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Abstract
The East Asian summer monsoon (EASM) is a dominant driver of East Asian climate, with variations in its strength poten-
tially impacting the livelihoods of millions of people. Understanding, predicting, and assessing uncertainties in these vari-
ations are therefore important area of research. Here, we present a study of the projected twenty-first century changes in 
the EASM using a ‘perturbed parameter ensemble’ (PPE) of HadGEM3-GC3.05 coupled climate models, which samples 
uncertainties arising from differences in model parameter values. We show that the performance of PPE members for leading 
order EASM metrics is comparable to CMIP5 and CMIP6 models in many respects. But the PPE also exposes model biases 
which exist for almost all parameter combinations. These ‘structural’ biases are found mainly to affect metrics for the low-
level circulation. We also show that future changes in regional circulation and precipitation are projected consistently across 
the PPE members. A more detailed moisture budget analysis of the precipitation changes in a region covering the Yangtze 
River valley shows that the spread of these changes is mainly due to spread in dynamic responses. We also perform parameter 
sensitivity analyses and find that a parameter controlling the amplitude of deep-level entrainment is the main driver of spread 
in the PPE’s representation of the EASM circulation. Finally, we discuss how the information provided by the PPE may be 
used in practice, considering the plausibility of the models, and giving examples of ways to sub-select ensemble members 
to capture the diversity in the moisture budget changes.

Keywords Perturbed parameter ensembles · East Asian summer monsoon · Model evaluation · Climate projections · Sub-
selection

1 Introduction

Monsoon systems are a key driver of seasonal variability 
throughout the tropics, directly affecting the livelihoods 
of over two-thirds of the world’s population (Sperber 
et al. 2013). Their characteristic reversal of winds in the 
lower troposphere, and associated variations in rainfall, are 
driven by seasonal variations in solar insolation, with sub-
stantial differences in local influences (e.g. land-sea tem-
perature contrasts, orography) giving rise to distinct systems 

throughout Africa, Asia, Australia, and North and South 
America (Wang et al. 2017).

This paper concerns one such system, the East Asian 
summer monsoon (EASM), which covers a domain stretch-
ing over the South China Sea, East China, Japan and the 
Korean peninsula. It is characterised by an abrupt reversal 
of low-level winds over the South China Sea during May, 
and the subsequent establishment of a quasi-stationary rain 
band (the ‘Meiyu’, ‘Baiu’ or ‘Changma’) which propagates 
northwards in distinct phases through the summer, before 
retreating southwards in August (Ding and Chan 2005). The 
EASM is a highly complex system, with many influencing 
factors e.g. variability in the West Pacific subtropical high; 
the south Asian High, the subtropical Eurasian jet stream 
and Pacific and Indian ocean SST anomalies (Ding and Chan 
2005).

Millions of people across East Asia are affected by the 
monsoon: the rainfall it brings accounts for around half of 
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annual totals over the region, and interannual variations are 
typically around 30% (Sperber et al. 2013) of the seasonal 
means, with potentially serious consequences through flood-
ing, drought and impacts on water supplies, agriculture and 
hydroelectricity generation. Providing predictions of the 
EASM and its variations is thus vitally important, and much 
work has been done, particularly on seasonal timescales 
(Wang et al. 2015). Given the complexity in modelling the 
system, forecasting has typically been based on statistical 
relationships. More recently, however, dynamical modelling 
using the Met Office’s GloSea5 system has been shown to 
be skilful over China, and has formed the basis of a forecast 
for summer rainfall over the Yangtze River basin (Li et al. 
2016; Bett et al. 2018). This region has been a major focus 
of forecasting and climate prediction research as it is particu-
larly sensitive to interannual variability, with past flooding 
events impacting the lives of hundreds of millions of people. 
It is also an important economic region, including some of 
China's largest cities and being a centre for key industries.

On longer timescales, it is important to understand the 
role of a changing climate on the EASM. Globally, mon-
soon activity, variability and the strength of teleconnec-
tions to ENSO are expected to increase (Hsu et al. 2012, 
2013), whilst Kitoh et al. (2013) found the EASM to respond 
strongly to warming (compared to other monsoon regions), 
particularly for metrics of heavy precipitation. Detailed 
studies looking at moisture budget decompositions over the 
region have revealed that the precipitation increase is largely 
driven by moistening of the atmosphere, but that uncertain-
ties in this response are mainly due to uncertainties in cir-
culation: both in the background state and responses to cli-
mate change (Zhou et al. 2018; He and Li 2019; Chen et al. 
2020b; Zhang et al. 2021).

Given the highly complex nature of monsoon systems, 
including the EASM, it is crucial to test the robustness of 
these projected changes to various sources of uncertainty 
e.g., modelling uncertainty, scenario uncertainty and inter-
nal variability (Zhou et al. 2020). Much of the work on 
projected changes has focussed on multi-model ensembles 
(e.g., CMIP3, 5 and 6), which bring together the latest model 
configuration from different centres in ‘ensembles of oppor-
tunity’. These ensembles sample uncertainties in modelling 
structures e.g., in their resolution, complexity, parameterisa-
tion schemes.

