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Abstract
A statistical study was made of the temporal trend in extreme temperatures in the region of Extremadura (Spain) during the 
period 1981–2015 using a Regional Climate Model. For this purpose, a Weather Research and Forecasting (WRF) Regional 
Climate Model extreme temperature dataset was obtained. This dataset was then subjected to a statistical study using a Bayes-
ian hierarchical spatio-temporal model with a Generalized Extreme Value (GEV) parametrization of the extreme data. The 
Bayesian model was implemented in a Markov chain Monte Carlo framework that allows the posterior distribution of the 
parameters that intervene in the model to be estimated. The role of the altitude dependence of the temperature was considered 
in the proposed model. The results for the spatial-trend parameter lend confidence to the model since they are consistent 
with the dry adiabatic gradient. Furthermore, the statistical model showed a slight negative trend for the location parameter. 
This unexpected result may be due to the internal and modeling uncertainties in the WRF model. The shape parameter was 
negative, meaning that there is an upper bound for extreme temperatures in the model.

Keywords Extreme temperature · Regional climate model · GEV distribution · Bayesian hierarchical model

1 Introduction

It has now become quite clear that the emission into the 
atmosphere of huge amounts of CO2 from the combustion 
of fossil fuels by humankind, together with other changes 
such as deforestation and intensive agriculture, is alter-
ing the climate, with rising temperatures over most of the 
planet (Cubasch et al. 2013). One concern for society and 

its policymakers is that higher average temperatures may 
enhance the risk of extreme events such as heatwaves. These 
are associated with effects that can be lethal for humans, and, 
even below lethality, can have adverse impacts on their live-
lihoods (Field et al. 2012). Examples of such heatwaves were 
those that occurred in Southern Europe in 2003 (García-Her-
rera et al. 2010), Russia in 2010 (Barriopedro et al. 2011), 
and Canada in 2021 Thompson et al. (2022).

The best tools with which to project the future evolution 
of these extreme events are global climate models (GCMs) 
that take account of forcing from greenhouse gas emissions 
(see for example (Randall et al. 2007)). At present however, 
these models are too coarse to properly represent atmos-
pheric properties such as temperature or precipitation at the 
local scale as would be needed for adaptive planning and 
policy making. This issue is usually addressed by downscal-
ing the GCMs using Regional Climate Models (RCMs) (see 
for example (Xu et al. 2019; Tapiador et al. 2020) and refer-
ences therein). An RCM is a limited-area weather model 
embedded in a GCM, or a higher resolution reanalysis that 
takes inhomogeneities of the Earth’s surface into account as 
well as other properties not covered by the coarser GCMs. 
Obviously, if an RCM is to be used to study the future state 
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of the climate then it must describe reasonably well the cur-
rent state. The variable on which the present study will focus 
is that of extreme temperatures.

There are two main ways to approach the study of extreme 
meteorological and climate events. One is to use extreme 
indices such as some high percentile of the probability dis-
tribution function (Zhang et al. 2010; Peterson et al. 2001; 
Peterson 2005). The other is to apply the branch of statis-
tics known as extreme value theory (EVT). An important 
advantage of the latter is that the technique is more informa-
tive than that of the extreme indices since, by obtaining the 
parameters of the distribution function, one can estimate the 
likelihood of as-yet unobserved events—the 100-year return 
level for example. This feature is widely used for engineering 
design purposes. The main drawback of EVT is probably the 
requirement for independence of the data which is needed 
to estimate the parameters of the distribution. But Coles 
(2001), among others, have shown that under conditions of 
weak dependence between the variables, the EVT can still 
be applied. The present work in particular applies the GEV 
formulation of EVT in order to get a climatological picture 
of extreme temperature events through estimating the param-
eters of the corresponding extreme value distribution. Given 
the spatial character of temperature as a variable, it seemed 
appropriate to use the theory of spatial extremes to study 
it. Three approaches have typically been used to address 
the problem of spatial extremes—max-stable random fields, 
copulas, and Bayesian hierarchical models (Davison et al. 
2012)—and it is this last approach we shall take in the pre-
sent work. One of the more important benefits of using a 
spatial extremes theory instead of modeling each observa-
tory individually is the increased precision when estimating 
the parameters of the statistical distribution. Indeed, one of 
the difficulties one faces in a statistical study of extreme 
data is that, by their very nature, extreme data are ‘rare’, i.e., 
there are usually so few data that one must expect to get a 
large uncertainty in the parameters that describe the tail of 
the statistical distribution. One way to mitigate the conse-
quences of this lack of data and to increase the precision of 
the parameter estimates is to trade space for time, pooling 
information from different observatories (see, for example, 
(Casson and Coles 1999; Cooley et al. 2007; Schliep et al. 
2010)). Also, as pointed out by Renard (Renard 2011), a 
spatial theory allows the parameters of the extreme distribu-
tion to be estimated at an ungauged or poorly gauged site. 
This important advantage allows one to address the so-called 
change of support problem in spatial statistics (see (Gelfand 
et al. 2001; Fuentes et al. 2003)). This problem arises when 
one tries to compare data coming from sources at different 
spatial scales. In our case, we want to compare the extreme 
value distribution obtained from a model defined at a grid-
cell scale with that obtained at a meteorological observa-
tory defined at a local scale. Moreover, the use of Bayesian 

statistics allows one to account properly for the uncertainties 
that naturally arise when modeling meteorological phenom-
ena (see Epstein (1985)).

