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Abstract
This study describes the implementation and performances of a weather hindcast obtained by dynamically downscaling the 
ERA5 data across the period 1979–2019. The limited-area models used to perform the hindcast are BOLAM (with a grid 
spacing of 7 km over the Mediterranean domain) and MOLOCH (with a grid spacing of 2.5 km over Italy). BOLAM is used 
to provide initial and boundary conditions to the inner grid of the MOLOCH model, which is set in a convection-permitting 
configuration. The performances of such limited-area, high-resolution and long-term hindcast are evaluated comparing mod-
elled precipitation data against two high-resolution gridded observational datasets. Any potential added-value of the BOLAM/
MOLOCH hindcast is assessed with respect to ERA5-Land data, which are used as benchmark. Results demonstrate that 
the MOLOCH hindcast, compared to observations, provides a lower bias than ERA5-Land as regards both the mean annual 
rainfall ( −1.3% vs 8.7%) and the 90th percentile of summer daily precipitation, although a wet bias is found in southern 
Italy (bias ≃ 17.1%). Improvements are also gained in the simulation of the 90th percentile of hourly precipitations both in 
winter and, to a minor extent, in summer. The diurnal cycle of summer precipitations is found to be better reconstructed in 
the Alps than in the hilly areas of southern Italy. This study also presents the rainfall peaks obtained in the simulation of two 
well-known severe precipitation events that caused floods and damages in north-western Italy in 1994 and 2011. Finally, 
it is discussed how the demonstrated reliability of the BOLAM and MOLOCH models associated to the documented low 
computational cost, promote their use as a valuable tool for downscaling not only reanalyses but also climate projections.
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1  Introduction

In November 2017, the Copernicus Climate Change Service 
promoted the International Conference on Reanalysis 
(Buizza et al.  2018) to bring together reanalysis producers 
and observation providers. The conference gave the oppor-
tunity to the user community to assess the status of available 
products and discuss future developments. Later, in autumn 
2018, the release of the first stream of ERA5 data (Hersbach 
et al.  2020) pushed forward the use of reanalyses in the 
public and private sectors not only for research purposes but 
also for climate services and policy making (Buizza et al.  
2018). ERA5 is the cutting-edge dataset among global rea-
nalyses with an unprecedented resolution, both spatial and 
temporal. The dataset benefits from a decade of advances in 
model physics and data assimilation methods with respect 
to its predecessor ERA-Interim (Dee et al.  2011). However, 
how it has been argued in recent studies (Bandhauer et al.  
2022; Jiang et al.  2021; Lavers et al.  2022; Singh et al.  
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2021; Zhang et al.  2021), the relatively coarse resolution of 
ERA5, grid spacing is 31 km, and the assumptions on the 
parameterisation of convection, discourage its direct use in 
regional or local applications; especially those involving 
rainfall as input. To bridge the gap between the resolution of 
global reanalyses and regional scale impact studies, several 
notable initiatives have investigated the use of high-resolu-
tion and limited-area models fed by global reanalyses to 
produce more detailed climate databases. To stick to the 
European context, we mention few studies and datasets. The 
project Uncertainties in Ensembles of Regional Re-Analyses 
(UERRA) delivers a regional reanalysis dataset for the COR-
DEX EUR-11 (European Coordinated Regional Climate 
Downscaling Experiment, Giorgi et al.  (2009)) domain. It 
is based on the ALADIN model (Bubnová et al.  1995), 
applied using the hydrostatic assumption, as regards the 
atmospheric part and on the SURFEX model (Masson et al.  
2013) as its surface counterpart. The horizontal resolution 
is 11 km for the atmosphere and 5.5 km for near-surface 
variables. A 3D-Var method (Gustafsson et al.  2001) is used 
to ingest conventional data into a short-term forecast to pro-
duce hourly analysis, whereas ERA-Interim data are used to 
provide large scale constrains to the limited-area integra-
tions. Data are available for the period 1961–2019 and no 
further update is foreseen since ERA-Interim was discontin-
ued in August 2019. The recent release (August 2022) of the 
Copernicus European Regional ReAnalysis (CERRA) aims 
at filling the gap left by UERRA. CERRA uses the HAR-
MONIE-ALADIN data assimilation system fed by ERA5 
lateral boundary conditions to produce a pan-European rea-
nalysis dataset; its horizontal resolution is 5.5 km and it has 
106 vertical levels. Data are available from the early 1980s 
to the delayed present. COSMO-REA6 (Bollmeyer et al.  
2015) is a high-resolution reanalysis dataset produced by the 
German Meteorological Service using version 4.25 (released 
in September 2012) of the mesoscale model COSMO, which 
is nested in the global reanalysis fields of ERA-Interim for 
the period 1995–2015. The subgrid convection processes are 
parameterised using the Tiedtke scheme (Tiedtke 1989); the 
spatial resolution is approximately 6 km and the simulations 
cover the CORDEX EUR-11 domain. A data assimilation 
system based on a continuous nudging (Schraff and Hess 
2003) is used to ingest radiosondes, aircraft and near-surface 
station data. A 1-year test period is used to evaluate the 
added value of assimilating observed data with respect to a 
dynamical downscaling experiment (i.e., an identical model 
setup without assimilation). As regards the total yearly accu-
mulated precipitation, the dynamical downscaling experi-
ment has very similar spatial patterns to the assimilated 
experiment, with an overestimation in Scandinavia Penin-
sula, Russia, Turkey and part of the Alps and UK. As regards 
the mean diurnal cycle of precipitation in summer, both 
experiments exhibit a shift by approximately 3 h with respect 

to rain-gauge data, possibly because of a delayed initiation 
of convection. As regards extreme precipitation events (rain-
fall rates higher than 20 mm in 3 h and 50 mm in 24 h), the 
dynamical downscaling experiment is proven to slightly 
outperforms the assimilated experiment with a frequency 
distribution similar to that of observed rainfall data. A few 
years later, the update of the project (Wahl et al.  2017) used 
a model which runs without parameterization of deep moist 
convection and which is able to improve the spatial repre-
sentation of local precipitation over Germany at different 
time scales, from monthly to annual time scale. The Irish 
Meteorological Service has carried out a 38-year very high-
resolution regional climate reanalysis for Ireland (Whelan 
et al.  2018) using the non-hydrostatic ALADIN-HIRLAM 
numerical weather prediction system (Seity et al.  2011) and 
driven by ERA-Interim for boundary conditions. This rea-
nalysis (hereinafter MÉRA) covers Ireland, the United King-
dom, and northern France and spans the period from 1981 
to 2019. The resolution used (2.5 km horizontal grid) allows 
deep convection to be partially resolved. To ingest observa-
tions, the authors utilised an optimal interpolation method 
(Giard and Bazile 2000) for surface variables and a three-
dimensional variational data assimilation technique (Fischer 
et al.  2005) for upperair data. The authors claim that such 
high-resolution and convection-permitting reanalysis dataset 
is more suitable to study the trends of near-surface param-
eters and the frequency distribution of weather extremes. 
Doddy Clarke et al.  (2021) showed that MÉRA doesn’t con-
sistently outperform ERA5 data when compared to ground 
measurements for renewable energy purposes. The authors 
also proposed the development of a new MÉRA model with 
ERA5 as the driving global reanalysis, which should lead to 
an improved regional reanalysis for Ireland and nearby coun-
tries. MERIDA (Bonanno et al.  2019) is a meteorological 
reanalysis dataset for the Italian domain; it is aimed at pro-
viding information to energy market stakeholders. The WRF 
model (Skamarock et al.  2008) supplied by ERA5 data as 
initial and boundary conditions is used to run 3-days long 
numerical forecasts. The period covered is 1990–2020 and 
the grid spacing is 7 km smoothly relaxing larger-scale fea-
tures at the boundaries of the domain using a spectral nudg-
ing. As regards 2-m temperature and precipitation, a higher-
resolution dataset (MERIDA-OI with a grid spacing of 
approximately 4 km) is achieved by postprocessing and 
merging numerical data with observations by means of an 
optimal interpolation technique (Uboldi et al.  2008). To test 
the impact of the cumulus parameterisation, the authors real-
ised a 1-year long simulation with the explicit treatment of 
convection processes and a grid spacing of approximately 
4 km. Surprisingly, they noted slightly better performances 
of MERIDA than the alternative configuration; in fact, they 
found that the experiment without the parameterisation of 
convection leads to a higher number of false alarms. They 
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do not support this conclusion with any particular explana-
tions. More recently, Raffa et al.  (2021a) compared two 
different strategies to downscale the ERA5 data with the 
COSMO-CLM model (Rockel et al.  2008). In the first con-
figuration a 2.2 km resolution simulation is directly one-way 
nested in ERA5, whereas in the second experiment the tra-
ditional two-step nesting strategy is adopted, that is the 
simulation at 2.2 km resolution is one-way nested in a 12 km 
grid spacing which in turn is one-way nested in ERA5. The 
sensitivity tests were carried out for the period 2007–2011. 
By comparing rainfall outputs with the E-OBS (Cornes et al.  
2018) gridded dataset as ground truth, the authors argued 
that the direct nesting should be preferred. In a second paper 
(Raffa et al.  2021b), the authors presented the dataset, which 
covers the Italian domain, for the period 1989–2020. More 
recently, Reder et al.  (2022), demonstrated that this dataset 
provides more reliable data than global reanalyses in char-
acterising extreme precipitations at the urban scale. Several 
studies focused on the reliability of climate data to represent 
precipitation over the Alpine area. When evaluating results 
over a 10-year long validation period or less (Ban et al.  
2015; Lind et al.  2016), the consensus is that deploying 
convection-permitting models improves the representation 
of subdaily summer rainfall and the frequency of both daily 
and hourly precipitation events. Other studies (Adinolfi et al.  
2020) provide evidence that convection-permitting models 
fit betterthe statistical distribution of Alpine heavy precipita-
tions than the driving convection-parameterised models; this 
holds in particular for hourly extreme precipitations.

