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Abstract
The sub-seasonal to seasonal (S2S) prediction of precipitation is not only a hot topic but also a challenge. The traditional 
ensemble mean and ensemble probabilistic forecast methods cannot avoid the uncertainty of the initial value in the S2S 
prediction. Is there a more suitable ensemble postprocessing method for the S2S prediction? In this study, the hindcast data 
during the 1999–2010 summers from nine operational models in the international S2S prediction project has been evaluated. 
Based on the quantitative objective precipitation evaluation methods, such as the Equitable Threat Score and frequency bias 
methods, the climatological spatio-temporal distribution of the optimal probabilistic threshold on the S2S scale is proven 
to exist, and it can be used as the standard to judge how many ensemble members are credible. Then, different ensemble 
forecast strategies are adopted in different regions to construct a Deterministic Ensemble Forecast using an Optimal Proba-
bilistic Threshold (DEFOPT) method for precipitation prediction. The hindcast data of eight S2S models outside the period 
1999–2010 are used to verify the applicability of the DEFOPT method by using the historical optimal probabilistic threshold 
during 1999–2010. The results show that the DEFOPT outperforms the deterministic forecast from one initial value, the 
ensemble mean, and the deterministic ensemble forecast using a probabilistic threshold for the occurrence days of rainfall 
at the 1 mm and 5 mm thresholds (≥ 1 mm and ≥ 5 mm) over China during each pentad in most S2S models.
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1 Introduction

Meteorological disasters caused by extreme weather and 
extreme climate events have become one of the major prob-
lems faced by human beings since the twentieth century. 
For example, the flood disaster in the Yangtze-Huaihe River 
Basin of China in the summer of 1998 and the freezing rain 
and snow disaster in southern China in the winter of 2008 
(National Climate Center 1998; Li and Gu 2010) led to great 
losses to the national economic and social development. 
Currently, numerical models have made great progress in 
the medium-range and short-term weather forecasts and the 
forecasts longer than the seasonal scale. However, there is 

still a gap between the 2-week forecasts and seasonal fore-
casts. Therefore, the 15–60 day sub-seasonal to seasonal 
(S2S) prediction is getting increasing attention worldwide 
(Vitart et al. 2017; Zhou et al. 2019).

In 2015, the World Weather Research Program and the 
World Climate Research Program jointly launched an inter-
national project of S2S prediction (Vitart et al. 2017). This 
project aims to enhance the 15–60 day prediction skills, 
improve the overall understanding of high impact weather 
events, such as the tropical low-frequency Madden–Julian 
Oscillation, monsoon, and extreme precipitation, and pro-
mote the relevant research carried out by international 
operational forecast centers and institutions. At present, the 
operational forecast centers in 11 countries have participated 
to the S2S project and released a large number of historical 
hindcast and real-time forecast data of the models (http:// 
www. s2spr edict ion. net/). The China Meteorological Admin-
istration (CMA) also participated in the S2S project, submit-
ted the experiment data based on the Beijing Climate Center 
Climate System Model (BCC_CSM1.2) of the National 
Climate Center, and undertook the task of Asian database 
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center for the S2S project. As one of the important issues 
in this S2S project, the sub-seasonal prediction (15–60 day) 
of precipitation has attracted wide attention (Ebert 2001). 
However, the understanding of the predictability and predic-
tion method of precipitation is limited.

Nowadays the weather numerical model performs bet-
ter in the daily forecast of the geopotential height, air tem-
perature, and precipitation in the leading time of about a 
week (Saha and Van den Dool 1988; Qin and Van den Dool 
1996; Buizza 2008; Schmeits and Kok 2010). Considering 
the interactions of the atmosphere with the ocean, land sur-
face, and sea ice, the climate model can predict the aver-
age and variability of meteorological factors longer than 
the seasonal scale (Collins and Coauthors 2006; Wu et al. 
2013). However, due to the chaos in the atmosphere (Lorenz 
1963, 1982; Chou 1989; Hoffman 2002), the inevitable ini-
tial value errors and model errors lead to forecast biases in 
the weather and climate models. Thus, the ensemble mean 
and probabilistic forecast based on multiple initial values 
or multiple models are usually carried out to represent the 
forecast uncertainty caused by one initial value and model 
errors (Gneiting and Raftery 2005). In the last 20 years, the 
ensemble forecasting methods such as the Monte Carlo fore-
cast method (Leith 1974), Time-Lagged Average Forecast 
method (LAF, Hoffman and Kalnay 1983), breeding grow-
ing mode method (Toth and Kalany 1993, 1997), singular 
vectors method (Molteni et al. 1996), ensemble Kalman fil-
ter method (Houtekamer and Mitchell 1998), stochastically 
perturbed parameterization tendencies method (Buizza et al. 
1999a, b), multi-model ensemble prediction method (Fritsch 
et al. 2000), and machine learning approach (Hwang et al. 
2019) have gradually become important tools to improve 
the skill of the weather forecasts, S2S prediction, and even 
long-term climate change simulation in the national opera-
tional centers, which include the National Centers for Envi-
ronmental Prediction (NCEP), the European Center for 
Medium-Range Weather Forecasts (ECMWF), the United 
Kingdom Met Office (UKMO), the Japan Meteorological 
Agency (JMA), and the Chinese Meteorological Administra-
tion (CMA) (Sivillo et al. 1997; Moore and Kleeman 1998; 
Krishnamurti et al. 2000; Yang 2001; Buizza 2019; Zhang 
et al. 2021).

