
Vol.:(0123456789)1 3

Climate Dynamics (2023) 61:79–89 
https://doi.org/10.1007/s00382-022-06562-0

Assessing causal dependencies in climatic indices

Riccardo Silini1 · Giulio Tirabassi1  · Marcelo Barreiro2 · Laura Ferranti3 · Cristina Masoller1

Received: 25 May 2022 / Accepted: 23 October 2022 / Published online: 9 November 2022 
© The Author(s) 2022

Abstract
We evaluate causal dependencies between thirteen indices that represent large-scale climate patterns (El Nino/Southern 
Oscillation, the North Atlantic Oscillation, the Pacific Decadal Oscillation, etc.) using a recently proposed approach based 
on a linear approximation of the transfer entropy. We demonstrate that this methodology identifies causal relations that are 
well-known, as well as it uncovers some relations which, to the best of our knowledge, have not yet been reported in the 
literature. We also identify significant changes in causal dependencies that have occurred in the last three decades.
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1 Introduction

Identifying significant causal dependencies directly from 
time-series analysis is a challenging problem with practical 
applications in all fields of science and technology. Main 
challenges are to distinguish causality from correlation, and 
to distinguish direct from indirect causality (considering, for 
example, three processes X, Y and Z, X can directly affect Z, 
or it can indirectly affect Z because X affects Y and in turn, Y 
affects Z). In climate research, an additional challenge is to 
identify non-trivial causalities, i.e., those that are not due to 
geographical proximity nor due to common seasonal effects. 
Many approaches for causal inference have been proposed 
in the literature, based of model reconstruction, informa-
tion theory, phase-space reconstruction, nonlinear symbolic 
analysis, machine learning, etc. (Granger 1969; Schreiber 
2000; Baccala and Sameshima 2001; Eichler et al. 2003; 
Sugihara 2012; Runge 2018; Siyang Leng et al. 2020; Subra-
maniyam et al. 2021; Huang et al. 2020). These approaches 
have different mathematical hypotheses and computational 

complexity, and they differ considerably in their capability to 
detect genuine couplings (Krakovska et al. 2018). Neverthe-
less, they have been extensively used in climate research and 
we mention here just a few examples (for a comprehensive 
review we refer the reader to Runge (2019)).

In Mosedale et  al. (2006) Granger causality 
(GC) (Granger 1969) was used to study the effect of sea 
surface temperatures (SSTs) on the North Atlantic Oscilla-
tion (NAO) on daily time scale. It was found that the SST 
tripole index provides additional predictive information for 
the NAO than that available by using only past values of 
NAO, i.e., it was found that the SST tripole is Granger causal 
for the NAO.

In Liang (2014) a formula for evaluating the rate of 
information flow from one series to another was proposed 
and applied to study the relation between El Niño and the 
Indian Ocean Dipole (IOD). It was found that the causal-
ity is asymmetric: El Niño tends to stabilize IOD, while 
the effect of IOD on El Niño is more uncertain. The rate 
of information flow was recently used in Docquier et al. 
(2022) to analyze the cause-effect relationships between 
Arctic sea ice and its potential drivers. It was found that 
changes in Arctic sea ice are mainly driven by air and 
sea-surface temperatures and ocean heat transport. The 
rate of information flow was also used in Vannitsem and 
Liang (2022) to assess directional dependencies of seven 
climate indices and three local Belgium time series, on 
time scales from a month to five years. Among other 
results, the authors found that the Arctic Oscillation plays 
a key role on the dynamics of the North Pacific (NP) and 
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North Atlantic (NA) on short (monthly) time scale, while 
NAO plays a role on long time scales (several years). 
These findings are consistent with earlier work (Vannit-
sem and Ekelmans 2018) using convergent cross map-
ping (CCM) (Sugihara 2012), as it was found that the 
Niño3.4 region influences the NA dynamics through its 
annual climatological cycle, the atmosphere over the NP 
region forces the NA region in a monthly basis and there 
is mutual influence of NP and NA on longer (interannual) 
timescales.