Most published studies dealing with extreme weather 
and climate events obtained from GCM/RCM models used 
extreme indices (Sillmann et al. 2013a, b; Bartolomeu et al. 
2016; Deng et al. 2016; Jiang et al. 2015; Lorenz et al. 2016; 
Zollo et al. 2016). Far fewer have used EVT. As one example 
of applying EVT, Kharin and Zwiers (2005) made a study 
of extreme temperature and precipitation in a GCM for the 
period 1990–2100, considering several scenarios using a 
GEV distribution. Also, Tomassini and Jacob (2009) made 
an analysis of extreme precipitation in Germany using a non-
homogeneous Poisson point process to determine the GEV 
parameters. Both cases, however, fitted the statistical model 
to the results obtained at each grid point individually. On 
the other hand, Schliep et al. (2010) used a spatial hierarchi-
cal model in a study of extreme precipitation obtained from 
six different RCMs. That study used a multivariate intrinsic 
autoregressive (IAR) spatial model—a kind of Gaussian 
Markov Random Field model. While this type of model is 
computationally well suited to fitting the gridded output of 
a climate model, it is less suitable for making a prediction at 
a ‘non-observed’ site. A model closer to the one used in the 
present work is that of Craigmile and Guttorp (2013) who 
studied extreme minimum temperatures obtained in Sweden 
from an RCM. The main problem we have found in that 
paper is that the analysis does not take the altitude depend-
ence of the temperature into account, a dependence that is 
now included in the present model.

The objective of the present study was therefore two-
fold—firstly, to simulate the present climate in our region by 
means of an RCM, specifically, the WRF v4.0 model using 
ERA Interim reanalysis boundary conditions, and secondly, 
to produce a statistical model which can be used to charac-
terize summer extreme temperatures produced by the RCM 
for the region of Extremadura (Spain). This statistical model 
will then be used to assess whether the RCM can correctly 
describe the region’s observed extreme temperatures.

The paper is organized as follows. The data used are 
described in Sect. 2, the details of the statistical model are 
presented in Sect. 3, and the results in Sect. 4. Finally, some 
conclusions are drawn and discussed in Sect. 5.

2  Data

The temperature data used come from a simulation of the 
climate using the community WRF model (version 4.0.1) 
(Skamarock et al. 2008) forced with ERA Interim (Dee 
et al. 2011) reanalysis. The period for the simulation was 
1980–2015. The simulation used two two-way nested 
domains centred in the Iberian Peninsula. The larger external 
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domain’s resolution was 36 km, and the internal one’s was 
9 km. Figure 1 shows the position of the two domains. The 
number of vertical levels is 50.

Every 6 h, the boundary conditions, including Sea Sur-
face Temperature (SST) and deep-soil temperature updates, 
were provided, and analysis nudging was applied in the 
external domain beyond the Planetary Boundary Layer 
(PBL). The WRF physical configuration was: Microphys-
ics—WRF Single-Moment 6-class (Hong and Lim 2006); 
Longwave/Shortwave Radiation—RRTMG (Iacono et al. 
2008); Surface Layer—MM5 similarity (Jiménez et  al. 
2012); Planetary Boundary Layer—Yonsei University 
(Hong et  al. 2006; Hong 2010); Land Surface—Noah 
Land Surface Model (Chen and Dudhia 2001); Cumulus 

Parametrization—Grell-Freitas (Grell and Freitas 2014). 
The model was run at intervals of 6 years, disregarding the 
first as a spin-up, and combining the results at the end. The 
version of WRF used was that modified by (Fita et al. 2019) 
which allows the user to obtain extreme values from the data 
simulated at each step of the modeling process.

In the inner domain, we focused on the region of Extrem-
adura (Fig. 2).

For comparison with the results obtained with our sta-
tistical model, a set of extreme temperatures in the period 
1981–2015 observed at 28 meteorological observatories 
sited in the aforecited region of Extremadura was used. 
Table 1 lists the code, name, and geographic coordinates of 
these observatories. Figure 3 shows their positions within 
the region of Extremadura.

For both the WRF model and the observed data, the 
extreme temperature is the highest temperature during the 
summer season (June–July–August).

We also used the Stead database developed by Serrano-
Notivoli, Begueria, and De Luis Serrano-Notivoli et al. 
(2019) to compare the climatology of the maximum daily 
summer (June–July–August) temperatures given by the 
WRF model.

3  Statistical model

As was noted in the Introduction, we shall use a Bayes-
ian hierarchical model framework in which to address the 
problem of estimating the parameters of a spatial Extreme 
Value model. In this framework (see Berliner (2003); Cressie 
(2011)), in the first stage, denoted ‘data model’, it is assumed 
that the observed noisy data are random variables that 
depend on a latent (unknown) process plus various param-
eters. In the second stage, denoted ‘process model’, a model 
is proposed for the latent process through a conditional 
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Fig. 1  The blue boxes in the map shows the position of the two 
domains used in the simulation. The larger external domain’s resolu-
tion was 36 km, and the internal one’s was 9 km

Fig. 2  Location of the Extrema-
dura region in the Iberian 
Peninsula (left). Topographic 
map of Extremadura as seen by 
the WRF model (right) with the 
scale in the colorbar in metres 
above sea level (m.a.s.l.)
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probability distribution. It is in this second stage that scien-
tific models are usually introduced. The third stage, denoted 
‘parameter model‘, can be considered the Bayesian part of 
the hierarchical model. In it, the parameters are considered 
random variables with a probability distribution function to 
take into account the uncertainties about them. 