For the prediction from day 7 to 60, previous studies have 
discussed the influence of ensemble forecasting methods, 
such as the ensemble probabilistic prediction (Pan and Van 
den Dool 1998; Chessa and Lalaurette 2001), the conditional 
nonlinear optimal perturbation ensemble (defined as a kind 
of initial perturbation which makes the cost function acquire 
their maximum under an initial constraint condition; Jiang 
et al. 2009), the weather type ensemble forecast (designed 
for the purpose of post-processing forecast output from 
ensemble prediction systems and understanding how fore-
cast models perform under different circulation types; Neal 

et al. 2016), predictability-based extended-range ensemble 
prediction (proposed for the predictable components and 
random components obtained with different ensemble pre-
diction strategies; Zheng et al. 2012), on the prediction skill 
of geopotential height, wind, and air temperature.

Other studies have analyzed and evaluated the impact of 
ensemble forecast methods on the sub-seasonal precipitation 
prediction skill (Hamill et al. 2004; Whitaker et al. 2006; 
Vitart and Molteni 2009; Jie et al. 2013; Bombardi et al. 
2017; Liang and Lin 2018; Li et al. 2019). However, the 
improvement of weekly to sub-seasonal precipitation predic-
tion is limited compared to other time-scale forecasts (Tan 
and Chen 2013; Jie et al. 2013), and the statistical post-
processing ensemble of precipitation is far more challenging 
than that of weather variables like surface temperature or 
wind speed (Scheuerer 2014). At present, both the ensemble 
probabilistic forecast method and ensemble mean method 
are not good enough in the day 7 to sub-seasonal precipita-
tion prediction due to the excessive increase of the ensem-
ble spread after 1 week (Jie et al. 2014). For the ensemble 
probabilistic forecast, a few of the ensemble probabilistic 
thresholds become less skillful with lead times (Buizza et al. 
1999a, b; Hamill et al. 2008). In the late period of fore-
casting (high lead times), the precipitation is significantly 
underestimated (overestimated) by the forecast with a high 
(low) probabilistic threshold (Jie et al. 2014). For the ensem-
ble mean forecasting, the precipitation bias is more likely 
to be caused by the false extreme precipitation predicted 
by a certain ensemble member if the ensemble size is not 
large enough (Jie et al. 2014). Considering this, Jie et al. 
(2014) proposed a method of Deterministic Ensemble Fore-
cast using a Probabilistic Threshold (DEFPT), which selects 
ensemble members through a certain ensemble probabilistic 
threshold. It can greatly improve the 6–15 day forecast skill 
in summer precipitation of different intensities in China, 
although the spatio-temporal variation of the probabilistic 
threshold is not considered and only the applicability of this 
method in a time-lagged ensemble system is verified. Mean-
while, it can avoid the influence of the false extreme value of 
the precipitation forecasted by a certain ensemble member 
on the ensemble forecasting. However, to some extent, there 
are still deviations in the precipitation prediction by using 
the DEFPT method based on a same probabilistic threshold 
from ensemble members in different regions, which may be 
related to the different regional systematic forecast errors 
of the model.

In this work, the quantitative objective statistical meth-
ods are used to explore the spatio-temporal variation of the 
available probabilistic forecast information in the sub-sea-
sonal forecast. The credible ensemble members (i.e. smaller 
biases and more skillful members) are selected, based on 
the spatio-temporal variation, and the optimal ensemble 
strategy is provided for different regions to be used in the 
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S2S precipitation ensemble forecast. The applicability of 
the method in different S2S operational models is verified. 
This article is organized as follows: Model data and ensem-
ble methods are introduced in Sect. 2; the verification and 
evaluation of the ensemble methods are provided in Sect. 3; 
the results are explored in Sect. 4; and Sect. 5 provides a 
summary and discussion.