CCM was also used in Zhang et al. (2019) to examine 
causality between the Northern Hemisphere annular mode 
(NAM) and the wintertime surface air temperature (SAT) 
over Northeast Asia. It was found that NAM information is 
encoded in SAT data but not the other way around, indicat-
ing a causal link in the direction NAM→SAT.

In Tirabassi et al. (2015) GC was used to study the air-
sea interaction in the South Atlantic Convergence Zone 
(SACZ) and it was shown that GC allows distinguishing 
different regimes: there are years in which the forcing is 
mainly directed from the atmosphere to the ocean, years 
in which the ocean forces the atmosphere, years in which 
the influence is mutual and years in which the coupling is 
not significant.

In Tirabassi et al. (2017) renormalised partial directed 
coherence (that is a form of Granger causality in the 
frequency domain (Baccala and Sameshima 2001)) and 
directed partial correlation (that is an alternative approach 
to quantify GC in the time domain (Eichler et al. 2003)) 
were used to analyze the NINO3.4-Monsoon interaction 
and also, the air-sea interaction in the SACZ. While a clear 
NINO3.4-Monsoon mutual interaction was found, regard-
ing SACZ, the results were not as clear but reinforced the 
evidence that, in some years, SACZ may be forced by SST.

In Nowack et al. (2020) an approach based on iteratively 
testing for conditional independent relationships among 
time series (Runge 2018, 2019) was used to analyze sea 
level pressure data from a large set of climate model simu-
lations and, as a proxy for observations, meteorological 
reanalyses. It was shown that the causal networks obtained 
offer an objective pathway for model evaluation and model 
inter-comparison. In Di Capua et al. (2020) this condi-
tional independence-based approach was used to assess the 
direction of causal interactions and to quantify the relative 
causal effects of tropical, mid-latitude and internal drivers 
on the Indian summer monsoon rainfall variability.

In Manshour et  al. (2021) the transfer entropy, 
TE  (Schreiber 2000), which is a form of conditional 
mutual information, CMI (Hlavackova-Schindler et al. 
2007), was used to study causality and information transfer 
between the solar wind and the magnetosphere-ionosphere 
system. The causal relations uncovered could be described 

in terms of linear time-delayed information transfer, with 
delays of 10 to 30 minutes.

In Deza et al. (2015) a directionality index defined in 
terms of the transfer entropies TE

Y→X
 and TE

X→Y
 , that 

allows to measure the net flow of information between 
two processes X and Y, was used as an estimator of the 
net direction of information flow in a global dataset of 
surface air temperature anomalies. The structures found 
recovered some well-known climate variability patterns, 
such as atmospheric waves in the extratropics and longer 
range events in the tropics.

Recently, two of us used a measure, referred to as 
pseudo transfer entropy (pTE) (Silini and Masoller 2021) 
that is a linear estimator of the TE, as it is the analyti-
cal expression of TE for Gaussian processes. Previous 
works have used the Gaussian TE expression to study, 
using the wavelet transform, causality across rainfall time 
scales (Molini et al. 2010), and to study, using the Hilbert 
transform, phase-amplitude coupling in a century long 
record of data of daily surface air temperature from vari-
ous European locations (Palus 2014).

The pTE measure has two parameters that have to be 
properly selected: the order of the model used to repre-
sent the data, and the lag time of information transfer. In 
Silini and Masoller (2021) the pTE results were validated 
using model generated data (where the underlying causal-
ity was known) and then, it was applied to the analysis of 
the tele-connection between the Central Pacific and the 
Indian Ocean, as inferred from the bivariate analysis of 
the monthly-sampled time series of NINO3.4 and All India 
Rainfall (AIR) indices. While pTE and GC only detected 
the dominant causality (NINO3.4 → AIR), TE detected 
both.