Stage 1 (data model)  P(data | process, parameters)

Stage 2 (process model)  P(process | parameters)

Stage 3 (parameter model)  P(parameters)

 Bayes’ theorem allows one to determine the distribu-
tion of the model’s parameters once the data have been 
observed. The corresponding relationship is

The distribution on the left hand side of Equation (1) 
is termed the posterior distribution, the distribution 
P(parameters) on the far right the prior distribution, and the 
distribution P(data|process, parameters) in the middle the 
likelihood. One of the problems with Equation (1) is that 
the proportionality constant is unknown. Its evaluation is 
only feasible in simple cases. The introduction of numeri-
cal techniques such as Markov chain Monte Carlo (MCMC) 
methods ( Gilks et al. (1996)), however, has allowed numeri-
cal simulation of the posterior distribution of the param-
eters, in particular by obtaining a sample of the parameters 
of interest. In the following subsections, we shall describe 
the proposed model in greater detail.

This hierarchical model may be placed in a more specifi-
cally climatological context (see for example Berliner (2003), 
Cooley et al. (2007)). It is well known that the weather, i.e., 
the state of the atmosphere at a given time and place, may be 
regarded as a random process and the relevant weather vari-
ables (pressure, temperature, etc) as random variables. The 
values of these random variables are expressed by probability 
distributions whose parameters may be considered to represent 
the climate of that place. This process corresponds to Stage 
1 of the hierarchical model. Furthermore, in Stage 2, the cli-
mate, represented by the parameters of the distribution, is 

(1)

P(process, parameters | data)
∝ P(data | process, parameters) ⋅ P(process | parameters)
⋅ P(parameters).

Table 1  Code, name, and geographical coordinates of the meteoro-
logical observatories used in the study

Obser-
vatory 
code

Name Longitude Latitude

3384 GARVIN DE LA JARA −5.358 39.689
3429 VILLANUEVA DE LA VERA −5.382 40.078
3439 BARRADO −5.882 40.083
3448 SERRADILLA −6.141 39.830
3455 ALDEACENTENERA −5.678 39.568
3469 CACERES −6.338 39.471
3502 PANTANO GABRIEL Y GALAN −6.125 40.220
3528 CORIA −6.590 39.980
3531 VILLANUEVA DE LA SIERRA −6.404 40.200
3562 HERRERUELA −6.906 39.462
3575 SANVICENTE ALCANTARA −7.136 39.362
3576 VALENCIA DE ALCANTARA −7.247 39.416
4244 HERRERA DEL DUQUE −5.049 39.165
4245 GUADALUPE −5.333 39.455
4320 PANTANO DE ZUJAR −5.485 38.916
4358 DON BENITO −5.860 38.955
4385 VALENCIA DE LAS TORRES −5.985 38.447
4411 ALCUESCAR −6.228 39.180
4429 LOS SANTOS DE MAIMONA −6.382 38.450
4436 ALMENDRALEJO −6.361 38.690
4444 MONTIJO −6.615 38.911
4452 BADAJOZ/TALAVERA LA REAL −6.813 38.883
4471 PRESA PEÑA DEL AGUILA −6.876 39.140
4484 PANTANO DE PIEDRA AGUDA −7.017 38.687
4500 CALZADILLA DE LOS BARROS −6.316 38.300
4511 JEREZ DE LOS CABALLEROS −6.771 38.318
4520 FREGENAL DE LA SIERRA −6.651 38.168
5769 MONTEMOLIN −6.136 37.994
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itself regarded as a random process expressed by a probability 
distribution. Finally, in Stage 3, a probability distribution is 
proposed for the prior of the parameters that appear in Stage 2.

3.1  First stage (data model)

In the first stage, we assume that the block extreme data at 
observatory s, Ys follow a GEV distribution, where the prob-
ability distribution function can be expressed as

In the present study, the block extreme data are maximum 
temperatures in the summer season (June-July-August). It 
is also assumed that, conditional on �s , �s and �s , the block 
extremes are spatially and temporally conditionally inde-
pendent, i.e., the block extreme at observatory s conditional 
on �s , �s , and �s is independent of the block extreme at obser-

vatory s′ , and that the block extreme observed at time t is 
independent of that observed at time t′ . The scale parameter 
�s represents the spread of the distribution, with a greater 
value representing greater dispersion of the maximum tem-
perature. The shape parameter �s represents the tail behav-
iour of the extreme distribution—a negative parameter cor-
responds to a bounded tail, otherwise the tail is unbounded.

3.2  Second stage (process model)

In the second stage, the parameters of the GEV distribu-
tion are assumed to follow a spatio-temporal model, i.e., 
to depend on spatial coordinates s and time t. At this point, 
it is important to distinguish between stationary and non-
stationary models. In the former, the GEV parameters do 
not depend on time, while in the latter they do. In the 
stationary case, the parameters of the GEV distributions 
are assumed to take the form

where X�,�,�(s) are p spatial covariates (geographical coor-
dinates) that may be different for each parameter, ����,�,� is a 
set of p regression parameters, W�,�,�(s) are spatial models 

(2)

P(Ys ≤ y|𝜇s, 𝜎s, 𝜉s) = exp

{
−

[
1 + 𝜉s

(
y − 𝜇s

𝜎s

)]−1∕𝜉s}
,

1 + 𝜉s

(
y − 𝜇s

𝜎s

)
> 0.