From the brief review of previous works, some points 
emerge as critical to provide reliable pictures of regional 
(i.e., mesoscale) past climates: (i) the use of high-quality 
global reanalyses to feed limited-area models, (ii) the use 
of convection-permitting models to account for a more 
accurate description of convection processes and related 
precipitations, (iii) the implementation of data assimilation 
techniques to optimally merge observations to short-range 
weather forecasts. In this work we present the precipita-
tion performances of a new hindcast produced by downs-
caling ERA5 data for the period 1979–2019 by means of 
the BOLAM/MOLOCH limited-area numerical weather 
models. ERA5 is considered the cutting-edge dataset as 
regards global reanalyses, and the availability of ERA5 up 
to the 1950s allows for a back-extension of the BOLAM/
MOLOCH hindcast to obtain more robust statistically sound 
conclusions about trends in the recent climate. One inno-
vative aspect of our work relies on the use of the convec-
tion-permitting MOLOCH model over the Italian domain 
(as recently done by Raffa et al.  (2021b) for the period 
1989–2020); major gains are expected to be achieved in the 
simulation of precipitation extremes and mesoscale convec-
tive systems. In fact, switching off the convective param-
eterisation has potential benefits in long-term simulations 

for the representation of hourly extreme precipitations and 
the mean diurnal cycle of precipitations (Prein et al.  2013; 
Fosser et al.  2015; Coppola et al.  2020; Ban et al.  2021; 
Reder et al.  2022). This holds in particular during sum-
mer, when convection plays a major role in controlling the 
occurrence of rainfall. Regarding the implementation of a 
data assimilation scheme, we claim that, with limited com-
putational resources, such task would have overly slow down 
the production of the hindcast. This holds besides the techni-
cal and scientific challenges related to the implementation 
the data assimilation at such high-resolution grid spacing 
(2.5 km for the MOLOCH model). However, although no 
assimilation is performed, the BOLAM/MOLOCH hindcast 
is intended to provide reliable data for downstream services 
and models. In fact, numerical weather hindcasts were fre-
quently used in previous works to force wave models (Men-
taschi et al.  2013; Ferrari et al.  2020; Osinski and Radtke 
2020; Vannucchi et al.  2021) or for climatological studies 
(Giorgi and Gutowski Jr 2015; Ruti et al.  2016; Ban et al.  
2021). Moreover, Bollmeyer et al.  (2015) demonstrated, 
for a 1-year long test experiment, that the simple dynami-
cal downscaling of global reanalyses (i.e., no observations 
assimilated at starting time) provides rainfall predictions as 
accurate as those produced with the more CPU-demanding 
continuous nudging scheme.

The rainfall data we present are the result of a pragmatic 
approach which takes full advantage of the improved qual-
ity of ERA5 data by using a suite of reliable (Buzzi et al.  
2014; Davolio et al.  2020) and fast (Malguzzi and Tarta-
gione 1999; Capecchi 2021) limited-area numerical mod-
els. The remainder of the paper is structured as follows: in 
Sect. 2 we provide descriptions about the models (BOLAM 
and MOLOCH) and data (ERA5-Land and observational 
datasets) used in the work; we also give details about the 
methods utilised to validate the rainfall predictions. The 
results are shown in Sect. 3 and discussed in Sect. 4 along 
with their implications and limitations.

2 � Models, data and methods

2.1 � Models

To produce the atmospheric hindcast for the period 
1979–2019, we implemented a two one-way nested domains 
configuration based on two limited-area numerical weather 
prediction models: BOlogna Limited Area Model (BOLAM) 
and MOdello LOcale in Hybrid Coordinates (MOLOCH). 
Both codes are developed and maintained at the Institute of 
Atmospheric Sciences and Climate of the Italian National 
Research Council (CNR). They were initially developed 
for research purposes (Buzzi et al.  1994), but today are 
being used operationally by various regional meteorological 
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services both in Italy and abroad (Lagouvardos et al.  2003; 
Corazza et al.  2018). Davolio et al.  (2020) provides a gen-
eral but comprehensive introduction to the BOLAM and 
MOLOCH models and a list of the several applications over 
which they are used. Here we provide a short description 

of the two models to make the text self-consistent; addi-
tional details and insights can be found in the cited litera-
ture. BOLAM is a primitive equations hydrostatic model 
with parameterised convection (using a modified version 
of the scheme proposed in Kain (2004)). In our work, it 

Table 1   Setup of the key 
characteristics of the BOLAM 
and MOLOCH simulations

BOLAM MOLOCH

Grid spacing (km) 7 2.5
Number of rows and columns 482 and 890 626 and 506
Number of vertical levels 50 50
Number of soil levels 7 7
Grid points ≃21.5 million ≃15.8 million
Time step (s) 45 30
Boundary layer scheme 1.5-order E-l closure (Zampieri et al.  2005)
Radiation scheme Ritter and Geleyn (1992) and

ECMWF radiation scheme (Morcrette et al.  2008)
Microphysics scheme Drofa and Malguzzi (2004)
Turbulence scheme 1.5-order E-l closure (Trini Castelli et al.  2020)
Convection parameterisation Kain (2004) None

Fig. 1   Extent of the BOLAM and MOLOCH domains of integration with superimposed topography (m). The BOLAM domain, outer black box, 
approximately corresponds to the Med-CORDEX area; the MOLOCH domain, inner black box, covers Italy and surrounding areas
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was employed with a grid spacing of approximately 7 km 
to provide lateral boundary conditions to MOLOCH every 
hour. MOLOCH is a nonhydrostatic, fully compressible 
model that uses a hybrid terrain-following coordinate, 
relaxing smoothly to horizontal surfaces. The microphysi-
cal scheme is an upgrade of the parameterisation proposed 
by Drofa and Malguzzi (2004), which describes the inter-
actions of cloud water, cloud ice, rain, snow and graupel. 
In this study, the grid spacing of the MOLOCH model is 
about 2.5 km, which allows the atmospheric convection to 
be partially resolved. We used the version released in late 
2017 for both models. To define the static properties of the 
grid (orography, landuse, soil and vegetation type), both 
BOLAM and MOLOCH use the following datasets: the 
global digital elevation model with a grid spacing of 30 arc 
seconds (approximately 1 km) provided by the U.S. Geo-
logical Survey, the global soil type FAO dataset with a grid 
spacing of 8 km and the global vegetation/land use dataset 
provided by FAO with a grid spacing of approximately 1 km. 
Table 1 summarises some basic settings about the model 
implementations and references to the schemes adopted. 
Further and more in-depth descriptions about the physics of 
the BOLAM and MOLOCH models are found in the work 
by Buzzi et al.  (2014). Daily data of the high-resolution 

atmospheric hindcast were produced as follows: every day 
at 18:00 UTC, a BOLAM simulation is started using global 
reanalyses as initial conditions; boundary conditions are pro-
vided every 6 h for the following 30 h. The domain of inte-
gration is shown in Fig. 1 (outer rectangle) and it approxi-
mately covers the Med-CORDEX domain (Ruti et al.  2016). 
Hourly outputs from the BOLAM simulation provide the 
initial and boundary conditions to the MOLOCH simulation, 
which starts each day at 21:00 UTC and has a forecast length 
equal to 27 h. The MOLOCH model produces outputs every 
hour over the domain of integration shown in Fig. 1 (inner 
rectangle). The daily data of the BOLAM/MOLOCH hind-
cast are built using the last 24 h of the two model simula-
tions, while the first 6 and 3 h of integration of the BOLAM 
and MOLOCH model, respectively, are considered as spin-
up times and thus discarded; a scheme of the experimental 
design is shown in Fig. 2. Most of upper air variables were 
not saved due to disk space issues, whereas the set of near 
surface variables that were kept includes: 2-m above ground 
temperature and relative humidity, u- and v-component of 
wind at 10-, 50-, 80- and 100-m above ground and sensible 
and latent heat fluxes. Numerical integrations for the period 
1979–2019 were carried out thanks to the computational 
resources granted in the framework of the ECMWF Special 

Fig. 2   Modelling setup for the production of one single day of the BOLAM/MOLOCH hindcast
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Project SPITBRAN. Using four nodes of the XC40 Cray 
supercomputer and 144 computing cores, a 1-day simulation 
is performed in approximately 47 min.