Keeping in mind that the pTE methodology might only 
return strong causal links (direct or indirect, while it might 
miss weak or nonlinear but significant causalities), in this 
work we aim to extend the previous study and analyze a set 
of indices that represent main patterns of climate variabil-
ity. Our goal is to detect significant causalities regardless 
of whether they are due to direct or indirect teleconnec-
tions. Our motivation is that, in either case, the gained 
knowledge can contribute to improve the forecast of a cli-
matic pattern, such as ENSO, by taking into account infor-
mation of the subset of indices that are causally related to 
the index that represents the pattern. We are also interested 
in shedding light on how causal interactions might have 
changed over the last decades.

This paper is organized as follows. Section 2 describes 
the datasets analyzed; Sect. 3 describes the methodology 
used; Sect. 4 presents the results and Sect. 5 presents the 
discussion of the results.
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2  Data

We focus this study in the climatic indices described 
below. They are monthly sampled timeseries and are freely 
accessible at the NOAA website (https:// psl. noaa. gov/ data/ 
clima teind ices/ list/), with the exception of the All Indian 
Rainfall index, which is available via the Indian Institute 
of Tropical Meteorology (https:// www. tropm et. res. in/).

AIR: All Indian Rainfall. The area-weighted integral 
of the rainfall measured by the Indian national network 
of rain gauges.

AMO: Atlantic Multidecadal Oscillation. The detrended 
area-weighted average over the North Atlantic, from the 
equator up to 70N, of the sea surface temperature (SST) 
anomalies from the Kaplan SST dataset (Kaplan et al. 
1998; Reynolds and Smith 1994).

GMT: The Global Mean Temperature anomaly as com-
puted by NASA/GISS. The anomaly is computed with 
respect to the period 1951–1980.

HURR : The total number of hurricanes or named tropi-
cal storms in a given month in the Atlantic region.

NAO: The North Atlantic Oscillation. The north-south 
dipole of pressure anomalies over the North Atlantic, with 
one center over Greenland and the other center of opposite 
sign between 35N and 40N.

NINO34: The East Central Tropical Pacific SST anom-
aly. It integrates the NOAA ERSST V5 anomalies in the 
region (5N-5S) × (170W-120W).

NP: North Pacific pattern. The area-weighted sea level 
pressure over the region (30N-65N) × (160E-140W).

NTA: North Tropical Atlantic index. The SST anoma-
lies averaged over the two regions (60W-20W) × (6N-18N) 
and (20W-10W) × (6N-10N) map. Anomalies are obtained 
from the ERSST V3b dataset relative to the 1981–2010 
climatology, smoothed by three months running mean and 
projected onto 20 leading EOFs.

PDO: Pacific Decadal Oscillation. The leading prin-
cipal component of monthly SST anomalies in the North 
Pacific Ocean.

QBO: Quasi-Biennial Oscillation. The zonal average of 
the 30mb zonal wind at the equator as computed from the 
NCEP/NCAR Reanalysis.

Sahel: Sahel Standardized Rainfall. Average rain-
fall recorded by 14 weather stations in the region 
(8N-20N) × (20W-10E).

SOI: Southern Oscillation Index. The standardized dif-
ference in surface air pressure between Tahiti and Darwin. 
The SOI is a proxy of the strength of the Walker circula-
tion and it’s strictly related to ENSO.

TSA: Tropical Southern Atlantic Index. The SST anom-
aly with respect to the 1971–2000 period in the region 

(0-20S) ×  (10E-30W). HadISST and NOAA OI 1◦ × 1◦ 
datasets are used to create this index.

The various indices span different regions and focus on 
different variables. variability of the ocean and the atmos-
phere on different spatio-temporal scales, with particular 
attention to the tropical belt.

The majority of the timeseries span six decades, overlap-
ping in the period 1950–2016 (i.e., in 792 data points). In 
this period, the timeseries are depicted in Fig. 1.

The various indices display different spectral properties. 
Several have a defined periodic component, either seasonal, 
as in the case of rainfall and storm indices, or longer, like the 
case of the QBO. Some display trends (GMT), others slow 
non-linear oscillations (NINO34). The high frequencies as 
well are very heterogeneous.