(3)�(s) = X�(s) ⋅ ���� +W�(s) + ��

(4)�(s) = X�(s) ⋅ ���� +W�(s) + ��

(5)�(s) = X�(s) ⋅ ���� +W�(s) + ��

capturing the associations between different sites (grid 
cells), and ��,�,� represent noise unaccounted for in the spa-
tial models (generally known in the spatial data community 
as the nugget effect), and s denotes a spatial coordinate. In 
the non-stationary case, a linear time dependence is included 
in the location parameter:

This equation can be rewritten as

In Eq. (6), it has been assumed that the temporal-trend coef-
ficient may depend on geographical factors through the 
covariates X′

�
 , and that nearer sites could show a stronger 

temporal relationship through the spatial model W ′
�
 . The 

spatial models W�(s), � = �, �, �;W �
�
(s) are assumed to be 

of the form

where Z is an n × r matrix and Ψ�(�
�) is a spatial process of 

dimension r. This spatial process is modeled as a multivari-
ate Gaussian process with zero mean and covariance matrix 
� , i.e.,

The r × r covariance matrix defines the covariance among 
the r spatial locations, and is assumed to be of the form

where R� is the correlation matrix. The parameter ��2 (also 
called the range parameter) defines the strength of the asso-
ciation in the relationships among the spatial sites. The 
variance parameter �2

�1
 is also known as the sill in the geo-

statistics community. The residual noise �� is modeled as 
a Gaussian process of zero mean and variance �2

�
 which is 

assumed to be constant everywhere.
The reason for the introduction into our model of a matrix 

Z that transforms an r-spatial process into an n-spatial pro-
cess is the following. The number of grid cells increases 
enormously as the resolution of the model increases. For 
example, for our region of Extremadura and with a WRF res-
olution of 9 km, there are 957 grid cells. Such a large num-
ber of cells makes the numerical problem nearly unfeasible 
(the covariance matrix would be 957×957 and we would 
have to invert such a large matrix at each MCMC step). 
To lighten the numerical burden, we followed the method 
proposed in Banerjee et al. (2008), and modified in Finley 
et al. (2009) (see also Eidsvik et al. (2012)). Those authors 

(6)
�(s, t) = X�(s) ⋅ ���� +W�(s) + (X�

�
(s) ⋅ ����

+W �
�
+ ��

�
)(t − t0) + ��.

(7)�(s, t) = �0(s) + �1(s)(t − t0).

(8)W�(s) = ZΨ�(�
�); � = �, �, �

(9)Ψ�(�
�) ∼ MVN(0;��); � = �, �, �

(10)��(s
�, s�) = �2

�1
exp(−‖s�

i
− s�

j
‖)∕��2) = �2

�1
R�(��2)
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proposed replacing the W� process by what they called a 
predictive process W̃𝜅 , defined as

where ��(s, s
�) is the n × r covariance matrix between an 

s-site and an s’-site. With a value r ≪ n , the problem of 
inverting an n × n matrix at each MCMC step reduces to 
that of inverting an r × r matrix. In this work, we have sub-
sampled the WRF grid every three rows and columns, which 
yields an r-matrix of 110×110 elements. The substitution of 
the W� process by the predictive W̃𝜅 process has the conse-
quence of reducing the variance of the spatial process. To 
compensate for this, Finley et al. (2009) proposes increasing 
the nugget variance �2I by the amount

To close this second stage, Equation (3) may be expressed 
as normal distributions: for the stationary model,

and for the non-stationary model,

where the 𝜏i represent the increased nugget variances.

3.3  Third stage (prior model)

In the third stage, prior distributions have to be provided 
for the parameters used in the previous two stages, in par-
ticular, for the spatial regression coefficients ���� , the param-
eters of the covariance model �2

�1
, ��2 , the nugget variances 

�2
�
 , and, in the non-stationary case, the trend parameters 

���� , �
′2
�1
, �′

�2
, �′2

�
 . As the present study area is not too large, 

we took as covariates X the grid cell heights provided by 
the WRF topography (see Fig. 2, right). Therefore, the term 
X(s) ⋅ ���� can be written as ��0 + hs��1 , so that we need to 
provide priors for ��0, ��1 . Gaussian distributions were used 
for both cases:

(11)
W̃𝜅(s) = E(W𝜅(s)|Ψ𝜅(s

�)) = �𝜅(s, s
�) ⋅ �−1

𝜅
(s�, s�)

Ψ𝜅(s
�) =Z𝜅Ψ𝜅(s

�),

Diagonal(I − ��(s, s
�)�−1

�
(s�, s�)��(s

�, s)).

𝜇(s) ∼N(X𝜇(s) ⋅ 𝛼𝛼𝛼𝜇 +W𝜇(s), 𝜏
2
𝜇
)

𝜎(s) ∼N(X𝜎(s) ⋅ 𝛼𝛼𝛼𝜎 +W𝜎(s), 𝜏
2
𝜎
)

𝜉(s) ∼N(X𝜉(s) ⋅ 𝛼𝛼𝛼𝜉 +W𝜉(s), 𝜏
2
𝜉
),

𝜇1(s) ∼N(X𝜇(s) ⋅ 𝛼𝛼𝛼𝜇 +W𝜇(s), 𝜏
2

𝜇
)

𝜇2(s) ∼N(�
�
𝜇(s) ⋅ 𝛾𝛾𝛾𝜇 +W �

𝜇
(s), 𝜏�2

𝜇
)

𝜎(s) ∼N(X𝜎(s) ⋅ 𝛼𝛼𝛼𝜎 +W𝜎(s), 𝜏
2

𝜎
)

𝜉(s) ∼N(X𝜉(s) ⋅ 𝛼𝛼𝛼𝜉 +W𝜉(s), 𝜏
2

𝜉
),

��j ∼ N(a��j , b
2
��j
), � = {�, �, �}, j = {0, 1},

where the hyperparameters of mean ( a��j ) and variance ( b2
��j

 ) 
were chosen appropriately in such a way that the distribution 
was either non- or only weakly informative with no extra 
information about the parameters, e.g., ��j ∼ N(0, 10000) . 
A similar model (Gaussian) was selected for the trend 
parameter ��� in the non-stationary model. The sill parameters 
�2
�1

 and the nugget variances �2
�
 were parametrized by inverse 

gamma distributions. A uniform distribution was chosen for 
the range ��2.