2.2 � Data

Initial and boundary conditions to the BOLAM hindcast 
are provided by ERA5 data (Hersbach et al.  2020). ERA5 
provides the new global reanalyses of the European Centre 
for Medium-Range Weather Forecasting, produced within 
the framework of the Copernicus Climate Change Service. 
Such dataset is based on the Integrated Forecasting System 
model cycle Cy41r2, introduced into operations in 2016, and 
on the 4D-Var assimilation scheme (Bonavita et al.  2016), 
which is able to ingest observations from a wide range of 
platforms (insitu, radiosondes, satellite). ERA5 reanalyses 
have a significantly enhanced horizontal resolution (approxi-
mately 31 km) with respect to the predecessor ERA-Interim 
(Dee et al.  2011), whose resolution is approximately 79 km. 
The number of vertical levels of ERA5 is 137, whereas the 
temporal resolution is 1 h.

To evaluate the accuracy of the BOLAM/MOLOCH hind-
cast, we compared rainfall modelled data against two grid-
ded datasets: GRIPHO and ARCIS. GRIPHO is an hourly 
precipitation dataset, available over Italy on a horizontal 
grid of approximately 3 km (Fantini 2019) and its grid size 
is 427 × 358 . It is built upon quality checked rain-gauge 
measurements and is available for the period 2001–2016. 
It has been used in recent papers (Ban et al.  2021; Caillaud 
et al.  2021; Coppola et al.  2021) to validate numerical 
rainfall data at the sub-daily scale at its native resolution or, 
as in Reder et al.  (2022), at a lower resolution (grid spacing 
approximately 10 km). ARCIS (Climatological Archive for 
Central-Northern Italy, see Pavan et al.  (2019) for details) 
is a gridded dataset which uses a large number (about 1000) 
of quality-controlled and homogenised rain-gauge meas-
urements gathered from a plethora of different Italian local 
bodies, such as Hydrological Services, Agro-Meteorological 
Services, and Regional/Local Meteorological Services. Such 
data are interpolated on a regular grid with a resolution of 
approximately 5 km using a modified version of the Shepard 
scheme, which is detailed in Antolini et al. (2016); its grid 
size is 120 × 120 . The dataset covers the north-central Italy 
for the period 1961–2015 and provides rainfall data on a 
daily time scale (i.e., 24-h accumulated precipitation).

Data from the ERA5-Land (Muñoz-Sabater et al.  2021) 
dataset are used as benchmark to assess any added value 
of the BOLAM/MOLOCH hindcast. ERA5-Land is the 
result of the global numerical integration of the ECMWF 
land surface model (namely, the CHTESSEL model cycle 
Cy45r1, Boussetta et al.  (2013)) forced by ERA5 atmos-
pheric data. One of its main advantage is the grid spacing, 
approximately 9 km, making it suitable for near-surface 

applications (Muñoz-Sabater et al.  2021). Output variables 
are focused on the water and energy cycles over land, and in 
this work we considered rainfall predictions. However, we 
stress the fact that rainfall, although part of the ERA5-Land 
dataset, is not a direct output of the CHTESSEL model. 
On the contrary it is the result of a spatial linear interpola-
tion (Muñoz-Sabater et al.  2021) of ERA5 data onto the 
triangular-cubic-octahedral TCo1279 operational grid (see 
Malardel et al.  2016) used by the CHTESSEL model.

2.3 � Performance metrics

Several metrics were taken into consideration to give a com-
prehensive overview of the performances of the BOLAM/
MOLOCH hindcast at different time resolutions, from the 
yearly to the hourly time scale, and to shed a light about 
any potential added value of using the convection-permitting 
MOLOCH model.

Although the BOLAM/MOLOCH hindcast is available 
for the years 1979–2019, it is validated against observed 
data for those periods overlapping observations availability; 
that is from the 1st of January 2001 to the 31st of December 
2016 as regards GRIPHO and from the 1st of January 1979 
to the 31st of December 2015 as regards ARCIS. We decided 
to perform the validation with respect to both GRIPHO and 
ARCIS because the former provides data over the whole 
Italian domain, whereas the latter spans over a longer tem-
poral range (1979–2015), albeit for a smaller portion of Italy 
(central-northern regions). We also stress the fact that in 
both cases the domain of verification is smaller than the 
MOLOCH domain of integration (compare Figs. 1 and 3). 
Because of the different grid size of observed and modelled 
data and due to computational constraints, it was necessary 
to reduce the total number of observed grid points. A thin-
ning method was applied by extracting a regular grid of 
points out of the GRIPHO dataset and selecting one pixel 
every 0.25◦ , both in the latitude and longitude direction; see 
the geographical distribution in Fig. 3. The data belonging 
to this regular network of points represent the ground truth; 
in the following text, such data are often referred as pseudo 
weather stations. The subset of GRIPHO points belonging 
to the ARCIS extent represents the set of ARCIS pseudo 
stations. Observed data collected at locations shown in 
Fig. 3 were compared with corresponding modelled data, 
which were extracted at the nearest grid point containing the 
pseudo station locations. We focused our analysis at three 
different time scales: annual, daily and hourly time scales. To 
have a first clue about the results produced by the BOLAM/
MOLOCH hindcast, we show the yearly average maps of 
accumulated rainfall and compare them with those obtained 
with GRIPHO/ARCIS data. To validate the outputs quanti-
tatively, we considered some standard verification statistics 
for continuous forecasts, namely: root mean squared error 
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(RMSE), mean error (ME), multiplicative bias (m-bias), and 
Pearson correlation coefficient (r). See the Appendix A for 
details. Furthermore, to summarise multiple aspects in a sin-
gle plot and have a more streamlined representation of the 
model performance, we realised the performance diagram 
(Roebber 2009) against predefined thresholds of precipita-
tion. Such diagrams plot four measures of the dichotomous 
forecast: probability of detection (POD), success ratio (SR), 
bias and critical success index (CSI). See Appendix A for 
details about how these indexes are calculated. Performance 
diagrams were realised not only for annual precipitations 
but also for daily rainfall accumulations. The daily time 
scale is further evaluated by considering the spatial pattern 
of heavy precipitations, which are often (Ban et al.  2014) 
identified by considering rainfall amounts exceeding the 

90th percentile of wet-days, where a wet-day is defined by 
a rainfall daily amount greater than 1 mm/day. To illustrate 
how the hindcasts perform during severe weather events, 
we show the results for two extreme rainfall events, among 
the heavier across the last 40 years: the Tanaro flooding 
(Buzzi et al.  1998) and the Cinque Terre flooding (Buzzi 
et  al.  2014). We chose these two events, because they 
exhibit different features that characterised precipitations. 
The first event is a long-standing rainfall event driven by a 
large-scale humid flow impinging over the Alps. Precipita-
tion was mainly determined by a strong orographic uplift 
with convective cells embedded in the stratiform precipita-
tion. The second event is concentrated over a small portion 
of the Ligurian coast; convection processes, triggered by a 
sharped low-level convergence line, played a major role in 
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Fig. 3   Closed circles ( ∙ symbol) indicate the locations of the 
GRIPHO pseudo stations (total number is 524). Pseudo stations are 
obtained by selecting one pixel every 0.25◦ out of the GRIPHO grid 
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used to plot Fig. 14
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determining the rainfall amounts in a relatively short time 
period (< 12 h). The accuracy of numerical predictions is 
firstly assessed qualitatively through the visual inspection of 
forecast against rain-gauge data. To provide a quantitative 
assessment, we calculated the fractional skill score (FSS). 
In Appendix A, we provide a general description on how to 
calculate the FSS. For a complete description of the method 
and for details about the underpinning formulas, the reader 
is referred to the seminal paper by Roberts and Lean (2008).

The models performance at hourly time scale is evalu-
ated by looking at the spatial patterns of extreme hourly 
precipitations (i.e., amounts greater than the 90th percen-
tile). Precipitation percentiles are calculated by using only 
wet-hours defined as hours with amounts greater than 
0.1 mm/h. The accuracy of hourly precipitation intensities 
is further evaluated by considering the mean diurnal cycle 
of precipitations. It is computed averaging rainfall data over 
six selected zones, whose location is shown in Fig. 3 with 
the red boxes. These zones are a subjective interpretation of 
the climatic characterisation of the Italian regions suggested 

by Brunetti et al.  (2001). The quality of the mean diurnal 
cycle of precipitations is evaluated by looking at the hour of 
the day when rainfall reaches its peak and the intensity of 
the peak, which is often referred as amplitude or magnitude 
(Ban et al.  2014). Furthermore, as done recently by Reder 
et al.  (2022), to evaluate quantitatively the mean diurnal 
cycle of precipitations, we used the Kling-Gupta Efficiency 
(KGE, see Gupta et al.  2009 and Appendix A for details).