All these complex spectral properties influence the indi-
ces’ distributions. Generally, we observe skewed distribu-
tions and hints of multimodality.

AIR, HURR, Sahel and NP indices display a strong sea-
sonal component (Fig. 1). To avoid spurious signals, we 
removed the seasonality subtracting the mean of every dif-
ferent month from these four indices. The other indices have 
already been constructed after removing the seasonal cycle 
of the variables used.

Since the indices under consideration span a broad range 
of values, we standardized their distribution by removing a 
linear trend and rescaling the series to have unitary variance. 
Even if information-related quantities such as pTE, transfer 
entropy, or mutual information in principle do not depend 
on the variables gauges, the rescaling to unitary variance is 
considered good practice for their numerical computation. 
The resulting post-processed time series and their values 
distributions are depicted in Fig. 2.

3  Methodology

3.1  pseudo Transfer Entropy

We analyze the causality structure of the set of indices using 
bivariate analysis, i.e., we address the problem of determin-
ing whether one index influences another without consider-
ing the possible influence of a third index that could mediate 
the interaction.

To measure the bivariate causality between two indices, 
we use the pseudo transfer entropy (pTE) (Silini and Masol-
ler 2021), a method that has recently proven to be a com-
putationally fast alternative to traditional transfer entropy 
(TE) (Schreiber 2000). pTE is a linear estimator of TE, as 
it is the analytical expression of TE for Gaussian processes 
and therefore, it is equivalent to Granger causality, GC (Bar-
nett et al. 2009). Analogously to TE, the pTE measures the 
transfer of information from Y at time t to X at time t + � 

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
https://www.tropmet.res.in/
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conditional to the information flowing from X at time t to X 
at time t + � , providing a mean to assess causal relationships 
between two processes.

The pTE from series Y to X is calculated as (Silini and 
Masoller 2021)

where �
n+1 is the vector containing the future elements of the 

time series X, �k

n
 is the matrix containing the k past values 

of X, 
⨁

 stands for the horizontal concatenation and Σ[A] is 
the covariance of matrix A.

We note that pTE is an asymmetric measure, thus in 
general pTE

Y→X
≠ pTE

X→Y
 . We also note that if the past 

of Y does not influence the future of X, pTE
Y→X

= 0 , else 
pTE

Y→X
> 0 . To determine whether a small pTE

Y→X
 value 
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is consistent with the null hypothesis that Y has no influence 
on the future of X, a significant test needs to be performed, 
as described in the next section.

The need of a significance test is a limitation of pTE anal-
ysis, as the results can depend on the type of surrogate data 
used to perform the test and on the significance criterion 
used (Silini and Masoller 2021). On the other hand this is a 
well-known limitation, shared by other methods used in the 
literature. Another limitation is the fact that pTE is a linear 
estimator and thus, it can miss some nonlinear causalities. 
Additionally, when applied to non-Gaussian data, pTE may 
return fake causalities. On the other hand, a main advantage 
is that Eq.(1) allows an efficient calculation in comparison 
with the original TE formulation (Schreiber 2000). This is 
important when a large number of links need to be tested. 
A detailed comparison was performed in Silini and Masol-
ler (2021), and here we mention just as an example that 
for the analysis of two time series of 500 data points each, 

Fig. 1  Raw time series of the 
thirteen climatic indices under 
study
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performed in Google colab CPUs (IntelⓇ XeonⓇ CPU @ 
2.20 GHz), TE required 112 ms, GC 4.6 ms and pTE, 4.1 
ms.

The embedding dimension, k, has to be selected before 
carrying on the calculation. There are different possibili-
ties to determine its optimal value. Here we model X as an 
autoregressive process and fix the model order, k, minimiz-
ing the Bayesian information criterion (BIC) score.