3.4  Parameter estimation

Pulling together the different parts of the hierarchical model, 
and taking into account Bayes’ theorem as expressed in 
Equation (1), for the stationary model, the posterior distri-
bution of the parameters is given by the expression

where W� , � = �, �, � has been estimated by its definition 
W� = ZΨ� . For the non-stationary model, the posterior dis-
tribution is given by the expression

where ��� = ���0 + f (t)���1 , with f (t) = (t − t0) being the linear 
temporal-trend function.

The simulation of the posterior distribution was carried 
out by means of an MCMC method, in particular using a 
Gibbs sampler with embedded Metropolis-Hastings steps 

(12)
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(see Gilks et al. (1996) for more details about MCMC meth-
ods). The MCMC was iterated for 50 000 samples with a 
burn-in period of 30 000 samples to allow the MCMC to 
reach the stationary state. To avoid the autocorrelation that 
appears in the MCMC, we kept one out of ten samples for 
the subsequent calculations. To test the convergence of the 
chains, four chains were constructed starting with differ-
ent values of the parameters being simulated. The Gel-
man–Rubin diagnostic convergence test (see Cowles and 
Carlin (1996)) was used to evaluate the convergence of these 
four chains. In most cases, that burn-in period was sufficient 
for convergence to be reached.

A preliminary study of the spatial models revealed that 
the spatial-trend coefficient ���� for the shape parameter � is 
not significantly different from zero. For this reason, and 
given that the shape parameter is the most difficult to esti-
mate Sang and Gelfand (2009); Cooley and Sain (2010) we 
shall assume this shape parameter to be constant throughout 
the domain.

The code used to carry out the simulations was written in 
FORTRAN, following quite closely the procedure in Finley 
et al. (2015). For the Gelman-Rubin diagnostic test, the CODA 
package of the R language was used, and the maps and figures 
were prepared using the R packages fields and sp.

3.5  Checking the models

An important step in a statistical analysis is to assess whether 
the observed data are indeed fitted by the proposed statisti-
cal model or models. A two-step procedure was followed. In 
the first step, the models were ranked according to the WAIC 
(Widely Applicable Information Criterion) model compari-
son tool (Gelman et al. 2014). In the second step, the chosen 
model was contrasted with the data by means of a Bayesian 
p-value procedure. In both steps the posterior predictive dis-
tribution was used. The posterior predictive distribution (PPD) 
is defined as (Gelman et al. 1996)

which gives the probability of obtaining new replicated data 
given the model M and the observed data y. In this equation, 
� represents the parameters of the model, P(�|M, y) the pos-
terior distribution, and P(yrep|M, �) the likelihood.

The WAIC criterion to rank the models is defined by the 
equation

(14)P(yrep|M, y) =
∫

P(yrep|M, �)P(�|M, y)d�,

(15)

WAIC = −2 log

(
n∏

i=1

P(yi)

)
+ pwaic = −2

n∑

i=1

log
(
P(yi)

)
+ pwaic,

where P(yi) is the PPD given by Equation (14), and pwaic is 
a term that measures both the bias introduced into the test 
from using the data twice—once to estimate the parameters, 
and a second time to use them in the test (see Gelman et al. 
(2014))—and the complexity of the model (penalizing mod-
els with more parameters). The term −2

∑n

i=1
log

�
P(yi)

�
 is 

estimated by the equation

where J is the number of samples taken from the MCMC 
method and �j are the estimated parameters of the model. 
The pwaic parameter is defined by the expression

where varpost is the operator variance and is estimated as

As before, J is the number of samples taken from the 
MCMC. The choice of the WAIC criterion is motivated by 
the fact that it is easy to calculate from the MCMC and that 
it has the property of being asymptotically equivalent to a 
leave-one-out cross-validation (LOO-CV) test (see Gelman 
et al. (2014)).

In the second step, the Bayesian p-value was evaluated as 
follows. Let T(y) be some feature of the data we are interested 
in, for example, the skewness of the data, and we want to see 
whether the model predicts this feature reasonably well. A 
measure of the agreement is the Bayesian p-value defined by 
Lynch and Bruce (2004)

A pb-value that is too small or too large would indicate that 
the model does not reproduce the data (or at least some fea-
tures of the data) well. One way to calculate the pb-value is 
from the MCMC. As was noted above, an MCMC method 
allows one to obtain values of the parameter � from the pos-
terior distribution P(�|y) . For each simulated � value, a yrep 
value is simulated by using the posited model, and then the 
statistic T(yrep) is computed. Evaluating the number of times 
that T(yrep) ≥ T(y) gives the pb-value as

with J being the number of samples of � taken from the 
Markov chain.

(16)−2

n∑
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log
(
P(yi)

)
≈ −2
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i=1

log
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1

J

J∑

j=1

(
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)
]
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[
log

(
P(yi)
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1

J − 1
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j=1

(xj − x̄); xj = log
(
P(yi|𝜃j)

)
.

(19)pb(y) = P
(
T(yrep) ≥ T(y) | M, y

)
.