2  Model data and ensemble methods

2.1  Model data

In this study, the precipitation data from hindcast experi-
ments from eleven operational prediction models in the S2S 
project are used (Table 1). All the data cover the period 
of 1999 to 2010, and are downloaded from http:// www. 
s2spr edict ion. net/. Although the S2S models have different 
horizontal resolutions, each operational center uploaded 
model output to the S2S database archiving centers with 
a unified horizontal resolution 1.5º × 1.5º except the BoM 
model with a lower resolution 2.5º × 2.5º. As the Institute 
of Atmospheric Sciences and Climate of the Italian National 
Research Council only provided a single re-forecast sample 
and there are some errors in the ensemble forecast data sub-
mitted by the Hydrometeorological Center of Russia (Jie 
et al. 2017), the ensemble forecasting methods are evalu-
ated and analyzed based on only nine operational models. In 
this study, the observed rainfall-gauge data over China are 
interpolated to the corresponding horizontal resolution of 
each S2S model, and daily accumulated precipitation from 
each S2S model is analyzed. In addition, eight models with 
longer re-forecast length than the NCEP (1999–2010) are 
further examined (Table 3).

2.2  Ensemble methods

In this paper, the Deterministic Ensemble Forecast using 
an Optimal Probabilistic Threshold (DEFOPT) method is 
proposed for the S2S (15–60 days) precipitation prediction. 
The DEFOPT is different from the traditional probabilistic 
forecast method as it does not predict the probability of pre-
cipitation event in each grid, but it uses the available proba-
bilistic forecasting information in the S2S real-time scale to 
decide how many ensemble members predicting the occur-
rence of rainfall event should be trusted, and then deter-
mines the optimal ensemble forecast in different regions. 
The details are as follows.

First, in order to avoid the excessive overestimation or 
underestimation in the ensemble probabilistic forecast of the 
rainfall event at a certain intensity (the precipitation with 
the threshold of 1 mm) at each grid point, the rainfall fore-
casting frequency bias for the probabilistic threshold  Pc is 
limited by a quantitative objective evaluation method—BIA 
score (see Appendix 1 for details) based on the multi-year 
hindcast results. This limitation is α ≤ BIA

(
P
c

)
≤ β , where 

α and β are empirical coefficients artificially selected accord-
ing to the BIAs of the forecasts using different probabilistic 
thresholds from each model (e.g. Fig. 1 for ≥ 1 mm; Fig. S1 
for ≥ 5 mm in the supplementary material). In this study, 
α and β are first tuned to have good performances of the 
DEFOPT in the climatology, and then are used to examine 
the hindcasts outside this period.

Second, within the reasonable range of the forecasting 
frequency bias, the optimal probabilistic forecasting thresh-
old  Pthreshold is defined when the skill of the daily precipita-
tion prediction is highest during 12 years at each grid point. 
Here, the skill is examined by using Equitable Threat Score 
(ETS; Schaefer 1990; see Appendix 1 for details). The cal-
culation formula is as follows.

Table 1  Operational models of the S2S project

Time range Resolution Re-forecast 
frequency

Ensemble 
member

Re-forecast length Ocean coupled Sea-ice coupled

ECMWF d 0–46 Tco639/319L91 3/4 days 11 1995–2015 Yes No
NCEP d 0–44 T126L64 daily 4 1999–2010 Yes Yes
CMA d 0–60 T106L40 daily 4 1994–2014 Yes Yes
JMA d 0–33 T319L60 10 days 5 1981–2010 No No
CNRM d 0–61 T255L91 15 days 15 1993–2014 Yes Yes
HMCR d 0–61 1.1 × 1.4L28 7 days 10 1985–2010 No No
BoM d 0–62 T47L17 5 days 33 1981–2013 Yes No
CNR-ISAC d 0–31 0.75 × 0.56L54 5 days 1 1981–2010 No No
UKMO d 0–60 N216L85 8 days 3 1993–2015 Yes Yes
ECCC d 0–32 0.45 × 0.45L40 5 days 4 1995–2014 No No
KMA d 0–60 N216L85 daily 3 1991–2010 Yes Yes

http://www.s2sprediction.net/
http://www.s2sprediction.net/
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Fig. 1  Temporal variation of the BIA averaged over each grid for 
the ≥ 1 mm precipitation in summers from 1999 to 2010 based on the 
different probabilistic threshold forecasts of the S2S multiple models. 
N is the total number of ensemble members from each model, and 

the numbers in the legend indicate the numbers of ensemble members 
predicting the occurrence of rainfall event. The BIA > 1.0 (BIA < 1.0) 
means overestimation (underestimation) of precipitation frequency
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In the equation, Pmin and Pmax are the minimum and 
maximum values of Pthreshold , respectively (e.g. Pmin ≤ P

c
 

≤ Pmax ), when the BIA(P
c
) scores are within the reason-

able range. After calculating the Pthreshold at each grid, the 
spatio-temporal distribution of Pthreshold in different regions 
can be achieved.