3 � Results: performance of precipitation data

3.1 � Annual precipitation

To have a first clue about the spatial representation of mean 
precipitation in the BOLAM/MOLOCH hindcast and com-
pare its results with ERA5-Land data, we show in Fig. 4 
the total annual precipitation, averaged over the period 
2001–2016. Panel (a) shows the mean annual precipitation 
derived from GRIPHO data, whereas panels (b–d) illustrate 
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Fig. 4   Panel a: Mean annual precipitation (unit mm/year) for the 
GRIPHO dataset averaged over the 2001–2016 period. Panels b–d: 
Relative bias (unit %) for ERA5-Land, MOLOCH and BOLAM, 

respectively. The inset label in panels (b–d) indicates the average bias 
in the whole domain
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the relative bias (i.e., the normalised difference between 
model and observed data, expressed in %) of ERA5-Land, 
MOLOCH and BOLAM, respectively; blue shades represent 
overestimation of modelled data, red ones underestimation. 
From the visual inspection of Fig. 4, we can qualitatively 
deduce that the three datasets provide similar outputs, 
although ERA5-Land and BOLAM tend to overestimate 
total annual amounts (average bias is approximately 9% 
and 4%, respectively), whereas MOLOCH tends to under-
estimate (average bias is approximately −1%). Overesti-
mation occurs more frequently over the reliefs (both Alps 
and central-southern Apennines) and it is more sharped 
over the western Alps in the ERA5-Land data (see Fig. 4b). 
The corresponding Figure using ARCIS data (see plots in 
Fig. 5) confirms such preliminary assessment, although we 
can note a stronger wet bias of the ERA5-Land, over the 
Alps in particular, with an average bias value approximately 
equal to 18%. We underline the fact that to plot panels (b–d) 
in Figs. 4 and 5, we upscale both observed and BOLAM/
MOLOCH data to the pixel size of ERA5-Land, which rep-
resents the coarser resolution among the four datasets. For 

this reason, some of the conclusions drawn so far may be 
artificially influenced by the algorithm (the bilinear inter-
polation) used to resample data onto the same grid and may 
not represent actual deviations from observed data.

To evaluate predictions against selected rainfall amounts, 
we show in Figs. 6 and 7 the performance diagrams against 
GRIPHO and ARCIS, respectively. To make the yes/no deci-
sion, rainfall thresholds were chosen equal to approximately 
the 25th, 50th, 75th, 90th, 95th and 98th percentiles of the 
observed mean annual precipitation for the GRIPHO dataset. 
These thresholds correspond to 700, 900, 1100, 1400, 1600 
and 1800 mm/year, respectively. From the visual inspection 
of the plots, we can argue that ERA5-Land and BOLAM 
tend to overestimate annual rainfall amounts (since the 
red and blue points lie above the diagonal in all the pan-
els but panel (a)). As we consider the higher precipitation 
thresholds, that is panels (d–f) corresponding to the 90th, 
95th and 98th percentiles of the GRIPHO precipitations, 
the POD indexes are greater that 0.5 at the cost of low SR 
values (approximately 0.4), indicating the occurrence of 
false alarms. However, we note that these high precipitation 

(a) ARCIS [mm/year]

500
1000
1500
2000
2500
3000

(b) ERA5−Land bias [%]

bias=18.4%

(c) MOLOCH bias [%]

−100

−50

0

50

100

bias=−1.1%

(d) BOLAM bias [%]

bias=5.5%

Fig. 5   As in Fig. 4, but for the ARCIS dataset and the 1979–2015 period
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thresholds interest only a small portion of the Italian terri-
tory (less than 7%), corresponding to the Western and East-
ern Alps, the Northern Apennines and the southern Apen-
nines (as regards the 90th percentile only).

The interannual variability of the skill scores described 
in Eqs. (A1)–(A4) are shown in Figs. 8 and 9 as regards 
GRIPHO and ARCIS, respectively. The average values of 
skill scores are summarised in Tables 2 and 3. As regards 
the GRIPHO observational dataset (Fig. 8 and Table 2), 
MOLOCH data provide the best overall performances with 
lower errors (291 mm/year and 8 mm/year for the RMSE and 
ME, respectively), and a m-bias very close to the perfect 
score, which is 1. The Pearson correlation score r is approxi-
mately 0.7 for all the models’ datasets and differences are 
found only in the second decimal digit. No significant long-
term trend is found for the skill score profiles for all the 
datasets. The comparison with the ARCIS observations 
(Fig. 9 and Table 3), demonstrates that MOLOCH provides 
the best result as regards RMSE, but also a stronger underes-
timation as revealed by the ME, which is equal to – 63 mm/
year, and the m-bias, which is approximately 0.93. On aver-
age BOLAM data show the best trade-off considering both 

the biases (ME=26 mm/year and m-bias=1.01) and RMSE, 
which is equal to approximately 308 mm/year. ERA5-Land 
again provides the higher overestimation of rainfall, which is 
the consequence of overestimation in both the Alpine areas 
and the plains of the Po Valley (see panel (b) in Fig. 5). 
Correlation coefficients range from 0.69 for ERA5-Land to 
0.74 for BOLAM. As in the GRIPHO case, no significant 
long-term trend is found in the skill score profiles.

3.2 � Daily precipitation

As regards the summer (June, July and August, hereinafter 
JJA) daily precipitation, we first looked at the spatial pat-
tern of the 90th percentile of wet day precipitation amounts. 
As in Ban et al.  (2014), a wet day is defined as a day with 
precipitation greater than 1 mm/day. The results are shown 
in Fig. 10 for the GRIPHO database; panel (a) shows the 
magnitude of the 90th percentile of observed rainfall, which 
spans from 10 mm/day to approximately 50 mm/day. Ban 
et al.  (2014) The visual examination of panels (b) and 
(d) in Fig. 10 suggests that a systematic underestimation 
of heavy daily precipitations occurs in the parameterised 
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(b) Threshold = 900 mm/year
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(c) Threshold = 1100 mm/year
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(d) Threshold = 1400 mm/year
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(e) Threshold = 1600 mm/year
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(f) Threshold = 1800 mm/year
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Fig. 6   Performance diagram of total annual precipitations of ERA5-
Land (red), MOLOCH (orange), and BOLAM (blue) with respect 
to the GRIPHO observations. Skill scores are averaged over the 
2001–2016 period. The x axis shows the success ratio (SR), the y axis 

shows the probability of detection (POD), the curved lines represent 
the critical success index (CSI), and the dashed diagonal lines repre-
sent the bias
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models, whereas the MOLOCH model provides an over-
estimation, sharper in the South of Italy and over the two 
main islands (Sardinia and Sicily). This qualitative assess-
ment is confirmed by the average bias (mean over the whole 
domain), which is −28.5% and −13.9% for the ERA5-Land 
and BOLAM data, respectively and 17.1% for the MOLOCH 
hindcast. The comparison performed against ARCIS data 
(plot not shown) further confirms that the MOLOCH hind-
cast lacks in reproducing heavy precipitations in the South 
of Italy and over the two main islands; in fact the overall 
relative bias is reduced to 5.6%, whereas ERA5-Land and 
BOLAM data provide approximately the same scores found 
using GRIPHO observations.

In Fig. 11, we show the performance diagrams of daily 
precipitations for GRIPHO. To make the yes/no decision, 
the six precipitation thresholds were subjectively chosen and 
correspond to 1, 2, 5, 10, 20 and 50 mm/day. Previous works, 
outlined that parameterised regional climate models tend 
to produce too much widespread light rain and lack in the 
description of daily maxima (Kendon et al.  2012; Ban et al.  
2014). We find the confirmation of this tendency by looking 
at panels (a–c) of Fig. 11, which show the red points lying 
above the diagonal (bias is approximately 1.3), although 
providing satisfactory values as regards POD (>0.75) and 

SR ( > 0.6 ). When looking to higher precipitation thresholds 
(panels (d), (e) and (f) of Fig. 11), ERA5-Land outperforms 
MOLOCH and BOLAM for the 10 mm/day threshold, then it 
starts to underestimate the number of cases, that is bias < 1 , 
for the latter two thresholds. For BOLAM and MOLOCH 
data, the performances are almost similar, with both POD 
and SR decreasing from 0.6 to 0.5 and then 0.4 as we con-
sider the 10 mm/day, 20 mm/day and 50 mm/day thresh-
olds, respectively. Similar conclusions can be drawn when 
comparing numerical data against ARCIS observations (plot 
not shown). However, we report that the skill scores found 
for the ARCIS database are poorer than those found for the 
GRIPHO case for all the thresholds. This may be related to 
the fact that errors are larger in northern Italy because of 
an inadequate representation of the orography of the Alps.