In Table 1, we report the values of k that minimize the 
BIC score for each index. As expected, for the majority of 
the atmospheric indices, a short-memory AR process is 
sufficient. In particular, we can see that the order of NAO 
is 1, and this is consistent with the fact that a first order 
approximation of NAO is red noise. Ocean indices are over-
all modelled with a higher order AR process, indicating a 
longer memory. Nevertheless, the PDO and TSA indices are 
modelled as AR(1) processes, even though they are domi-
nated by long-term variations, indicating that in these cases 

Fig. 2  Post-processed time 
series and histograms of values 
in log scale

Table 1  Summary of index 
model orders, k, used in this 
study

Index k

AIR 1
AMO 2
GMT 2
HURR 1
NAO 1
NINO34 2
NP 1
NTA 8
PDO 1
QBO 2
Sahel 1
SOI 3
TSA 1
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autocorrelation is mediated by the effect of short lags. The 
high k = 8 value for NTA can be explained in part by con-
sidering that, when generating the index, the SST anomalies 
were smoothed by a 3-months running mean.

3.2  Statistical significance analysis

Once the pTE between two indices is computed, we have 
to address whether it is significant or not. Unlike the case 
of cross-correlation, the null model of X being independent 
of the past of Y doesn’t allow the analytical calculation of 
p-values for the pTE distribution. For this reason, we have 
to rely on surrogate analysis to understand if a pTE value is 
significantly different from zero.

Surrogate timeseries can be obtained from real-world 
data through different kinds of manipulation (Lancaster et al. 
2018). Surrogate time series should retain all the proper-
ties of the original timeseries with the exception of the one 
we are interested in. In the case of causal relationships, we 
want surrogates that are independent from each other while 
preserving the autocorrelation function of the original time 
series. In fact, preserving the autocorrelation ensures that 
we preserve the dependence of the timeseries on itself. To 
achieve this we employed an algorithm known as iterative 
amplitude adjusted Fourier transform (IAAFT) (Schreiber 
and Schmitz 1996, 2000), which preserves both the ampli-
tude distribution and the power spectrum of the original 
series.

From the original dataset, we generated N = 1000 inde-
pendent surrogate datasets using IAAFT. From the surrogate 
datasets we obtain N surrogate measures of pTE between 
each pair of timeseries. Thus, the quantiles of the surrogate 
pTEs can be viewed as significance threshold for the meas-
ured pTE values. In the following, we considered a pTE 
value significant if it falls within the highest 1% of its sur-
rogates distribution.

3.3  Long‑term causality variation

Measuring the variation of pTE between the first and second 
half of the dataset allows us to explore possible long-term 
variation in the index interactions.

We first divided the time series of each index in two non-
overlapping segments with the same length, corresponding 
to the periods pre-1984 and post-1984. All the time series 
are monthly-sampled and have 804 data points (that cover 
the period 1950–2016), therefore, we have 402 data points 
in each segment. Then, we measured the pTE between 
each pair of indices in the two halves and we computed the 
difference.

To address the significance of such differences we rely 
again on surrogate analysis. In particular, we created 1000 
surrogate datasets for each one of the two halves and we 

computed the pTE for each pair of indices in the 2000 sur-
rogates. For each pTE of the second half of surrogates, we 
sampled 100 pTEs from the first half and we computed the 
average difference. Hence, we end up with 1000 surrogate 
average differences for each pair. If the original difference 
is within the highest or lowest 1% of the surrogates, depend-
ing on its sign, than we consider that difference significant.

4  Results

In Fig. 3a we report an example of pTE calculation focus-
ing on NINO34 as “forcing” node, considering significant 
pTEs for different values of � . Most of the results match with 
the current knowledge regarding ENSO dynamics. We can 
observe a 5-months cutoff in the NINO34 → SOI interaction, 
which is in line with the ENSO build-up time scale when the 
ocean and the atmosphere are coupled. Moreover, a maxi-
mum of around 4 months in the NINO34 → NTA is expected 
too, given that their interaction is mediated by heat fluxes: 
because of its thermal inertia, the SST of the ocean bound-
ary layer changes in a time scale of roughly three months, 
producing the pTE delayed maximum. From this perspec-
tive, the behavior of the AMO is analogous. The AIR and 
HURR have a 1-month impact, which is reasonable given 
that the interaction is mediated directly by the atmosphere. 
It is interesting to note that the HURR index has a small 
but significant pTE tail up to � = 3 , which may result from 
indirect interactions mediated by the NTA.