Third, according to the spatio-temporal distribution 
characteristics of the optimal probabilistic threshold, the 
threshold of the credible ensemble number  (Nthreshold) is 
selected.  Nthreshold =  Pthreshold × n, where n is the total num-
ber of ensemble members. Then, whether the forecasted 
rainfall event occurs or not is redefined, that is, the fore-
casted rainfall event occurs when the number of ensemble 
members that predict the rainfall event (N) is greater than 
or equal to the  Nthreshold. Otherwise, the forecasted rainfall 
event does not occur. The formulas are as follows.

In the equation,  Athreshold is the amount of rainfall at a 
certain threshold (for example, ≥ 1 mm).  ADEFOPT is the 
final result of ensemble forecasting at this threshold. ϕ 
indicates whether the precipitation event occurs (1) or not 
(0). If N is greater than or equal to  Nthreshold, � is 1. Oth-
erwise, � is 0.

(1)P
threshold

=

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pmin, BIA
�
Pmin

�
≤ �

Pc, ETS
�
Pc

�
= Max

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ETS

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Pmin

.

.

Pc

.

.

Pmax

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

P
max

, BIA
�
Pmax

�
≥ �

(2)ADEFOPT = Athreshold × �

(3)𝜙 =

⎧
⎪⎨⎪⎩

1, N ≥ N
threshold

0, N < N
threshold

To evaluate the benefits of the DEFOPT method, the 
temporal variation of the BIA (averaged over the rainfall 
events in the re-forecast length at each grid point) over 
China for the ≥ 1 mm and ≥ 5 mm precipitation in sum-
mers from 1999 to 2010 in China are shown based on the 
 Pc of the nine S2S models (Fig. 1). For the ≥ 1 mm rainfall, 
the deviation between the high-threshold (e.g. 11 ensem-
ble members for e.g. ECMWF) and low-threshold (e.g. 
1 ensemble member) probabilistic forecasts of the S2S 
models increases rapidly within 10 days and tends to be 
steady after 10 days, and the forecast with the low (high) 
probabilistic threshold significantly overestimates (i.e. 
BIA > 1.0) [underestimates (i.e. BIA < 1.0)] the observed 
rainfall. The range of the corresponding BIA is signifi-
cantly larger than that in the early stage of the forecast. 
The ranges of the BIAs of the ECMWF, NCEP, CMA, 
JMA, and ECCC models increase from 0.5–1.5 to 0.2–2.0. 
The ranges change from 1.0–1.5 to 0.3–2.0 for the UKMO 
and KMA models, increase from 1.3–1.7 to 0.1–3.0 for the 
CNRM model, and change from 0.1–1.7 to 0.0–2.0 for the 
BoM model. It is similar for the 5 mm precipitation, where 
the corresponding BIA begins to deviate from one stand-
ard deviation after 5 days (Fig. S1). Based on the temporal 
variation characteristics of BIA, the limitation of the BIA 
for the  Pc of each S2S model is given to avoid excessive 
overestimation or underestimation: α ≤ BIA

(
Pc
)
≤ β . The 

values of the empirical coefficients α and β are shown in 
Table 2, but the variability of α and β with lead time is not 
considered in this study.

Within the proper range of the BIAs, the spatio-tem-
poral distribution of the  Pthreshold with the highest ETS for 
the ≥ 1 mm precipitation prediction is calculated according 
to the S2S re-forecast data of daily precipitation in summers 
during 1999–2010 in China (Fig. 2). Figure 2a shows the 
average spatial distribution of the  Pthreshold from the 11th 
to the 15th day for the ≥ 1 mm rainfall in the summers of 
China predicted by the ECMWF model with eleven ensem-
ble members. The  Pthreshold is within 30%–40% in most areas 
of northern China, central China, and eastern China, and 
within 50%–70% in some areas of southern China, south-
western China, and the southern part of the Qinghai-Tibet 
Plateau. However, the  Pthreshold in the arid and semi-arid 

Table 2  Empirical coefficients α and β for precipitation events with different thresholds forecasted by the S2S models

BIAs ranges ECMWF NCEP CMA JMA CNRM

1 mm 1.2–1.5 1.1–1.6 1.1–1.6 1.2–1.6 1.1–1.7
5 mm 1.2–3.5 1.1–3.0 1.1–4.0 1.3–3.5 1.1–3.5