3.3 � Hourly precipitation

Figure 12 shows the spatial pattern of the 90th percentile 
of summer wet hour precipitations. The normalised bias 
(expressed in %) of ERA5-Land, MOLOCH and BOLAM 
is shown in panels (b–d), respectively, whereas panel (a) 
shows GRIPHO data. Figure 13 shows the corresponding 
results obtained for winter. Panels (b) and (d) in Fig. 12 

(a) Threshold = 700 mm/year

Success Ratio

Pr
ob

ab
ilit

y 
of

 D
et

ec
tio

n

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.3

0.5

0.8

1
1.31.523510

ERA5−Land
MOLOCH
BOLAM

(b) Threshold = 900 mm/year
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(c) Threshold = 1100 mm/year
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(d) Threshold = 1400 mm/year
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(e) Threshold = 1600 mm/year
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(f) Threshold = 1800 mm/year
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Fig. 7   As in Fig.  6 but with respect to the ARCIS observations and the 1979–2015 period. Precipitation thresholds are those used for the 
GRIPHO observations
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demonstrate that both ERA5-Land and BOLAM data under-
estimate heavy hourly precipitations across the whole Ital-
ian domain, with an average relative bias of −61.1% and 
−49.9%, respectively. The underestimation is stronger in 
southern Italy, where average bias values are lower than 
– 50% for ERA5-Land in Sicily and Sardinia islands in par-
ticular. On the other hand, MOLOCH (panel (c) in Fig. 12), 
exhibits a general overestimation of the 90th percentile of 
hourly precipitations with an average bias of approximately 
25.0% across the whole Italian domain. Such overestimation 
is stronger in the Po Valley and central-southern Italy, where 
bias values are greater than 50%. Over the Alps, MOLOCH 
provides reliable data, with an overestimation, in general, 

less than 15–20%. Underestimation is found over the coasts, 
in particular in the Ligurian and northern Tyrrhenian coasts, 
in northern Sicily and western Sardinia; such underestima-
tion is, approximately, no less than – 30%. Looking at the 
winter results (shown in Fig. 13), models’ skills improve. 
MOLOCH provides the best overall score in reproducing 
the 90th percentile of winter hourly precipitation; the bias 
is positive (i.e., indicating overestimation of rainfall) and 
greater than 20% in the western and central Alps, in the Sar-
dinia island and in scattered zones across southern Italy, but 
in the rest of the country, the relative bias is approximately 
between 10 and –20% (average −4.3%). BOLAM provides a 
similar pattern, but a larger average underestimation (bias −

Fig. 8   2001–2016 interannual 
variability of the skill scores 
for the ERA5-Land (red line), 
MOLOCH (orange line) and 
BOLAM (blue line) datasets 
with respect to the GRIPHO 
observations. Skill scores shown 
are: a root mean square error, b 
mean error, c multiplicative bias 
and d correlation coefficient
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Fig. 9   As in Fig. 8 but with 
respect to the ARCIS observa-
tions and the 1979–2015 period
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Table 2   Average skill scores for annual precipitation with respect to 
GRIPHO observations

Best scores are indicated in bold
Averages are calculated over the 2001–2016 period

Dataset RMSE Mean error m-bias Correlation 
coefficient

ERA5-Land 293 104 1.09 0.70
MOLOCH 291 8 0.99 0.70
BOLAM 331 77 1.06 0.71

Table 3   As in Table  2 but with respect to the ARCIS observations 
and the 1979–2015 period

Best scores are indicated in bold

Dataset RMSE Mean error m-bias Correlation 
coefficient

ERA5-Land 320 151 1.14 0.69
MOLOCH 277 – 63 0.93 0.73
BOLAM 308 26 1.01 0.74
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19.0%), in particular in central and southern Italy with val-
ues less than –20%. ERA5-Land data further degrade the 
score with a general underestimation in the whole domain 
and an average bias approximately equal to −35.8%.

To further evaluate how the models’ hindcasts are able 
to represent sub-daily precipitations, in Fig. 14 we show the 
mean diurnal cycle of JJA precipitations over the six areas 
sketched in Fig. 3 with the red boxes; data are averaged over 
the 2001–2016 period. We show the results obtained for JJA, 
because during summer the convection is the leading factor 
that determines precipitation. For the Western and Eastern 
Alps (panels (a) and (b), respectively), the two parameter-
ised models (ERA5-Land and BOLAM) provide an early 
onset of convection processes (approximately at 10:00 UTC 
for BOLAM and even earlier for ERA5-Land), which results 
in an anticipated peak of afternoon precipitation (approxi-
mately at 15:00 UTC for ERA5-Land). This assessment is 
not new in the Alps and it is associated to the use of a deep 
convection parameterization scheme rather than to the poor 

representation of orography (Prein et al.  2013). On the other 
hand, the convection-permitting MOLOCH model agrees 
better with the GRIPHO data, although its rainfall peak is 
anticipated by one hour for the Western Alps (17:00 UTC 
vs 18:00 UTC). The amplitude, that is the maximum value 
of the daily cycle, of the MOLOCH profile matches better 
observations. This is confirmed by the KGE index, which is 
the higher among the three hindcasts considered (0.21 for 
Western Alps and 0.60 for Eastern Alps). To summarise such 
results, in Table 4 we report, for each area, the hour of the 
rainfall peak, the amplitude and the KGE index. As we con-
sider the Po Valley (see panel (c) in Fig. 14), located in the 
northern part of Italy and characterised by flat areas with an 
average topography of approximately 27 m, the mean diurnal 
cycle of observed rainfall do not show a sharped bell-shaped 
profile. Such feature is better reproduced by the MOLOCH 
data than the other two datasets; in fact, the KGE index is 
0.11 (the greatest), the timing of the peak, which is 17:00 
UTC, is matched and the amplitude is closer to the observed 
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Fig. 10   a Spatial distribution of the 90th percentile of summer daily 
precipitation (unit mm/day) for the GRIPHO observations averaged 
over the 2001–2016 period. b–d Relative bias (unit %) for ERA5-

Land, MOLOCH and BOLAM, respectively. The inset label in panels 
(b–d) indicates the average bias in the whole domain. The 90th per-
centiles are computed with respect to wet days (rainfall > 1 mm/day)
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one (0.08 vs 0.09 mm/h) than ERA5-Land and BOLAM 
data. Panels (d–f) of Fig. 14 show the mean diurnal cycle for 
three areas located to the South of the Apennines mountain-
ous chain: the northern Tyrrhenian Coast (d), the Sardinia 
Island (e) and a portion of the central-southern Italy (f). 
These areas are hilly, characterised by an approximate aver-
age topography of 230 m, 352 m and 412 m, respectively. 
The mean diurnal cycle of both observed and modelled data 
are bell-shaped profiles. In general, ERA5-Land provides 
data that agree better to observed ones, since both the hour 
of rainfall peak and the amplitude match observations, and 
the KGE index is the highest and greater than 0.75 overall 
(see Table 4). However, we underline how both BOLAM 
and MOLOCH data provide reliable results, in particular as 
regards the timing of the peak provided by MOLOCH; but 
the amplitude is either overestimated (0.07 vs 0.05 mm/h 
in Sardinia and 0.20 vs 0.15 mm/h Central-South Italy), or 
underestimated in the Tyrrhenian Coast (0.11 vs 0.13 mm/h).

3.4 � Study cases

Once investigated the performances of annual to hourly pre-
cipitations among the three datasets, we now focus on two 
subjectively selected heavy precipitation events to illustrate 

how rainfall patterns and peaks are represented differently. 
We selected two heavy rainfall events among those listed 
in the Polaris (Popolazione a Rischio da Frana e da Inon-
dazione in Italia) project. The Polaris database (https://​polar​
is.​irpi.​cnr.​it/, accessed 9 April 2022) is managed by the 
Research Institute for Geo-Hydrological Protection (IRPI) 
of the Italian National Research Council (CNR). It gathers 
severe weather events that caused flooding or landslides/
debris flows over Italy across the period 1951–2019. The 
events we chose are: the Piedmont flooding occurred during 
the first days of November 1994 (hereinafter the PIE1994 
case) in the north-western Italy (Buzzi et al.  1998), and the 
convective precipitation event of 25 October 2011 (Buzzi 
et al.  2014) that caused the flooding of the Cinque Terre 
(hereinafter the CT2011 case), located onshore of the Ligu-
rian Sea.