Results of some indices are, however, unexpected to a 
degree. For the PDO and the NP, we would have expected a 
behavior more similar to the NTA one. Instead, we observe 
in Fig. 3a relatively high pTEs up to 4 months. We inter-
pret this as due to the fact that the local air-sea interaction 
increases the persistence of the remotely forced ENSO sig-
nal. In contrast, the pTE values for NAO (Fig. 3b) show a 
very rapid decrease with � , indicating interactions on a much 
shorter time scale.

In the following, for every pair of indices, we calculated 
the pTE and its significance for � = 1, 3 and 6, that is one 
month, one season and half a year into the future. In Fig. 4, 
we report the significant connections between the various 
indices. For better clarity, results are displayed both as a 
network and an adjacency matrix. In the network representa-
tion, directed connections are represented by arrows. In par-
ticular, we draw a link only if the value of the pTE between 
two indices is significant for at least one value of �.

We investigate the role of � in the pTE values in Fig. 5, 
again representing connections by directed arrows. The 
arrows’ colors represent the value of � for which the pTE is 
the highest, while the arrows’ width represents this maxi-
mum value. We can observe that, in general, connections 
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have relatively low � . Also, the values of pTE for � = 6 
seems to be lower than for other lags.

The full network picture allows to visualize the global 
structure; however, the different links can not be clearly 
distinguished. For the sake of clarity, we select a sub-
set of key indices (AMO, NTA, PDO, and the NINO34/
SOI pair), and report in Fig. 6 the forward and inward 
links separately. The pivotal role of ENSO in the climate 
network is evident, with numerous forward connections 
tying NINO34 and SOI to the vast majority of the studied 
indices.

Finally, we report in Fig. 7 the significant variations of 
pTE values between pre-1984 and post-1984. In Fig. 7, 
we observe that the variations are heterogeneous, with 
main changes being an increase in the strength of the NP-
PDO link and the decrease of the strength of the PDO-
GMT link, and of several links that affect AMO. The 
discussion of the uncovered links, and their variations, is 
presented the next section.

Fig. 3  Influence of NINO34 a and NAO b to a subset of indices for 
various lags � . We report only those indices for which at least one 
value of pTE was significant. The vertical axis shows the relative pTE 
value, which is the relative difference between the measured pTE and 

the significance threshold determined by using the surrogate analysis 
(see Sect. 3 for details). Values of 0 mean that the pTE for those lags 
was not significant (e.g. � ≥ 5 in panel b).

1
0

Signi cant causalities

HURR

GMT

AMO

NAO

PDO
TSA

NINO34

NTA

SOI

QBO

AIR NP

Sahel

a b

Fig. 4  a Network representation of causal dependencies. The arrows 
go from the driving to the driven indices. The size of the nodes is 
proportional to their degree. b Binary matrix representation of the 
causal dependencies. The nodes (the columns and rows) represent cli-

mate indices, while the links (the black squares) indicate significant 
causality between indices. Row labels represent the forcing indices, 
while the columns stand for the forced ones. All significant connec-
tion are shown, regardless of the lag, �
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5  Discussion

While some of the uncovered connections are well-known, 
others are either previously unknown or are possible false 
positives. In the latter case, a common driver of two indi-
ces could produce a significant amount of shared informa-
tion, inducing an apparent connection.

Let’s start with the connection between ENSO and 
the north Pacific indices (NP and PDO). It is well known 
that ENSO induces an atmospheric teleconnection that 
modulates the Aleutian low over the North Pacific (Wang 
et al. 2012). As the Aleutian low is characterized by the 
NP index, the ENSO → NP causality is well understood. 