BIAs
Ranges

BoM UKMO ECCC KMA

1 mm 0.9–1.6 0.9–1.6 1.2–1.6 0.9–1.6
5 mm 1.5–3.0 1.6–3.5 1.3–3.5 1.7–3.5
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areas in northwestern China is about 20%. The results of the 
JMA model with five ensemble members are similar to those 
of the ECMWF model, but the  Pthreshold is slightly higher in 
northeastern China and the lower reaches of the Yangtze 
River, which is about 50%–60% (Fig. 2d). For the CMA, 
NCEP, and CNRM models, the  Pthreshold is above 50% in the 
areas to the east of 110°E and exceeds 70% in the southern 
and some parts of northeastern China. It is within 20–30% 
in the arid and semi-arid areas in northwestern China and 
the upper reaches of the Yangtze River (Fig. 2b, c, and e). 
For the UKMO and KMA models containing three ensemble 
members, the  Pthreshold stays about 70% in general (Fig. 2h, i). 
The  Pthreshold of the ECCC model is around 60% in most areas 
of China, but relatively low in the reaches of the Yangtze 
River (about 40%, Fig. 2g). The  Pthreshold of the BoM model 
with 33 ensemble members is within 10%–20% in the arid 
and semi-arid areas and central China, which is significantly 
lower than other models (Fig. 2f). Figure 3 further shows 
the average spatial distribution of the  Pthreshold from the 25th 

to the 30th day for the S2S models. It shows that the spatial 
variation of the  Pthreshold for each model is similar in the dif-
ferent pentads. In addition, the average spatial distributions 
of the  Pthreshold in other pentads within 30 days based on the 
S2S models are compared and analyzed (Fig. S2–S5). The 
results also show that the spatial distributions of  Pthreshold in 
each model are similar on the sub-seasonal scale (6–30 days) 
with only a 10% difference between each pentad. Here, in 
order to display the main tendency of  Pthreshold and filter the 
high-frequency information, we do not show the optimal 
probabilistic threshold day by day.

The pentad spatial distributions of the  Pthreshold of 
the ≥ 5 mm rainfall within 30 days are further analyzed. The 
 3rd pentad-averaged  Pthreshold for the ECMWF model is within 
20%–40% in most areas of China, but within 50–70% in the 
part of the Qinghai-Tibet Plateau (Fig. 4a). For the NCEP, 
UKMO and KMA models, the  Pthreshold is above 50% in the 
southern and some parts of northeastern China, and close to 
80%–90% over the northern Qinghai-Tibet Plateau (Fig. 4b, 

Fig. 2  Average spatio-temporal distribution of the  Pthreshold with the 
highest ETS of the 1 mm precipitation from the 11th to the 15th day 
(the third pentad) calculated by using the historical hindcast data of 

daily precipitation in summers from 1999 to 2010 in China based on 
the S2S models. a–f Results of the ECMWF, NCEP, CMA, JMA, 
CNRM, BoM, UKMO, ECCC, and KMA models, respectively
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h and i). The results of the CMA and JMA are similar to 
those of the above three models, but the  Pthreshold is lower 
than 50% in southern China (Fig. 4c, d). For the CNRM 
and ECCC models, the  Pthreshold is generally 30%–40% in 
the areas to the east of 110°E and exceeds 50% in the other 
areas (Fig. 4e, g). The  Pthreshold of the BoM model is gener-
ally lower than other models over China, especially 10–20% 
in central China and the arid and semi-arid areas (Fig. 4f). 
For each S2S model, the results of the spatial distributions 
of  Pthreshold of the ≥ 5 mm rainfall in the 3rd pentad are also 
similar to other pentads during 6–30 days (Fig. S6–S10).

Therefore, the spatio-temporal distribution characteris-
tics of the  Pthreshold enable us to select the credible ensemble 
members by using the  Pthreshold calculated from numerous 
hindcast results. Then, the DEFOPT ensemble forecast can 
be constructed to carry out the deterministic forecasts for the 
precipitation events with different intensities, for example, 
1–5 mm. As compared to the DEFOPT, the DEFPT method 
proposed in our previous work (Jie et al. 2014) predicts 
“yes” or “no” occurrence of rainfall event with a given inten-
sity only by judging whether or not the forecast probability 

exceeds a constant threshold without spatio-temporal vari-
ability. To demonstrate the added value of DEFOPT, we 
therefore compare the DEFOPT (spatio-temporally variable 
threshold) with the DEFPT (constant threshold), as well as 
with the deterministic forecast from control run (CTL) and 
the classical ensemble mean (ENS mean).