The PIE1994 case was initially analysed by Buzzi et al.  
(1998), who provided an exhaustive description of both the 
synoptic and small scale meteorological conditions that led 
to the disastrous flooding of a relatively vast area in north-
western Italy. Recently, several authors (Capecchi 2020; Cer-
enzia et al.  2020; Davolio et al.  2020; Garbero and Milelli 
2020; Parodi et al.  2020) produced new reforecasts of the 
event by using state-of-the-art and limited-area numerical 
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(b) Threshold = 2 mm/day
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(c) Threshold = 5 mm/day
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(d) Threshold = 10 mm/day
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(e) Threshold = 20 mm/day
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(f) Threshold = 50 mm/day
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Fig. 11   Performance diagram of the daily precipitation of ERA5-Land (red), MOLOCH (orange), and BOLAM (blue) with respect to the 
GRIPHO observations. Skill scores are averaged over the 2001–2016 period

https://polaris.irpi.cnr.it/
https://polaris.irpi.cnr.it/
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weather models (Meso-NH, COSMO, MOLOCH and WRF), 
all set in a convection-permitting mode. Although numeri-
cal experiments that shortly followed PIE1994 (Buzzi et al.  
1998; Ferretti et al.  2000) were able to reproduce the rain-
fall due to the direct uplift of the flow impinging the Alps, 
it is by implementing higher-resolution and convection-
permitting models that is possible to attain more accurate 
forecasts. In fact, as outlined in Davolio et al.  (2020) such 
models are able to reconstruct both the convective activity 
extending to the North of the Ligurian Apennines and the 
activity of the convective cells embedded in the stratiform 
orographic precipitation in the northern Alpine part of the 
area (Rotunno and Houze 2007). Rainfall amounts accumu-
lated in the 24-h period ending at 00:00 UTC 6 November 
1994 are shown in Fig. 15 for: (a) observations, (b) ERA5-
Land, (c) MOLOCH and (d) BOLAM data. All the three 
modelled datasets provide areas of maximum precipitation 
that agree well with rain-gauge data, with two maxima, one 

locate in the northern part of the region and one, lower, in 
the southern part. However, MOLOCH maxima (316 mm) 
are closer to observation peaks (323 mm) than the other 
two datasets in the northern part of the region. In fact, both 
ERA5-Land and BOLAM underestimate maximum precipi-
tation by approximately 30% (201 mm and 218 mm, respec-
tively). In the southern part, where convection occurred and 
played a major role (Capecchi 2020; Davolio et al.  2020), 
the MOLOCH model yields too much rain (maxima up to 
294 mm against observed values up to 252 mm), possibly 
due to a strong convective activity, as found also by Davo-
lio et al.  (2020) in their numerical experiments with the 
MOLOCH model. BOLAM provides an accurate estimate 
of precipitation maxima (243 mm close to the observed 
252 mm), whereas ERA5-Land underestimates by approxi-
mately 50% the maximum (127 mm).

As regards CT2011, a comprehensive description of 
the event is provided by Buzzi et al.  (2014), who tested 
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Fig. 12   a Spatial distribution of the 90th percentile of summer hourly 
precipitation (unit mm/h) for the GRIPHO observations averaged 
over the 2001–2016 period. b–d Relative bias (unit %) for ERA5-

Land, MOLOCH and BOLAM, respectively. The inset label in panels 
(b–d) indicates the average bias in the whole domain
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the predictability capabilities of the MOLOCH model at 
increasing horizontal resolution. We present the results of 
the BOLAM/MOLOCH models for the CT2011 case to ena-
ble comparisons with previous works (Buzzi et al.  2014; 
Capecchi 2021) and to evaluate the added value carried by 
the use of ERA5 data as initial and boundary conditions. 
The precipitation accumulated in the 24-h period ending at 
00:00 UTC 26 October 2011 is shown in Fig. 16. Panel (a) 
shows available rain-gauge measurements and panels (b–d) 
show predictions produced by the ERA5-Land, MOLOCH 
and BOLAM datasets, respectively. In all the four panels, 
inset numbers indicate precipitations maxima in the sur-
rounding area. In the relatively small area of interest (extent 
is approximately 104 km2 ) two maxima are present in the 
observations: 538 mm in the western part and 218 mm in 
the south-eastern part, separated by an area of relatively 
low precipitation values (< 50 mm). Such pattern is recon-
structed by the convection-permitting MOLOCH model, but 
is missed by both ERA5-Land and BOLAM. Furthermore, 
precipitation maxima of the MOLOCH model (196 mm) 

are closer to rain-gauge data (538 mm) than the other two 
models, although largely underestimate observations. This 
is not surprising, in fact Buzzi et al.  (2014) demonstrated 
that even with very high-resolution numerical experiments 
(grid spacing up to 1.5 km) simulated precipitation maxima 
of the CT2011 case can reach no more than 335 mm in 24 h. 
On the other hand Capecchi (2021) proved that with a multi-
model ensemble initialised with the 50 members of ECMWF 
ensemble data at different lead times (up to 600 members) 
the highest precipitation peaks achievable is approximately 
400 mm.

For both events, the higher the resolution, the better 
the agreement of rainfall peaks between observations and 
numerical data. This is well known (Buzzi et al.  2014); 
however we also found that the MOLOCH short-range simu-
lation (forecast’s length is 30-h) fed by the ERA5 reanalyses 
does not consistently outperform in terms of rainfall peaks 
previous experiments, which used operational analysis and 
forecasts as initial and boundary conditions. As regards 
PIE1994, the precipitation maxima we found (316 mm/
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Fig. 13   As in Fig. 12 but for winter hourly precipitations (unit mm/h)
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day and 294 mm/day in northern and southern Piedmont, 
respectively) agree well with those found by Davolio et al.  
(2020). As regards CT2011, the precipitation maxima we 
found when running MOLOCH at 2.5 km grid spacing 
(196 mm/day) is between what Davolio et al.  (2015) found 
running two MOLOCH resolutions: the first one at 3 km grid 
spacing (175 mm/day) and second one at 2 km grid spacing 
(215 mm/day).

To add more insights into the dynamical aspects of the 
PIE1994 and CT2011 events, in Fig. 17 we show the tem-
poral evolution of hourly rainfall accumulations for two 
selected rain-gauges: Oropa as regards PIE1994 (upper 
panel) and Calice al Cornoviglio as regards CT2011 (lower 
panel). Observed data for PIE1994, shown with the black 
line, indicate that rainfall was mainly due to the orographic 
uplift of moist air (Buzzi et al.  1998), in fact the Oropa 
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Fig. 14   Mean diurnal cycle of summer precipitations (unit mm/h) 
obtained for GRIPHO (black line), ERA5-Land (red line), MOLOCH 
(orange line) and BOLAM (blue line) data and averaged over a West-

ern Alps, b Eastern Alps, c Po Valley, d Tyrrhenian Coast, e Sardinia 
and f Central-South Italy. Note the different y-axis range between the 
Alps (panels (a) and (b)) and the remaining zones

Table 4   For each dataset and for each area (shown in Fig. 3) it is reported: the maximum of the daily cycle (namely, ‘Amplitude’) and the hour at 
which the maximum is reached (namely, ‘H max’)

The KGE index is shown in the last column of each area. The best score among the three numerical datasets is highlighted in bold

Dataset H max Amplitude KGE H max Amplitude KGE H max Amplitude KGE

Western Alps Eastern Alps Po Valley
GRIPHO 18 0.24 / 17 0.31 / 18 0.09 /
ERA5-Land 15 0.46 −0.80 15 0.50 0.07 17 0.16 −0.57
MOLOCH 17 0.30 0.21 17 0.35 0.60 17 0.08 0.11
BOLAM 17 0.37 −0.11 14 0.41 0.47 14 0.11 −0.08

Tyrrhenian Coast Sardinia Central-South Italy
GRIPHO 16 0.13 / 16 0.05 / 16 0.15 /
ERA5-Land 15 0.13 0.88 15 0.05 0.75 15 0.18 0.81
MOLOCH 15 0.11 0.76 15 0.07 0.27 15 0.20 0.62
BOLAM 14 0.14 0.75 14 0.08 −0.02 17 0.20 0.46
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rain-gauge is located at 1186 m above sea level and the 
maximum rainfall rate is approximately 27 mm/1-h. All 
the three numerical datasets, reconstruct such dynamics, 
with a steady increment of the rainfall profile across the 
day; however, MOLOCH almost equals the observed daily 
accumulated precipitation (292 mm against 298 mm) and 
outperforms ERA5-Land and BOLAM, which underesti-
mate the rainfall peak by approximately 47% and 29%, 
respectively. Further, MOLOCH rainfall rate is up to 
22  mm/1-h and agrees well with observations. Lower 
panel of Fig. 17 reveals the convective nature of precipi-
tation during the CT2011 event, as recorded at the Cal-
ice al Cornoviglio rain-gauge. Maximum rainfall rate is 
121 mm/1-h, average rainfall rate is 18 mm/1-hour and 
standard deviation of 30 mm/1-h; in the second part of the 
day (last 12 h) the average is 31 mm/1-h and the standard 

deviation is 39 mm/1-h. None of the modelled data are 
able to reconstruct such dynamics in terms of rainfall 
rate, and the daily precipitation amount is underestimated 
by approximately 78%, 57% and 62% for ERA5-Land, 
MOLOCH and BOLAM, respectively.