(20)pb =
#
(
T(yrep) ≥ T(y)

)

J
,
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3.6  Prediction at a non‑grid site

Once we have fitted the model, we are in a position to predict 
variables of interest at a non-grid site. In particular, we are 
interested in predicting the parameters of the GEV distribu-
tion ���,���,��� in order to estimate, for example, the T-year return 
levels at those non-grid sites. We shall illustrate the method 
developed for the location parameter ��� . Based on Equation (3), 
we shall assume that if �0 is the location parameter at a non-
grid site then the joint statistical distribution of the location 
parameter at the grid and non-grid sites is given by

where MVN represents the multivariate normal distribution, 
m0,m are the means of the distributions at the non-grid site 
and grid sites respectively, �0 is the variance at the non-grid 
site, ΣΣΣnn is the n × n covariance matrix at the grid sites, and 
ΣΣΣ0n,ΣΣΣn0 are the 1 × n, n × 1 covariance matrices between the 
non-grid and grid sites. A result from multinormal distribu-
tion theory allows us to say that the conditional distribution 
of �0 given ��� , i.e., P(�0|���) , is normal with mean given by

and variance

Once the mean m1 and variance �1 have been estimated, one 
can take samples of the location parameter at the non-grid 
site. According to Eqs. (3) to (5), the ��� distribution is

where W� is the spatial process given by W� = ZΨ� , with 
Z being an n × r matrix and Ψ� an r × r MVN process with 

(21)
(
�0

���

)
∼ MVN

(
m0 | �0 ΣΣΣ0n

m | ΣΣΣn0 ΣΣΣnn

)

(22)m1 = m0 +ΣΣΣ0nΣΣΣ
−1
nn
(��� −m)

(23)�1 = �0 −ΣΣΣ0nΣΣΣ
−1
nn
ΣΣΣn0.

(24)��� ∼ MVN(X ⋅ ���u +W�, �
2
�
I)

zero mean and variance ΣΣΣ� (Eqs. (8) and (9)). Integrating in 
Ψ� , the above distribution may be expressed as

From this expression, one can take m = X ⋅ ���� and 
m0 = X0 ⋅ ���� . Taking into account Eq. (10), the r × r covari-
ance matrix ΣΣΣ� is given by

The Z matrix is given by (see Eq. (11)):

Lastly, the covariance between the non-grid and a grid site 
is taken as

and �0 = �2
�
.

4  Results

First of all, it is important to know whether the climate of 
the region (represented by the summer maximum tempera-
ture) is well described by the WRF model. Figure 4 shows a 
map of the mean summer extreme temperatures for the study 
period (1981–2015) given by the Stead database Serrano-
Notivoli et al. (2019) (left) and by the WRF model (right). 
As can be seen, the spatial distribution of the maximum tem-
perature is quite similar in the two maps, so that we have rea-
sonable confidence in the results given by the WRF model.

Moving to the statistical model, one first needs to estab-
lish the external covariate term X. Because the spatial 
domain is not too large, and given the influence of altitude 

(25)��� ∼ MVN(X ⋅ ����, ZΣΣΣ�Z
T + �2

�
I).

(26)
��(s

�, s�) = �2
�1
exp(−‖s�

i
− s

�
j
‖)∕��2), i, j = 1,⋯ , r.

(27)Z = ��(s, s
�) ⋅ �−1

�
(s�, s�).

(28)�n0 = �2
�1
exp(−||si − s0||)∕��2),

Fig. 4  Mean of the summer 
extreme temperature during 
the period 1981–2015 given by 
the WRF model (right) for the 
Iberian Peninsula and during 
the period 1981–2014 given by 
Stead database for Spain. Scales 
are in ◦C
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on temperature, we chose the height of the grid cell to be 
our covariate. Prior to their introduction into the model, the 
heights were linearly normalized to the interval (0, 1). With 
this choice of covariate, the spatial-trend term in the loca-
tion parameter ��� (stationary models) and ���0 (non-stationary 
models) is

and in the temporal-trend coefficient ���1 is

Prior to its use in the model, the linear temporal-trend func-
tion f (t) = t − t0 was also linearly normalized to the interval 
(− 1, 1).

We posited various models depending on whether or not 
there exists a temporal trend in the location parameter, and, 
within them, whether there exists a dependence on height 
in both the location and the scale parameters. As mentioned 
above, to rank the proposed models, the WAIC criterion was 
used. The results are presented in Table 2.

Observing column pwaic , one sees that as the complexity 
of the models increases so does the complexity parameter. 
The results in the last column lead to non-stationary mod-
els fitting better than stationary models, with model 2110 
performing the best. Therefore, this model was chosen for 
the next step—the assessment of the model against the data 
using the Bayesian p-value.

As noted above, to apply the Bayesian p-value we need 
to choose a statistic T(y) of the data that can help determine 
which model best explains some feature of the data. Because 
we are considering a time dependence in the models, we 

(29)X�(s) ⋅ ���� = �0 + hs�1,

(30)X
�
�
(s) ⋅ ���� = �0 + hs�1.

took the Mann-Kendall test as the feature to explain. This is 
a non-parametric test used to determine whether a uniform 
trend exists in a set of independent data. The test statistic is 
given by the expression Gallego et al. (2011)

where sgn(x) is the sign function defined as +1 if x > 0 , −1 
if x < 0 , and 0 if x = 0 , and n is the number of data for each 
grid cell. We calculated the pb-value by evaluating this sta-
tistic for the ‘observed’ and the replicated data. To simulate 
replicated data according to the PPD given by expression 
(14), an instance of the �, �, � parameters is taken from the 
MCMC chain, and a sample of n elements is extracted using 
the GEV distribution. The statistic T(yrep) is then evaluated 
from this sample. This procedure is repeated for each ele-
ment of the chain, obtaining a sample of J replicated Mann-
Kendall statistics. This statistic is also evaluated for the 
observed data. From the replicated sample and the observed 
datum, the pb value is calculated as the percentile of the 
observed T(yobs) in the J replicated Mann-Kendall statistics. 
Values of pb that are too large or too small mean that the 
replicated data do not explain that feature of the observed 
data well. If there are N grid cell elements in the domain, we 
obtain N pb values. From this set, we calculated, by way of 
synthesis, the minimum, the 25, 50, and 75 percentiles, and 
the maximum. For the chosen 2110 model, these values were 
0.1870, 0.4080, 0.4470, 0.5440, 0.9500, respectively. Val-
ues of the 25, 50, and 75 percentiles are close to 0.5, which 
means that for most sites the 2110 model explains quite well 
the temporal trend observed in the results given by the RCM.