3  Verification and evaluation of the DEFOPT 
method

Based on the spatio-temporal variation characteris-
tics of the  Pthreshold of the ≥ 1 mm precipitation during 
1999–2010 in the S2S models, the DEFOPT method is 
applied to each S2S model to predict the ≥ 1 mm daily 
rainfall in the summer of 1999–2010 over China. The 
quantitative objective precipitation evaluation results 
from the ETS and Hanssen-Kuipers scores (abbreviated 
as HK, Hanssen and Kuipers 1965, see Appendix 1 for 
details) indicate that the DEFOPT is outperforming the 
CTL and the ENS mean at the lead time 0–30 days in 

Fig. 3  Same as Fig. 2, but for the 26th to the 30th day
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each S2S model, and also better than majority of forecasts 
using the different probabilistic thresholds in forecast-
ing the ≥ 1 mm rainfall in the NCEP, CMA, JMA, BoM, 
UKMO, ECCC and KMA models, although the perfor-
mance of the DEFOPT is not better than the forecasts 
produced by using 5/11 and 6/11 probabilistic thresholds 
in the ECMWF model and 10/15 and 11/15 in the CNRM 
model after 10 days (Figs. 5 and 6). Generally, the cor-
responding ETS and HK scores can increase by about 
20% by using the DEFOPT compared to the CTL and 
ENS mean methods. Meanwhile, the BIAs reveals that 
the frequency bias of DEFOPT is smaller than the ENS 
mean and most of the forecasts using the probabilistic 
thresholds during the sub-seasonal range in each S2S 
model, although the CTL is better than the DEFOPT for 
many models (Fig. 7). The DEFOPT’s BIA scores are 
not far away from 1.0, and the values are approximately 
equal to 1.3.

For the ≥ 5 mm rainfall, the skill of the DEFOPT for all 
S2S models is substantially higher than that of the CTL, 
ENS mean and the forecasts by using different probabilistic 

thresholds in general, as the corresponding ETS (Fig. 8) and 
HK (Fig. S11) is highest, and the BIA is close to or slightly 
larger than that of ENS mean (Fig. S12).

The DEFOPT method is further evaluated for the predic-
tion of the frequencies of the daily ≥ 1 mm and ≥ 5 mm daily 
rainfall events within each pentad and 10-day periods in 
summer (Fig. 9). The Pearson correlation between the num-
ber of observed and forecasted ≥ 1 mm rainfall days in each 
pentad from each S2S model in summers during 1999–2010 
shows that the ensemble forecasting skill of the DEFOPT 
(red solid line) is higher than that of the CTL (black solid 
line), the ENS mean (black dotted line), and the DEFPT 
using the same probabilistic threshold for the entire region 
(blue solid line). The corresponding correlation coefficients 
increase by about 0.1–0.2, 0.05–0.1, and 0.05, respectively. 
The predictions of the pentad frequency for the ≥ 5 mm 
rainfall events show that the DEFOPT method (marked red 
solid line) can improve the forecast skills within 30 days for 
each S2S model compared to other ensemble forecasting 
methods. The improvement is particularly large relative to 
CTL (marked black dotted line) and ENS mean (marked 

Fig. 4  Same as Fig. 2, but for the ≥ 5 mm rainfall
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blue solid line). The corresponding correlation coefficient 
increases by about 0.1–0.2 (0.05–0.1) compared to that of 
CTL (ENS mean).

Based on the maximum lead time provided by each S2S 
model (Table 1), the forecast skills for the frequency of the 
daily ≥ 1 mm and ≥ 5 mm precipitation in each period of ten 

Fig. 5  The ETS of the ≥ 1  mm daily precipitation in the summer 
of 1999–2010 in China forecasted by the S2S models at lead time 
0–30 days. The black solid line, colored markers, blue solid line, and 
red solid line represent the results of the control run, the forecast by 
using different probabilistic thresholds, the ensemble mean and the 

DEFOPT, respectively. N is the total number of ensemble members 
from each model, and the numbers in the legend indicate the numbers 
of ensemble members predicting the occurrence of rainfall event. The 
higher ETS score, the better prediction
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days at a longer time range are evaluated (Figs. 10). The 
results show that the DEFOPT method (red solid line) can 
significantly improve the sub-seasonal to seasonal forecast 
skills of each S2S model compared to the CTL (black solid 
line) by about 0.1–0.2, and the ENS mean (black dotted 
line) and DEFPT (blue solid line) methods. In addition, it 
was noticed that the ensemble mean forecast skill for the 

CNRM model with fifteen ensemble members is lower than 
that of the CTL in the ≥ 1 mm rainfall prediction (Fig. 10e). 
This could be caused by the overestimation of the rainfall 
intensity by most ensemble members (the BIA score is 
high, Fig. 7e) which leads to a substantial increase of the 
false forecast for the ≥ 1 mm rainfall events when using the 
ENS mean. For the ≥ 5 mm rainfall, the performance of the 

Fig. 6  Same as Fig. 5, but for the HK
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DEFOPT in each model is much better than that of ≥ 1 mm 
rainfall with the correlations increasing by about 0.1 – 0.2 
from all the other methods (marked lines).