To evaluate more quantitatively rainfall predictions for the 
PIE94 and CT2011 cases, we show the FSS in Fig. 18. Since 
we kept the neighbourhood size constant and equal to 18 km, 
this assessment allows for a precipitation intensity analysis. By 
looking at the precipitation thresholds below which the FSS 
corresponds to a POD less than 0.5 and CSI less than 0.33 (this 
is commonly referred as the FSSu value, which is indicated 
by the horizontal dashed line in Fig. 18), we claim that, the 
BOLAM/MOLOCH simulations outperform the ERA5-Land 
accuracy for both events. In fact, as regards PIE1994 (plot on 
the left), the MOLOCH profile (orange line) is greater than 

Fig. 15   Rainfall amounts accumulated in the 24-h period ending at 00:00 UTC 6 November 1994 for: a Observations, b ERA5-Land, c 
MOLOCH and d BOLAM. In each panel, inset numbers indicate precipitation maxima in the surrounding area
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FSSu for all the precipitation thresholds up to 250 mm, the 
BOLAM profile (blue line) drops below the dashed line at 
approximately the 200 mm threshold, and the red line (cor-
responding to ERA5-Land data) is below the dashed line for 
each precipitation threshold greater than 180 mm, approxi-
mately. As regards the CT2011 case (plot on the right), we can 
draw similar conclusions, except for the fact that MOLOCH 
is producing useful predictions up to 175 mm, BOLAM up to 
150 mm and ERA5-Land up to 100 mm, approximately. We 
stress that the FSSu values shown in Fig. 18 are calculated 
for the 250 mm and 200 mm precipitation thresholds for the 
PIE1994 and CT2011 case, respectively.

4 � Discussions

We realised a limited-area, high-resolution and long-term 
hindcast based on the BOLAM and MOLOCH models fed 
by ERA5 data as initial and boundary conditions. Precipita-
tion performances were verified against two gridded obser-
vational datasets (GRIPHO and ARCIS) and ERA5-Land 
data were used as benchmark to assess the added value of 
running the convection-permitting MOLOCH model.

Considering annual precipitations, results demonstrate 
that the MOLOCH model provides the best overall scores, 
reducing the wet bias found in the Alps for ERA5-Land. 
The wet bias of ERA5/ERA5-Land is a known issue and 
it was recently suggested (Lavers et al.  2022) that it is due 

Fig. 16   As in Fig. 15 but for the 24-h period ending at 00:00 UTC 26 October 2011
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Fig. 17   PIE1994 (upper panel): accumulated precipitation from 00:00 
UTC to 23:00 UTC on the 5th of November registered at Oropa 
rain-gauge. CT2011 (lower panel): accumulated precipitation from 
00:00 UTC to 23:00 UTC on the 25th of October registered at Cal-

ice al Cornoviglio rain-gauge. In both panels the black line indicates 
observed data, the red, orange and blue lines indicate the correspond-
ing ERA5-Land, MOLOCH and BOLAM data, respectively
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to the ERA5 point elevations which are, on average, higher 
than actual stations and potentially can cause the orographic 
enhancement of precipitation. The MOLOCH model, which 
has a better representation of orography, was proved to 
reduce the wet bias, in particular in complex orography 
areas and for all the precipitation thresholds up to the 75th 
percentile of observed data (see panels (a)–(c) in Fig. 6 in 
particular). We also focused on the interannual variability of 
the accuracy of total annual precipitations (see Figs. 8 and 9) 
and found that the profiles of the skill scores do not present 
any significant increase/decrease over time. This assessment 
is relevant because it is known that changes in the amounts 
and types of observational data that is assimilated by ERA5 
may produce artificial trends or variability along the time 
series.

At the daily time scale, beside the underestimate of 
ERA5-Land, which was expected since the relatively coarse 
resolution of ERA5-Land data tend to generate a smooth-
ing of extreme precipitation at the daily time scale (Lavers 
et al.  2022; Reder et al.  2022), what deserves a discussion 
is the average wet bias of MOLOCH. Looking at panel (c) in 
Fig. 10, it is evident how the wet bias is prominently present 
in the southern part of the country. This area is narrow (long-
est distance from coast to coast is approximately 270 km) 
and characterised by complex orography with the Apennines 
chain crossing the area from North to South (highest peak 
2912 m above sea level) and with steep orography between 
mountainous and coastal areas. Here, the MOLOCH pro-
vides too many rainfall events exceeding the 90th percentiles 
of summer precipitations, possibly because of too high tem-
peratures triggering rainfall induced by thermals.

The performance diagram shown in Fig. 11 confirms 
(Lavers et al.  2022) that ERA5-Land data exhibit weak 
wet biases as regards light rains (all red points lie above 
the diagonal in panels (a)–(c)), although providing satisfac-
tory scores as regards POD and SR (both greater than 0.6). 
Performances in reproducing medium to heavy daily rain-
fall accumulations (20 and 50 mm/day) are worst, whereas 
a daily rainfall accumulation equal to 10 mm/day appears 
the optimal threshold over which ERA5-Land data perform 
better, coherently to what was found also by Bonanno et al.  
(2019). The decreasing agreement between the ERA5 data 
and observations with increasing daily precipitation intensity 
was already highlighted at the global (Rivoire et al.  2021) 
and European scale (Bandhauer et al.  2022). The BOLAM/
MOLOCH data are able to reduce such disagreement, in 
particular for the two higher thresholds (20 and 50 mm/
day). We stress the fact that the scores obtained when using 
the GRIPHO dataset as reference are, for almost all thresh-
olds, better than those obtained when using ARCIS. This 
holds possibly because (i) a higher incidence of correctly 
simulated cases for the GRIPHO database, which is shorter 
in time, than ARCIS or (ii) a higher incidence of extreme 

events in the ARCIS database, which are more difficult 
to simulate, because the Alps cover the larger part of the 
domain. However, any possible cause raises questions and 
concerns about the coherence between GRIPHO and ARCIS 
in the overlapping period 2001–2015. We didn’t perform 
any evaluation of the coherence between the two databases 
because it would required a consistent effort, and would be 
out of the scope of the present work.

As regards the analysis on heavy hourly precipitation cor-
responding to the 90th percentile of wet hours, results show 
that MOLOCH provides the best average bias (i.e., closer to 
zero) than the other two datasets. This holds for both sum-
mer and winter, although in summer (Fig. 12) the bias is 
positive and equal to approximately 25.0% and in winter 
(Fig. 13) it is negative and equal to approximately −4.3%. As 
stated previously, the reason for such a behaviour possibly 
relies on too high temperatures during summer triggering 
convective precipitations. To assess whether such hypothesis 
is correct or not, a verification on low-level temperatures is 
currently ongoing. The analysis on the mean diurnal cycle of 
precipitations shown in Fig. 14 and Table 4 suggests that the 
use of a convection-permitting model improves the represen-
tation of summer daily rainfall in regions where orography 
is complex (namely Western and Eastern Alps) and in the 
flat plains of the Po Valley in northern Italy. In particular 
the timing of the peak agrees well with observations, with 
an anticipation no more than one hour, and the MOLOCH 
amplitude is closer to the observations than BOLAM and 
ERA5-Land. The fact that lower resolution models lack in 
the representation of the mean diurnal cycle is due to the use 
of a parameterisation scheme for precipitation and not to the 
coarse representation of the orography. This assessment is 
not new and agrees with what is found in the literature (Ban 
et al.  2021). On the other hand, in the three hilly areas of 
the Tyrrhenian Coast, Sardinia Island and central-southern 
Italy, ERA5-Land outperforms BOLAM and MOLOCH 
and no added value is found when using the convection-
permitting model. However, we underline that both BOLAM 
and MOLOCH are reliable as confirmed by the KGE values.

We finally considered two heavy precipitations events to 
investigate the capability of BOLAM/MOLOCH data to cap-
ture extreme precipitations and assess the added value with 
respect to ERA5-Land predictions. We argue that two single 
case studies cannot provide statistically robust results. How-
ever, a more rigorous verification of the long-term BOLAM/
MOLOCH hindcast for selected heavy precipitation events 
can be feasible considering the availability of the Polaris 
database, which counts heavy rainfall events since the early 
’60s. We underline the fact that when calculating the FSS 
score shown in Fig. 18, we set a constant value for the neigh-
bourhood size, which is equal to 18 km. We chose this value 
because it is known (Skamarock 2004; Ricard et al.  2013) 
that the effective resolution of numerical weather models 
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is a multiple (say K) of the grid spacing Δx . Some studies 
found that this inflating factor K ranges from 4 for the Meso-
NH model (Lac et al.  2018) run at 2.5 km grid spacing to 
7 for the WRF model (Skamarock et al.  2008) run at 4 km 
grid spacing. Since we want to highlight any potential added 
value of the convection-permitting MOLOCH model, we 
calculated the FSS for a neighbourhood size which approxi-
mately matches the MOLOCH effective resolution. Since 
no studies exist as regards MOLOCH and its K value, we 
chose a conservative setting for K equal to 7 to get 17.5 km 
as effective resolution (in fact, in our study the grid spacing 
Δx of the MOLOCH model is 2.5 km). For this reason, the 
profiles shown in Fig. 18 allow for an intensity analysis, and 
not for an investigation on the scales over which the simula-
tions improve their skill. What we can conclude from the 
plots in Fig. 18 is that MOLOCH provides valuable informa-
tion on the intensity of precipitation up to 250 mm/day as 
regards PIE1994 and up to 200 mm as regards CT2011; it 
outperforms both BOLAM and ERA-Land.

