of Fig. 7, the ND rainfall composites produced 
by the ECMWF (panel 7c) and UKMO re-forecasts (panel 
7d) are shown for comparison. If we consider a domain 
covering the whole tropical Indian Ocean and the Mari-
time continents (shown by the box in Fig. 7), the spatial 
correlation with the ND ERA5 composite and the ratio of 
the anomaly amplitude are very close to 1 for both models. 
However, differences from ERA5 can be seen in the model 
composites between 70 and  90oE, where the two models 
show anomalies of opposite sign north and south of the 
Equator, instead of a transition in sign across  90oE in both 
northern and southern latitudes.

The teleconnection from the western Indian Ocean to 
the North Atlantic is particularly difficult to simulate even 
from state-of-the-art GCMs, according to a study by Molteni 
et al. (2020) which diagnosed the output of multi-decadal 
runs of several European climate models. The same diffi-
culty was detected in seasonal forecasts from the ECMWF 
SEAS5 (Johnson et al. 2019). It is therefore plausible that a 
poor simulation of the response from the Indian Ocean heat-
ing associated with ENSO may contribute to the deficient 
representation of the total North Atlantic response in early 
winter. In late winter, the connection between ENSO and 
rainfall anomalies in the western Indian Ocean is consider-
ably weakened, reducing the impact of a mis-representation 
of the WCIO teleconnection.

To separate the contributions of anomalies over the two 
tropical oceans, we make use of the technique of partial 
regression, as applied by Abid et al. (2021) Here, following 
Johnson et al. (2019) and Molteni et al. (2020), we just use 
the rainfall anomaly over the WCIO region (40E-90E, 10N-
10S) as an indicator of the Indian Ocean heating anomalies, 
and we relate this anomaly to 500-hPa height anomalies in 
the northern extratropics. Specifically, for each realisation 
in ERA5 and model ensembles, we compute the following 
quantities:

• s(τ): SST anomaly in Niño3.4;
• p(τ): precipitation anomaly in WCIO;
• s0(τ): component of s(τ) which is uncorrelated with p(τ);
• p0(τ): component of p(τ) which is uncorrelated with s(τ).
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Using the notation above, the WCIO precipitation anom-
aly can be written as:

where the regression coefficient p* is given by

As demonstrated in the Appendix, if we indicate with 
R0(x) the regression pattern of 500-hPa height on  s0, and 
with P(x) and P0(x) the regression patterns of 500-hPa height 
on the precipitation indices p(τ) and  p0(τ) respectively, we 
can decompose the full regression on the Niño3.4 index into 
a linear combination of the regression patterns computed 
from  s0(τ) and  p0(τ):

Because the decomposition given by Eq. 6 requires the 
computation of a number of second-order statistics, which 
in practice reduce the number of degrees of freedom, in this 
section we compute regressions from data in all available 
winters, including both phases of ENSO as well as winters 
with neutral ENSO conditions.

The regression coefficient p*, which quantifies the 
dependence of WCIO rainfall on the Niño3.4 SST anomaly, 
determines the contribution that the Indian Ocean telecon-
nection gives to the total regression pattern from Niño3.4 
anomalies. From ERA5 data, we obtain p* = 0.34 in ND and 
p* = 0.09 in JF, confirming that the Indian Ocean connection 
is only relevant in early winter. In this sub-season, and in 
the hypothesis that models are able to represent the Pacific 
teleconnection realistically, errors in the simulation of R(x) 
may come either from an under-estimation of p*, or from an 
inaccurate simulation of the P0(x) pattern.

In Fig. 8, we show the four regression patterns R(x), 
R0(x), P(x), P0(x), computed from ERA5 data.

A striking feature of the regression patterns in Fig. 8 is 
the positive spatial correlation between the teleconnections 
with the ‘independent’ components of the Niño3.4 and 
WCIO indices  (s0 and  p0 respectively) over the Atlantic and 
Europe (panels 8b and d). Therefore when the two independ-
ent components are combined, accounting for the correla-
tion between the two indices, the total regression patterns 
R(x) and P(x) (panels 8a and c respectively) are strengthened 
over the NAE region. In this sector, the amplitude of the 
regression pattern R(x), computed from the original Niño3.4 
anomaly, has approximately twice the amplitude of the R0(x) 
pattern obtained from the  s0 component of the Niño3.4 index 

(5a)p(�) = p* s(�) + p0(�)

(5b)p ∗=
∑

�

[

p(�) s(�)
]

∕
∑

�

s2(�)

(6)R(x) = R0(x) + p* P0(x)

uncorrelated with WCIO rainfall (compare panels 8a and b). 
As noted by Abid et al. (2021), when the regression patterns 
with the ‘independent’ tropical signals are considered (pat-
terns R0(x) and P0(x) in panels 8b and d), the teleconnection 
with WCIO rainfall has a much stronger amplitude than the 
Niño3.4 teleconnection over the NAE region.