In order to further verify the applicability of the 
DEFOPT method, the frequencies of the daily ≥ 1 mm 
and ≥ 5  mm precipitation in each period of ten days 

are evaluated during other re-forecast periods exclud-
ing 1999–2010 (Table 3). Except for the NCEP model, 
the other eight models have at least 8 years samples for 
evaluation. Whether for ≥ 1 mm or ≥ 5 mm rainfall, the 
DEFOPT is still better than other methods in most S2S 
models (Fig. 11).

Fig. 7  Same as Fig. 5, but for the BIAs. The long black dotted line is the standard of the BIA that equals 1.0. The BIA > 1.0 (BIA < 1.0) means 
overestimation (underestimation) of precipitation frequency
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We further analyzed the performance of individual 
ensemble member chosen by the DEFOPT at the different 
lead times. Figure 12 shows the proportion of each ensem-
ble member predicting the occurrence of ≥ 1 mm rainfall 
event in all ensemble members chosen by the DEFOPT 
in the S2S models during the summer of 1999–2010 
over China. It is clear that the proportion of individual 

ensemble member in the ECMWF, NCEP, CMA, JMA, 
CNRM, KMA, UKMO and BoM is similar or shows a 
slight fluctuation in the different lead times at 5-days inter-
vals. It indicates that the ensemble members selected by 
the DEFOPT are random. However, the proportions of the 

Fig. 8  Same as Fig. 5, but for the ≥ 5 mm
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Fig. 9  Temporal variation of the correlation coefficient between 
the observed and forecasted frequencies of days with ≥ 1  mm (dash 
colored lines) and ≥ 5  mm (the marked lines) precipitation by using 
the S2S multiple models in each pentad in summers during 1999–

2010. The different color lines represent the results of the CTL, the 
ENS, the DEFPT (the most skillful forecast by using a probabilistic 
threshold), and the DEFOPT, respectively
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member 2 and 4 in the ECCC are higher than the mem-
ber 1 and 3. It is possible that the member 2 and 4 have 

systematic biases. The similar result can also be found in 
the ≥ 5 mm rainfall event (Fig. S13).

Fig. 10  Same as Fig. 9, but for the correlation coefficient between the observed and forecasted frequency of precipitation events every ten days
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4  Discussion and conclusion

The DEFOPT method is proposed to choose credible ensem-
ble members for the sub-seasonal to seasonal prediction of 
precipitation in this paper. It uses the spatio-temporal distri-
bution characteristics of the optimal probabilistic threshold 
which were proven to exist in the climatology as the standard 
to decide how many ensemble members should be trusted 
on the S2S scale. The optimal ensemble strategy is made for 
S2S precipitation prediction by following 3 steps:

1. Based upon hindcasts with long period, exclude the 
probabilistic thresholds with large frequency biases by 
using the limitation of BIA score at each grid point.

2. Find out a most skillful probabilistic threshold (with the 
highest ETS) from the leftover probabilistic thresholds 
(after step 1) via the ETS score at each grid to gener-
ate a climatological spatio-temporal distribution of the 
optimal probabilistic threshold.

3. Determine the number of skillful ensemble members in 
the real-time prediction by judging whether the num-
ber is greater than or equal to the optimal probabilistic 
threshold or not, based upon the spatio-temporal distri-
bution characteristics of the optimal probabilistic thresh-
old from the climatology.

Here, all these steps are just part of the post-processing 
based on 12 years of hindcasts and are not part of the numer-
ical modeling integration. By using Fortran codes on a regu-
lar UNIX workstation, the process of selecting the credible 
ensemble members (including step 1 and 2) spends about 
2 min (clocktime) on a model with horizontal resolution 
1.5º × 1.5º and ~ 10 ensemble members over China during 

12 hindcast years, and about 30 s on generating an adjusted 
real-time forecast (step 3). Thus, the DEFOPT will not be 
computationally expensive in the operational application.