Let us now consider this model’s results in greater detail. 
Firstly, Fig. 5 shows the spatial regression coefficients �0, �1 . 
The right-hand panel shows that the height-trend coefficient 
is negative with a mean value of −15.1◦ C. Therefore, given 
that the heights were normalized, and considering that the 
maximum altitude in the model is 1794.8 m and the mini-
mum is 134.8 m, one has the result that �1 = −9.35 ◦C/km , 
which is quite close to the theoretical adiabatic coefficient 
of −9.8 ◦C/km . It is important to bear in mind that the data 
correspond to summer when the temperatures are the highest 
and the atmospheric boundary layer is in nearly adiabatic 
equilibrium. This result lends added confidence to the pro-
posed model.

Secondly, we shall show the results for the temporal-
trend coefficients �0, �1 . Although the chosen model only 
has the �0 coefficient, an analysis of that model with �1 pre-
sent showed that coefficient to not differ from zero, i.e., 
the temporal-trend coefficient has no height dependence. 

(31)

T(y) =
1

√
n(n − 1)(2n + 5)∕18

�
n−1�

i=1

n�

j=i+1

sgn(yj − yi) − sgn(T)

�
,

Table 2  Summary of the values of the WAIC information criterion

The column headed ‘Model’ lists the tags used to distinguish the spa-
tial-trend parameters used in each statistical model. These tags are: 
2, dependence on the observatory’s altitude; 1, no dependence on 
altitude; and 0, the parameter is considered constant throughout the 
domain. For the stationary models, the three parameters are location, 
scale, and shape, respectively. For the non-stationary models, the four 
parameters are location ���

0
 , ���

1
 , and scale and shape, respectively. Col-

umn p
waic

 lists the model complexity parameter, and column WAIC, 
the WAIC parameter

Kind Model p
waic

WAIC

Stationary 200 816.7 232,663
210 923.8 231,042
220 923.4 231,038

Non-stationary 2000 819.9 231,314
2010 1051.2 230,790
2020 1050.1 230,782
2110 1079.4 230,480
2220 1079.1 230,486
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Figure 6 shows a density plot of �0 . The mean (2.5%, 97.5%) 
is −0.26 ( −0.39, −0.12). From the aforementioned linear 
temporal-trend function, one finds a temporal trend of −
0.15 ◦ C per decade with a 2.5–97.5% interval of ( −0.21 ◦ C, 
−0.10 ◦ C ) per decade. This is a surprising result because 

one would expect an increase in temperature due to cli-
mate change. Figure 7 shows a plot of the temporal-trend 
regression coefficient ( ◦C/year) obtained by the Sen method 
(Sen 1968; Hirsch and Smith 1982) for the summer extreme 
2-metre-height temperature in the ERA Interim reanalysis 
used to externally force the WRF model in the study period 
1981–2015. The ERA Interim reanalysis shows a predomi-
nantly positive trend for the study period (1981–2015), 
mainly in the central area of the Iberian Peninsula. How-
ever, this positive trend tends to decrease towards the west 
of the IP, with some regions showing a negative, although 
small, trend. Also, one can see from the figure that the WRF 
model shows a negative trend throughout the west, includ-
ing the study region, and a positive trend in the center of 
the IP. It is possible, however, that internal variability and 
model variability in the WRF model which persist after the 
constraint of the boundary conditions given by the exter-
nal reanalysis (Alexandru et al. 2009; Hawkins and Sutton 
2009) lead to the enhanced, although small, negative trends 
in extreme temperatures appearing in a simulation as short 
as that of the present work (35 years).

Some previous studies on temporal trends in RCM 
simulations have shown the difficulty these models have 

Fig. 5  Spatial-regression coefficients �0 (left) and �1 (right). The red line shows the interval (2.5%, 97.5%)

Fig. 6  Temporal-trend coefficients �0 . The red line shows the interval 
(2.5%, 97.5%)

Fig. 7  Temporal-trend regres-
sion coefficient ( ◦C/year) 
obtained by the Sen method for 
summer extreme 2-metre-height 
temperature in the ERA Interim 
reanalysis (left) and in the WRF 
model (right)
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in estimating these trends. In Lorenz and Jacob (2010), 
temporal trends in 2-m seasonal and annual average tem-
peratures were simulated by 13 RCMs driven by ERA40 
reanalysis for the period 1960–2000 within the framework 
of the ENSEMBLES EU-Project. The trends of the annual 
average temperature obtained with the RCMs were found to 
underestimate the observed trends in all regions, and in most 
regions they also underestimated the trends given by the 
ERA40 reanalysis dataset. Bukovsky (2012) analysed tem-
poral trends in 2-m seasonal average temperatures obtained 
from six RCMs driven by NCEP-2 reanalysis for the period 
1980–2003 within the framework of the North American 
Regional Climate Change Assessment Program (NARC-
CAP). According to those authors’ own words: ‘There are no 
clear conclusions about the behaviour of the RCMs because 
some of the models cannot capture certain seasonal trends 
over portions of the domain’ Min et al. (2013).