Figures 9 and 10 show the same regression patterns as 
in Fig. 8, but computed from re-forecast ensembles from 
ECMWF and UKMO respectively. Spatial correlations and 
anomaly ratios with respect to the ERA5 patterns (again 
for the NAE region) are listed above each panel, and also 
reported in Table 4.

Before looking at those patterns, it is important to check if 
the relationship between the Niño3.4 and WCIO indices, as 
quantified by the p* coefficient, is realistically reproduced by 
the two models. We find p* = 0.45 for the ECMWF ensem-
bles and p* = 0.29 for the UKMO ensembles; respectively, 
these values are about 30% higher and 10% lower than the 
ERA5 coefficient, so we cannot attribute the deficiencies in 
the Niño3.4 regression pattern to a significant underestima-
tion of the Niño3.4 -WCIO connection (as also suggested 
by Fig. 7).

Turning to the re-forecast regression patterns, a common 
feature between the two models is that the regression pattern 
P0(x) on the ‘independent’ WCIO signal  p0(τ) is much more 
zonally symmetric than the corresponding ERA5 pattern, 
and of much weaker amplitude. However, a different picture 
emerges from the two models’ data when considering how 
the teleconnections from the two tropical signals  s0(τ) and 
 p0(τ) interact with each other.

In the ECMWF ensembles, the regression patterns R0(x) 
and P0(x) (panels 9b and d) are both poorly correlated with 
the ERA5 counterparts, and also negatively correlated with 
each other over the NAE region; combining the two signals 
leads to an improvement in the spatial correlation of the 
‘full’ Niño3.4 teleconnection (R(x) in panel 9a) with the 
ERA5 pattern, but also a reduction in the total amplitude. 
In the UKMO ensembles, the regression patterns R0(x) and 
P0(x) (panels 10b and d) are positively correlated over the 
Atlantic, as in ERA5, but both have a much weaker ampli-
tude than the re-analysis patterns. When they are combined, 
the response over the North Atlantic increases (see panel 
10a), but the impact of adding the WCIO contribution is 
much more modest that in the ERA5 teleconnections.

In summary, these results confirm earlier findings on 
the serious deficiencies found in the simulation of Indian 
Ocean teleconnections by state-of-the-art GCMs (Molteni 
et al. 2020). These deficiencies undoubtedly contribute to 
the poor simulations of the early-winter teleconnection 
between ENSO and the North Atlantic circulation, but we 
cannot conclude that they are the only cause. The telecon-
nection with the component  s0(τ) of the Niño3.4 anomaly, 
uncorrelated with WCIO rainfall, is also misrepresented 

Fig. 6  Comparison of S/N ratios between nine model ensembles and 
ERA5 data. a For El Niño and La Niña events in ND; b for El Niño 
and La Niña events in JF; c for El Niño events in ND and JF

◂
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by the two models: the ECMWF regression on  s0(τ) has 
a realistic amplitude but a poor spatial correlation with 
the ERA5 pattern, while the UKMO ensembles produce 
a better correlated pattern but with half the amplitude of 
the ERA5 regression.

Finally we note that, if we had a larger sample of years 
for both re-analysis and re-forecasts, we could also obtain 
a reliable estimate the ENSO-independent teleconnec-
tion of WCIO rainfall by computing the regression pat-
tern P0(x) only using years with neutral ENSO conditions, 
without any further decomposition. With just 7 neutral 
ENSO years in the re-forecast sample, the latter procedure 
may not provide a robust estimate, but we just used it to 
check the consistency with the results of the statistical 
decomposition over the full 24-year re-forecast sample 
(i.e. with the pattern P0(x) computed from Eq. 6). The 
results for ERA5 and both the ECMWF and UKMO mod-
els (not shown) are broadly consistent with the results 
of the statistical decomposition made from the full data 

record, confirming the zonally-symmetric structure of the 
model teleconnections and their much reduced amplitude 
with respect to the ERA5 pattern.