All the assessments we made regarding the performances 
of the BOLAM/MOLOCH hindcast rely on the quality of 
observations. It has to be always kept in mind that rain-gauge 
undercatch, measurement errors, and interpolation proce-
dures may lead to uncertainties in observed gridded dataset. 
This holds in particular in mountainous areas, where the 
rainfall underestimation may be induced by rain-gauge posi-
tioning, strong wind and/or snowfall. Some papers report an 
underestimation in the range 5–40% in such areas (Frei et al.  
2003), and as a benchmark, Pichelli et al.  (2021) consider 
precipitation biases in the range between  −5 and 25% as an 
acceptable range in some of their analyses. For this reason, 
we should use caution when interpreting the results. For 
example, the conclusions we drew about the accuracy of 
the MOLOCH hindcast can be better evaluated consider-
ing the possible underestimation in the observations. We 
can argue that the systematic wet bias found in the spatial 
pattern of the 90th percentile of daily and hourly precipita-
tions is more likely lower than the one shown in panel (c) of 
Figs. 10 and 12. Several previous studies (Ban et al.  2014; 
Pichelli et al.  2021) used the E-OBS dataset (Cornes et al.  
2018) as observational dataset. E-OBS is a gridded dataset 
over Europe at a resolution of about 0.1 degree both in the 
longitude and latitude direction. Using E-OBS would have 
triggered comparisons between our results and those found 
in similar studies. However, it is known (Prein and Gobiet 
2017; Bandhauer et al.  2022), that in regions where the 
rain-gauge density is poor, E-OBS suffers from a system-
atic underestimation as regards extreme events and average 
values over mountainous areas. For these reason, as done 
by many authors (Ban et al.  2014; Berthou et al.  2020; 
Reder et al.  2022), we preferred to validate modelled data 
against high-resolution observational datasets, although they 
are available over a shorter time-period, as in the case of 

GRIPHO, or for a limited portion of the area of interest, 
as in the case of ARCIS which lacks data over southern 
Italy. This holds, besides the fact that validating the mean 
daily cycle of precipitations and the 90th percentile of hourly 
rainfall rate imposes the constraint about the need for hourly 
records. To our knowledge, GRIPHO is the only long-term, 
hourly and gridded database freely available over the whole 
Italian domain.

As discussed in the Introduction, a key factor to create 
an accurate picture of the past climate through reanalyses 
is the implementation of a data assimilation scheme; this 
to nudge the model towards the observed states. Other-
wise than similar studies (Bollmeyer et al.  2015; Whelan 
et al.  2018; Bonanno et al.  2019; Reder et al.  2022), the 
BOLAM/MOLOCH hindcast we presented, didn’t built 
upon any assimilation of observed data at the local scale 
and we acknowledge that this might represent a shortcoming 
of the dataset. Nevertheless, we claim that this is a prag-
matic approach to take full advantage of the the improved 
quality of global reanalyses (ERA5) and to path the way 
for a fast downscaling of future global reanalyses, such as 
ERA6 data which are expected to even better resolve small 
scale features thanks to advances in assimilation techniques. 
Further, regional data assimilation requires a robust quality-
checked database of observations, not ingested into global 
reanalyses, and which are required to cover long temporal 
and spatial scales. Observations gathering and preprocessing 
would slow down any future implementation of new limited-
area reanalyses based on convection-permitting models. This 
holds beyond the technical and scientific challenges to be 
tackled when assimilating data at such high-resolution scale.

5 � Conclusions

The dynamical downscaling of climate projections at the 
convection-permitting scale is at the cutting-edge of numeri-
cal climate experiments (Prein et al.  2015). To evaluate the 
uncertainty at the regional scale of such simulations, several 
projects developed multi-model climate ensembles (Coppola 
et al.  2020; Ban et al.  2021; Pichelli et al.  2021). Thus, 
our study aims at assessing the reliability of the BOLAM/
MOLOCH numerical chain over a long past period to pro-
mote its use in climate projections downscaling, for which 
the impact of the driving boundary conditions is prominent 
respect to initial conditions. However, we acknowledge that 
BOLAM and MOLOCH are numerical weather prediction 
models and not climate models, thus before the imple-
mentation in climate studies, efforts are required to adapt 
them. Our work is a first assessment about the reliability, 
affordability and ease of implementation of the BOLAM/
MOLOCH suite for downscaling reanalyses and thus, poten-
tially, climate projections. As regards the affordability, we 
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highlight that, assuming the same computational power as 
in Raffa et al.  (2021b), that is 2160 computing cores, a 
1-year BOLAM/MOLOCH data can be delivered in less than 
19 h. This holds if we assume that the deployment of the 
BOLAM/MOLOCH setup on 60 nodes is an embarrassingly-
parallel job, which is a reasonable hypothesis.

Thanks to the numerous ongoing activities regarding the 
refinement of ERA5 data at the local scale, the BOLAM/
MOLOCH hindcast can complement similar datasets 
(Bonanno et al.  2019; Raffa et al.  2021b; Cerenzia et al.  
2022) to create a multi-model and convection-permitting 
ensemble, aimed at assessing the uncertainty of past rainfall 
regimes in Italy.

Appendix A

Let Fi and Oi be the modelled and observed values, respec-
tively, at location i, then RMSE, ME, m-bias and r are defined 
as follows (see also Wilks 2011):

where F and O are the average values (over the index i) of 
forecasts and observations, respectively, and n is the total 
number of weather stations considered.

Using the 2 × 2 contingency table for the dichotomous (yes/
no) forecast shown in Table 5, four skill measures are defined 
as follows:

(A1)RMSE =

√

√

√

√

1

n

n
∑

i=1

(Fi − Oi)
2,

(A2)ME =

1

n

n
∑

i=1

(Fi − Oi),

(A3)m-bias =

1

n

∑n

i=1
Fi

1

n

∑n

i=1
Oi

=

F

O
,

(A4)r =

∑n

i=1
(Fi − F)(Oi − O)

�

∑n

i=1
(Fi − F)2

�

∑n

i=1
(Oi − O)2

,

(A5)SR =1 −
B

A + B
,

The FSS method (Roberts and Lean 2008) belongs to the 
object-based verification methods and it was conceived 
to analyse the spatial agreement between predicted and 
observed gridded values. Let p be a rainfall amount in a time 
period T (for example 24-h), firstly the method compares 
the fraction of grid points exceeding p in a window of side 
length n (often referred as the neighbourhood length) in both 
the modelled and observed grids. This is done by converting 
the precipitation values to a binary field with the purpose 
to remove any bias, and transform the continuous forecast 
to a dichotomous one (for the particular event “the rainfall 
is greater than p”). In a second step, the method calculates, 
for each square of side length equal to n, the square root of 
the RMSE (defined MSE

(n) ) between forecast and observed 
fractions and compares this value with a reference value 
MSE

(n)ref  , which can be thought of as the largest possible 
MSE that can be obtained from the forecast and observed 
fractions. Finally the FSS is computed by using the formula:

FSS spans in the interval [0, 1] ∈ ℝ , with 1 as a perfect 
score. For each value p, Roberts and Lean (2008) identified 
a thresholds below which FSS values indicate a forecast with 
a POD less than 0.5 and a CSI less than 0.33; this threshold 
is denoted as “uniform” FSS (denoted with FSSu using the 
authors’ notation) and is considered to be a suitable value 
for the “target skill”.

The KGE index is a standard measure, often used in 
hydrology, to evaluate the goodness of a discrete mod-
elled time-series Fj with respect to observations Oj , where 
j ∈ {1,… , n} ⊂ ℕ . In formula:

where �F and �O are the standard deviations of predictions 
and observations, respectively, over time, F and O are the 
time averages and r is the Pearson correlation coefficient 
defined in Eq. A4. The KGE index belongs to the interval 
(−∞, 1] ∈ ℝ , with 1 as perfect score. Knoben et al.  (2019) 
argued that KGE values less than −0.41 indicate not skilful 

(A6)POD =

A

A + C
,

(A7)CSI =
A

A + B + C
,

(A8)bias =
A + B

A + C
.

(A9)FSS
(n) = 1 −

MSE
(n)

MSE
(n)ref

.

(A10)KGE = 1 −
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(r − 1)2 +

(

�F

�O

− 1
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+

(

F

O
− 1

)2

,

Table 5   The 2 × 2 contingency table

Event observed

Yes No
Event forecast Yes A B

No C D
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predictions when using the mean of the observations as 
benchmark.
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