Changes in the surface winds associated with the Aleutian 
low in turn induce SST anomalies in the north Pacific thus 
affecting the PDO (NP → PDO).

On the other hand, it is unlikely that the number of tropi-
cal storms in the north Atlantic (HURR) can drive NAO, 
TSA, ENSO and NP, as suggested by the results. Instead, 
these causalities likely result as consequence of complex 
interactions among the different atmospheric and oceanic 
phenomena characterized by these indices. For example, it 
is well known that during El Niño the number of hurricanes 
in the north Atlantic decreases because of enhanced vertical 
shear (Klotzbach 2011) as found by pTE. At the same time a 
warm NTA, which is also influenced by ENSO (Chang et al. 
2003), favours the development of tropical storms (Pérez-
Alarcón et al. 2021). Similar complex interactions explain 
the links of the AIR index.

The lag is a crucial parameter that has a large impact on 
the analysis. The global surface air temperature warms up by 
about 0.1◦ C during an El Niño event, with a lag of about 6 
months (Trenberth et al. 2002). This causality is detected in 
the analysis, although ENSO → GMT is maximum at lag 1. 
At longer lags we find the opposite causality (GMT → SOI 
at lag 3 and NINO34 at lag 1), which may be understood as 
consequence of the persistence of the ENSO events that last 
between 6 and 9 months.

The causality identified QBO→ NAO in our analysis has 
been reported in the literature to occur during boreal winter 
(Andrews et al. 2019; Marshall and Scaife 2009), although 
the link had been assessed as relatively weak. We found the 
largest causality for a lag of 6 months, suggesting that the 
mechanism through which the QBO affects the NAO may 
last more than one season.

It is well known that the NAO is the main driver of the 
sea surface temperature anomalies over the tropical north 
Atlantic mainly through changes in surface heat fluxes 

HURR

GMT

AMO

NAO

PDO
TSA

NINO34

NTA

SOI

QBO

AIR NP

Sahel

 = 1

 = 3

 = 6

0.0

1.0

Fig. 5  As Fig. 4, here the width of the represents the strength of the 
causal dependency (the relative value of pTE, with respect to the sig-
nificance threshold found with a p-value of 0.01) and the color repre-
sents the lag, � , for which maximum causality is found. The size of 
the nodes is proportional to their degree
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(Visbeck et al. 2001). However, we don’t find this causality, 
probably due to the index used to describe the Atlantic SST. 
As mentioned above the NTA index uses SST anomalies 
that have been smoothed thus filtering out the response to 
NAO. An influence of NAO on AMO and NTA was found 
in Vannitsem and Liang (2022), and a possible reason for 
the difference with our results is that the NTA index used 
in Vannitsem and Liang (2022) is different from the one we 
use here, as our index is smoothed by a 3-month window.

On the other hand, the analysis detected the NTA → NAO 
connection at lag 1, which is consistent with the literature 
that shows that SST in the tropical north Atlantic can induce 
atmospheric teleconnections that project onto NAO (Oku-
mura et al. 2001).

Another index that presents links with several other phe-
nomena is the TSA. As in the case of the tropical north 
Atlantic, it is likely that the TSA → NAO link is direct, as 
the SSTa in the south Atlantic can control the position of the 
Intertropical Convergence Zone which could promote the 
development of a teleconnection to the north Atlantic (Oku-
mura et al. 2001). Interestingly, connections with other indi-
ces occur with lags of 3 or 6 months, suggesting that some of 
these links are indirect. The tropical south Atlantic is known 
to influence the equatorial Pacific through changes in the 
Walker circulation with a lag of several months (Rodríguez-
Fonseca et al. 2009), consistent with our results. Thus, we 
hypothesize that the connections of the TSA with the PDO 
and HURR indices occurr via the ENSO influence.

Our analysis also shows that the impact of TSA on ENSO 
has grown in recent decades (see Fig. 7), in agreement with 
the literature (Rodríguez-Fonseca et al. 2009).