5  Summary and conclusions

In this study, we have investigated how nine state-of-the art 
seasonal forecasting systems, namely those contributing to 
the operational C3S MME in winter 2021/22, perform in 
simulating the early- and late-winter response to ENSO, with 
a focus on the North Atlantic-European (NAE) region. Using 
re-forecast ensembles covering winters 1993/94 to 2016/17, 
we have computed regression and composite patterns for El 
Niño and La Niña events, as well as signal-to-noise (S/N) 
ratios for the projections of individual anomalies onto the 
regression patterns in the NAE sector. The main results are 
as follows:

Fig. 7  Difference between rainfall composites in El Niño and La Niña 
events over the Indo-Pacific region. Top row: ERA5 composites in 
ND (a) and JF (b). Bottom row: composites in ND from the ECMWF 
(c) and UKMO (d) re-forecasts. Statistics are computed over the 

region limited by the black border: lin.: absolute value of the spatial 
correlation between separate El Niño and La Niña composites (not 
shown); cor.: spatial correlation between model and ERA5 compos-
ites; amp.r.: ratio of rms amplitudes in model/ERA5 composites
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• While all models reproduce late-winter (JF) statistics 
with a high degree of fidelity, the amplitude of the early-
winter (ND) response in NAE is severely under-estimated 
with respect to the patterns derived from ERA5 data, on 
average by a factor of 2.

• Models do agree with ERA-5 data in showing a larger 
S/N ratio in El Niño winters than in La Niña winters, 
but do not reproduce the large S/N ratio found in ERA-5 

data for the ND El Niño response. Contrarily to ERA5, a 
majority of models produce a larger S/N ratio in JF than 
in ND for El Niño events.

We have further investigated to what extent the defi-
ciencies in simulating the early-winter NAE response can 
be attributed to a poor representation of the constructive 
interference of teleconnections from the Indian and Pacific 

Fig. 8  Regression patterns of 500-hPa height on the four indices s(τ), 
 s0(τ), p(τ),  p0(τ) defined in Sect. 4, from ERA5 data. Top row: regres-
sion patterns R(x) and R0(x) derived from the Niño3.4 SST anomaly; 

units: m/oK. Bottom row: regression patterns P(x) and P0(x) derived 
from the precipitation anomaly in WCIO; units: m/(mm  day−1)
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Oceans. Following Abid et al. (2021), we have separated 
the independent contribution from central Pacific SST 
anomalies and the Indian Ocean rainfall anomalies, which 
are in turn affected by ENSO. As the total regression pat-
tern against the Niño3.4 index can be written as a super-
position of the two terms, we looked at how the individual 
contributions from the two ocean basins were simulated by 
the ECMWF and UKMO models, in comparison to ERA5 
results.

These diagnostics show that, while in re-analysis data 
the Indian Ocean teleconnection plays a major role in rein-
forcing the Pacific signal propagating into the NAE region 
(actually being the dominant signal, as argued by Abid et al. 
2021), both the ECMWF and UKMO models produce a 
weaker and more zonally-symmetric teleconnection, which 
fails to increase significantly the fidelity of the total ENSO 
response. However, deficiencies in either phase or amplitude 
were also found in the linearly-independent teleconnection 

Fig. 9  As in Fig. 8, from the ECMWF re-forecast ensembles. Units: m/oK in top panels, m/(mm  day−1) in bottom panels. Spatial correlations and 
amplitude ratios with respect to the ERA5 patterns are listed above each panel
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Fig. 10  As in Fig. 8, from the UKMO re-forecast ensembles. Units: m/oK in top panels, m/(mm  day−1) in bottom panels. Spatial correlations and 
amplitude ratios with respect to the ERA5 patterns are listed above each panel

Table 4  Spatial correlations and amplitude ratios (over the NAE sector) of the ECMWF and UKMO regression patterns shown in Figs. 9 and 10, 
with respect to the ERA5 patterns in Fig. 8

Regression pattern/Index: R(x), s(τ) R0(x),  s0(τ) P(x), p(τ) P0(x),  p0(τ)

ECMWF correlation/amplitude ratio 0.79
0.54

0.38
0.81

0.77
0.47

0.38
0.56

UKMO correlation/amplitude ratio 0.71
0.40

0.70
0.48

0.61
0.42

0.52
0.42
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from Niño3.4 SST, implying that the Indian Ocean telecon-
nection is not the only source of error in the early-winter 
ENSO response.