An interesting parameter to study is the shape parameter, 
which provides information on the shape of the extreme tem-
perature probability distribution function (PDF). A positive 
value indicates that there is no upper bound on the extreme 
temperatures, and a negative value that there is an upper 
bound. Figure 8 shows the posterior distribution of this 
parameter for the chosen model.

The mean (2.5%, 97.5%) is −0.994 ( −0.092, −0.106), 
thus supporting a bound on the extreme temperatures for 
the region under study. The negative value of the shape 
parameter in the GEV and Generalized Pareto Distribution 
used to fit the extreme temperature distribution seems to be 
a universal feature because several other works have found 
similar negative values for different parts of the world (see, 
for example, Salleh and Hasan (2018) for Malaysia, García-
Cueto et al. (2013) for Mexico, Furrier et al. (2010) for USA, 
Brown et al. (2008) for different parts of the world, Nogaj 

et al. (2006) for the North Atlantic, and Parey et al. (2007) 
for France).

It is important to note that we also performed the mod-
el’s calculations with other subsampling values (2× 2, 4 ×
4), obtaining results similar to those just shown for the 3 × 3 
subsampling case.

Once the parameters of the GEV distribution are known, 
one could already display maps of them. From the perspec-
tive of field practitioners, however, it would be more inter-
esting to combine them and display return level maps. The 
T-year return level is the quantile for which the probability 
that the annual maximum exceeds this quantile is 1/T (see 
Kharin and Zwiers (2005) and Cooley (2013) for a defini-
tion of the T-year return level and T-year return period in 
a non-stationary context). From the GEV distribution, one 
gets the expression

with p = 1∕T  . For the non-stationary model (Equation (7)), 
the T-year return level is

From this equation, one can evaluate the difference between 
the end and the beginning of the period,

considering the normalization used in f(t).
Figure 9 (left) shows a map of the 40-year (97.5 per-

centile) return level. As may be appreciated by comparing 
this figure with that of the topography (Fig. 2), the spatial 
distribution of the 40-year return level is completely deter-
mined by the topography as should be expected for a vari-
able such as temperature. We also calculated the difference 
in the 40-year return level between the end and the begin-
ning of the study period. The resulting map is shown in 
Fig. 9 (right). One sees that, for most of the region, there 
is a decrease in the return level by about 0.8 ◦ C to 1.0 ◦ C, 
except at the eastern edge of the region where the decrease 
approaches 0 ◦C

One of the advantages of having a spatial model such 
as that used in this work is the possibility of predicting 
the GEV distribution parameters at a non-observed site. 
In this sense, we evaluated the T-year return period for 
a set of 28 weather stations in the region under study. 
To obtain values of the location and scale parameters, 
we drew from a normal distribution with mean and vari-
ance given by Equations (22) and (23), and with Equa-
tion (32) we got the T-year return period. Figure 10 is 
a scatter plot of the predicted versus observed 40-year 
return levels, together with the regression line through 

(32)yp(s) = �s −
�s

�s

(
1 − (− log(1 − p))−�s

)
,

(33)yp(s, t) = �0s + �1s ⋅ f (t) −
�s

�s

(
1 − (− log(1 − p))−�s

)
.

(34)Δyp(s) = 2�1s,

Fig. 8  Shape parameter � . The red line shows the interval (2.5%, 
97.5%)
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the origin y ∼ x (blue) and the 1:1 line (black). The 
observed 40-year return level was obtained by fitting a 
GEV model to each observed data set using the R pack-
age ismev ( Coles (2001)). The regression coefficient is 
0.96 (±0.014), the bias (observed - predicted) is 1.66 ◦ C, 
and the RMS is 2.30◦ C. The results seem quite promis-
ing, although the predicted values are underestimates of 
those observed.

5  Summary and conclusions

In the present work, we have described a two-step study of 
extreme temperatures in the region of Extremadura (Spain). 
In the first step, we used the WRF model to obtain a set 
of extreme temperatures for the period 1981–2015 in our 
region. The boundary conditions needed by the model were 
obtained from ECMWF’s ERA Interim data. In the second 

step, a statistical study was made of the extreme tempera-
ture data obtained in the region. To this end, a Bayesian 
hierarchical spatio-temporal model with a GEV parametri-
zation of the extreme event data was used. Two advantages 
of this kind of model are that it reduces the uncertainty in 
the parameters of the statistical distribution by pooling data 
among ‘observatories’ in a consistent way, and that it can 
project important features of the statistical distribution, such 
as the T-year return level, to non-observing sites.

The spatial-trend parameter given by the model chosen 
was quite consistent with that corresponding to the dry adi-
abatic gradient, i.e., the gradient one would expect in the 
summer season when adiabatic conditions are prevalent in 
the atmospheric boundary layer. The negative trend in the 
location parameter is consistent with the negative trend that 
the WRF model shows for the extreme temperature in the 
western part of the Iberian Peninsula which has enhanced 
the trend given by ERA Interim for the same region. A pos-
sible reason for this result may lie in the internal and model 
uncertainties in using the WRF model. The shape parameter 
of the GEV model was negative, showing that there is an 
upper bound to the extreme temperatures over the region.

An important product we have obtained from the statisti-
cal model is that of obtaining return levels at non-observing 
sites. A comparison of the 40-year return levels of observed 
temperatures with those predicted by the statistical model 
showed a bias (observed minus predicted) of 1.66◦C.
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