In this work, the quantitative objective evaluation scores 
including ETS, HK and BIA widely used to evaluate model 
precipitation forecasts (Accadia et al. 2010; Weusthoff et al. 
2010) are selected. All these scores are constructed by hits, 
false alarms and misses of rain event forecast, and no-rain 
event accurate forecast (correct reject) as shown in Table 4, 
respectively. The ETS and HK scores focus on the predic-
tion skill of rainfall and no rainfall events, meanwhile the 
BIA score shows the overestimation or underestimation of 
the frequency of rainfall events. The evaluation results of 
the application of the DEFOPT method on the nine S2S 
operational models show that this methodology can sub-
stantially improve the forecast skill of precipitation events 
with 1 mm and 5 mm thresholds in the S2S summer over 
China, and its skill is better than that of the CTL, the ENS 
mean, and the DEFPT as shown in ETS and HK evaluation 
methods. Meanwhile, the frequency bias of the DEFOPT 
for the ≥ 1 mm precipitation is smaller than the ENS mean, 
although it is close to or slightly larger than the CTL. For 
the ≥ 5 mm precipitation, the DEFOPT frequency bias is 
generally greater than the ENS mean and the CTL, but is not 
far away from them. The main reason for the improvements 
is that the DEFOPT can substantially increase the hit rates 
of ≥ 5 mm rainfall, although slightly increase the false alarm 
rates in part of S2S models (such as ECMWF, JMA, CNRM 
and BoM) as compared to the traditional ensemble mean 
method, the control run; and it also can increase the hits 
or decrease the false alarms in comparison to the DEFPT 
using a uniform probabilistic threshold in most S2S models 
(Fig. 13). For the low intensity rainfall (e.g. ≥ 1 mm), the 
DEFOPT can substantially decrease the false alarms com-
pared to the ENS which shows not only high hits but also 
too high false alarms in most S2S models, and it is also more 
close to the left top corner of subplot compared with the 
DEFPT in each S2S model except the ECMWF (Fig. S14).

As compared to some ensemble reduction techniques 
(reduction by ‘‘uncorrelation’’ method, by principal com-
ponent analysis, etc.) in recent 10 years (Knutti 2010; Knutti 
et al. 2017; Riccio et al. 2012; Sanderson et al. 2015; Stein 
et al 2015; Mendlik and Gobiet 2016; Dalelane et al. 2018), 
which are proposed for weather forecasting, seasonal predic-
tion or climate projection to make optimal use of the infor-
mation inherent in the full ensemble, the DEFOPT does not 
essentially reduce ensemble size or discard any ensemble 
member, but only makes use of the information of the opti-
mal ensemble members to determine whether a forecasting 
event occurs or not in a given region.

It is notable that the calculation of the optimal probabil-
istic threshold in DEFOPT may be slightly affected by the 
length of the hindcast period (for example, only 12 years 

Table 3  The analyzed S2S models outside the period 1999–2010

Re-forecast length outside the period 
1999–2010

Remain-
ing 
years

ECMWF 1995–2015 1995–1998
2011–2015

9

NCEP 1999–2010 – –
CMA 1994–2014 1994–1998

2011–2014
9

JMA 1981–2010 1981–1998 18
CNRM 1993–2014 1993–1998

2011–2014
10

BoM 1981–2013 1981–1998
2011–2013

21

UKMO 1993–2015 1993–1998
2011–2015

11

ECCC 1995–2014 1995–1998
2011–2014

8

KMA 1991–2010 1991–1998 8
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in this study). In addition, it is found that the α and β in 
Formula 3 are dependent on the model in the selection 
of the  Pthreshold due to the different systematic forecasting 
biases in different models, and these coefficients can be 

considered to change with lead time, which will be inves-
tigated in our future work. There may be some potential 
application values of the DEFOPT for the multi-model 
ensemble. When the ensemble mean from each model is 

Fig. 11  Same as Fig. 10, but for the other re-forecast periods excluding 1999–2010
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considered as an individual ensemble member, this method 
could determine how many models can be trusted in differ-
ent regions and lead times to achieve a best performance 
of S2S multi-models precipitation prediction. Moreover, 
only the DEFOPT predictions for the summer precipita-
tion over China has been investigated in this study, and its 
application to other areas, other seasons or other variables 
(air temperature, anomaly of height, etc.) can be evaluated 
in the future.

Fig. 12  The proportion of each ensemble member predicting the occurrence of ≥ 1 mm rainfall event in the ensemble members chosen by the 
DEFOPT in the S2S models in the different lead times at 5-days intervals during the summer of 1999–2010 over China

Table 4  2 × 2 matrix for a 
precipitation event with a 
certain threshold

Rain 
observed 

Yes No

Rain forecast
 Yes a b

 No c d
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