Given the large sample size allowed by the multiplicity of 
realisations in the re-forecast ensembles, the main source of 
statistical uncertainty in our results comes from the limited 
sample of seasonal means in the ERA5 record, especially 
when El Niño and La Niña events are considered separately. 
By using a re-sampling method, we have tested that the dif-
ference in S/N ratio between the ND and JF response to El 
Niño is statistically significant, with less than 1% chance of 
this result being obtained by chance from ERA5 data. Using 
the same technique, we have shown that the differences 
between ERA5 and model composites for El Niño events in 
ND are also highly significant. With regard to the contribu-
tion of the Indian Ocean teleconnection in ND, it should be 
pointed out that teleconnections following the MJO phases 
when convection is active over the Indian Ocean are also 
underestimated by many state-of-the-art models (see e.g. 
Vitart 2017 for a summary of results from the S2S database), 
pointing to a common problem across different time scales.

In conclusion, it is fair to say that understanding why so 
many state-of-the-art coupled models fail (in a rather similar 
way) to represent the observed features of the early-winter 
ENSO response, while all doing a rather good job in JF, is a 
particularly difficult task. Given this limited comprehension, 
it is important not to be excessively complacent about the 
positive results published recently about late-winter seasonal 
forecasts for the northern extratropics (e.g. Scaife et al. 2014; 
Dunstone et al. 2016; Mezzina et al. 2022). While the JF (or 
JFM) period is more relevant in terms of temperature anom-
alies, late autumn and early winter represent the main rainy 
season in many parts of southern Europe. As shown by Ayar-
zagüena et al. (2018) and Abid et al. (2021), the early-winter 
ENSO teleconnection involves inter-dependent signals from 
different parts of the tropical oceans, and represents a strin-
gent test on the ability of coupled models to reproduce the 
complexity of tropical-extratropical interactions.

Appendix

Statistical relationships between original anomalies 
and linearly independent components of Nino3.4 
SST and WCIO rainfall, and the associated regression 
patterns.

As in Sect. 4, let s(τ) and p(τ) be the time-series of anoma-
lies of Nino3.4 SST and WCIO rainfall, where the variable τ 
spans different years and, in the case of ensembles, different 

ensemble members. The Euclidean inner product between 
the two time-series is:

and their squared norm is

We can decompose each of the two time-series in two 
components: a linearly independent component, orthogonal 
to the other time series, and a regression term against the 
other time series:

where the regression coefficients s* and p* are given by:

It follows that:

where ρ is the correlation coefficient between s(τ) and p(τ), 
and the variance of the orthogonal components is:

Using Eqs. (A3 and A4) above, we can write s(τ) as a 
linear combination of  s0(τ) and  p0(τ):

Dividing Eq. (A8b) by  〈s0
2(τ) 〉 and using Eqs. (A5 and 

A7) to write s* = p*〈   s0
2(τ)〉  /〈p0

2(τ)〉 we obtain:

By extending the definition of inner product to define 
one term as a space–time-varying field, we can rewrite the 
definition of the ENSO regression pattern for an anomaly A 
(x, τ) (Eq. 1 in Sect. 2.2) as

Because of the linearity of the inner product, combining 
Eqs. (A9 and A10) gives:
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s2(�)
�

(A6)s* p* = ⟨ s(�), p(�)⟩2∕
��

s2(�)
��

p2(�)
��

= �
2

(A7)

⟨

s2
0
(�)

⟩

=
⟨

s2(�)
⟩(

1 − �
2
)

,
⟨

p2
0
(�)

⟩

=
⟨

p2(�)
⟩(

1 − �
2
)

(A8a)s(�) = s0(�) + s*
(

p0(�) + p* s(�)
)

(A8b)s(�)
(

1 − �
2
)

= s0(�) + s* p0(�)

(A9)
s(�)∕

⟨

s2(�)
⟩

=
(

s0(�)∕
⟨

s2
0
(�)

⟩)

+ p*
(

p0(�)∕
⟨

p2
0
(�)

⟩)

(A10)R(x) = ⟨A(x, �), s(�) ⟩∕
�

s2(�)
�
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where R0(x) and P0(x) are the regression patterns of field A 
(x, τ) onto  s0(τ) and  p0(τ) respectively.
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