Looking at Fig. 7, the strongest and most consistent signal 
is the change in causality between SOI (and Nino34) and 
AMO. That AMO variability influences the ENSO variabil-
ity is already documented (Levine et al. 2017). While the 
literature on the link between AMO and ENSO is extensive, 
to our knowledge, there is no report that this influence is get-
ting stronger, which could have implications for the ENSO 
predictions. As already mentioned, El Niño warms up the 
NTA, which is part of the AMO index, therefore it’s not sur-
prising that ENSO appears driving AMO. On the other hand, 
the Atlantic can influence ENSO variability by changing 
the mean state in the equatorial Pacific, altering the Walker 
circulation and trades, as pointed out above. From Fig. 7, 
we infer that the AMO impact on ENSO is increasing while 
the ENSO impact on AMO is becoming weaker. For longer 
lags (e.g., � = 9 ) only the link AMO → ENSO remains (not 
shown). The link ENSO → AMO is weak for long leads, 
while AMO → ENSO can still be strong, due to the different 
time scales of the phenomena.

Figure 7 also shows an increase in the NP → PDO link 
in the last decades, which may be related to the fact that the 
ENSO teleconnection to the north Pacific has also increased 
(NINO34 → NP, SOI → NP). On the other hand the link 
PDO → NP does not seem to have changed. Combined these 
results suggest that the SST anomalies in the north Pacific 

Fig. 7  Significant differences in the causality networks between two 
time windows, represented both as network and adjacency matrix. 
The first time window contains the years 1950–1983, while the sec-
ond correspond to the window 1984–2016. Green (red) links corre-
spond to an increment (reduction) in the causality from the first to the 
second window. For each connection, we report the largest significant 

difference across the three studied values of � . The value of tau for 
which the difference is the largest is reported in adjacency matrix. 
The width and color of the links are proportional to the relative incre-
ments (reductions), with respect to the significance threshold found 
with IAAFT surrogates (p-value = 0.01)
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have become more dependent on the equatorial Pacific con-
ditions compared to local air-sea interactions.

Regarding the time lags of significant causalities, while 
NAO is causal for only a month or two, ENSO’s causal 
effects spread up to 6 months. This result could be due to the 
different memories of the indices since ENSO has a much 
longer persistence than NAO. IAAFT surrogates preserve 
the power spectrum of the original series, retaining the auto-
correlation structure and mitigating this problem. Neverthe-
less, it is possible that the different indices memories are still 
impacting the results, and further surrogate testing is needed 
to clarify the origin of the link. We conclude the discussion 
by remarking that, while in our study we have found lags that 
are, in general, consistent with known lagged physical influ-
ences, this may not be the case when dealing with chaotic or 
nonlinearly coupled systems, and the detection of coupling 
delay is a challenging problem that has not yet been solved 
in general terms (Coufal et al. 2017).

6  Conclusions

We have used the pseudo transfer entropy (pTE), which is 
a simplified expression of the transfer entropy, to evaluate 
causal dependencies between thirteen indices that repre-
sent large-scale climate pattern. Taken together, our results 
have unveiled the well-known complexity of the network of 
interactions and feedback loops, and their interdecadal vari-
ations. The majority of the links recovered by our analysis 
have been documented in the literature and can be explained 
through known physical mechanisms; however, we have also 
found undocumented or likely spurious interactions. While 
it is important for advancing the understanding of our cli-
mate to identify the links that represent genuine connections, 
from a practical standpoint, to improve the forecast of an 
index variability, the pTE analysis yields useful knowledge 
because it tells us which signals contain information relevant 
for the future of another signal. In this way, the pTE repre-
sents a useful tool of time series analysis, to identify features 
that can potentially improve the forecast of the evolution of 
a climate index. As an example, we have found that the link 
between AMO and ENSO is becoming stronger, which may 
be important for ENSO predictability.

Another application of the pTE algorithm is for perform-
ing model inter-comparisons, e.g., for contrasting the causal 
links found in model data with those found in observed data, 
in order to determine the skill of different climate models in 
representing the interactions and lags in our climate.
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