In this paper we will evaluate the present-day perfor-
mance and twenty-first century changes of the EASM using 
models that sample a different source of uncertainty: that 
arising from uncertainties in the values of model parameters. 
We do this using an alternative approach to ensemble crea-
tion, where members share the same model structure but 
differ in the values they take for uncertain model parameters. 
Such ‘perturbed parameter ensembles’ (PPEs) have been 
used in the study of monsoon systems (Yang et al. 2015; 

Huang et al. 2020), as well as in many other research areas 
e.g. for present-day climate performance (e.g. Yokohata 
et al. 2013; Sexton et al. 2019, 2021); climate feedbacks 
and sensitivities (e.g. Sanderson 2011; Collins et al. 2011; 
Karmalkar et al. 2019; Rostron et al. 2020; Tsushima et al. 
2020); emergent constraints (e.g. Wagman and Jackson 
2018); and aerosol forcing (Regayre et al. 2018; Johnson 
et al. 2018).

One key strength of PPEs is their ability to highlight 
structural behaviours of a model: behaviours (e.g., biases or 
future changes) that are common to most (if not all) parame-
ter combinations and that cannot be removed through param-
eter tuning. Conversely, PPEs also identify those aspects of 
a projections that are susceptible to tuning. PPEs are also an 
excellent tool for parameter sensitivity analyses, where links 
between model parameter settings and model outputs can be 
studied to help identify the key processes driving changes 
in the model. In this paper, we utilise these strengths to add 
detail to our assessments of the biases and future changes 
in the EASM.

The PPE studied here is based on recent configuration 
of the Met Office’s global coupled model: HadGEM3-
GC3.05 (Yamazaki et al. 2021). It comprises 20 variants of 
HadGEM3-GC3.05 which were generated through simulta-
neous perturbations made to 47 model parameters (across 7 
atmospheric parameterisation schemes), chosen to sample 
key parametric uncertainties (see Sect. 2.1). These models 
formed a key component of the recent UK Climate Projec-
tions for land project (UKCP18; Murphy et al. 2018).

To place our PPE analysis in the context of previous 
studies, we also analyse subsets of models from the CMIP5 
and CMIP6 projects. The CMIP ensembles sample differ-
ent model structures and consequently sample a different 
source of modelling uncertainty to the PPE. The PPE and 
CMIP ensembles therefore provide complementary datasets, 
and considering both types of ensemble allows for a more 
thorough representation of the uncertainties in model perfor-
mances and future changes. This is important for testing the 
robustness of future changes in the EASM, and for provid-
ing more comprehensive information to users interested in 
regional impacts assessments and adaptation work. Indeed, a 
combination of the PPE and CMIP5 ensembles was used for 
the global model component of the UK Climate Projections 
project, UKCP18 (Murphy et al. 2018).

However, given the different nature of the ensembles, 
comparisons between them can be challenging. Whilst the 
differences in modelling choices sampled by CMIP5 and 
CMIP6 make them useful for capturing a wide diversity 
in model biases and future changes, they cannot reveal 
the structural behaviours of any individual member. Con-
versely, whilst the PPE will expose structural biases and 
future changes, it only does this for a single base model. 
Consider, for example, the ensemble mean biases. A clear 
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structural model bias in the PPE will be reflected in its 
mean, as it would not be removed by parameter perturba-
tions. Each CMIP5 or CMIP6 model could also exhibit 
clear structural biases (though we wouldn’t know with-
out a PPE around each of them), but the effects of these 
would be suppressed in the ensemble mean due cancella-
tion across the different model structures (unless it was a 
bias common across those models e.g., the double ITCZ 
bias). So, whilst it is advantageous to consider both types 
of ensembles, we must be cautious when directly compar-
ing them.

Our analysis will focus on performance and future 
changes for leading-order metrics of low-level winds 
and precipitation. Whilst these metrics will not represent 
all the complexities of the EASM, they will encompass 
many of its key features. For example, climatological low-
level winds are crucial for capturing the correct flow of 
moisture through the region, whilst seasonal cycles of 
precipitation will be sensitive to the northward propaga-
tion of the Meiyu rain band. Numerous previous studies 
have explored different aspects of the performance of the 
EASM in HadGEM3 models, from sub-seasonal to clima-
tological timescales (e.g., Li et al. 2016; Rodríguez et al. 
2017; Hardiman et al. 2018; Rodríguez and Milton 2019; 
Martin et al. 2020, 2021). Known relationships between 
the interannual changes in these variables will also be 
assessed (Wang et al. 2008). Variability in these relation-
ships on decadal timescales and longer will be of particu-
lar interest as they have been noted for their potential use 
in Met Office seasonal forecasts for the Yangtze river 
basin (Martin et al. 2020).

The remainder of the paper is ordered as follows: 
Sect. 2 provides a summary description of the design 
of the PPE and the sub-selection of CMIP5 and CMIP6 
members, along with the methods used to analyse pre-
cipitation regionally over China and a metric used for 
low-level circulation over east Asia. In Sect. 3 we ana-
lyse the present-day performance of the PPE, CMIP5 
and CMIP6 models, looking at mean state biases and 
variability of low-level winds and precipitation; seasonal 
cycles of precipitation; and the relationships in interan-
nual anomalies related to the EASM (including ENSO). 
Section 4 covers the future changes in these variables, 
with Sect. 4.2.1 focussing on understanding the drivers 
of the twenty-first century precipitation response for the 
Yangtze River basin, including using a detailed moisture 
budget analysis. In Sect. 5 we explore the sensitivities of 
EASM circulation metrics to the perturbed parameters 
using a causal network analysis. We will discuss our 
findings in Sect. 6, with a focus on how the information 

provided by the PPE may be used in practice. An overall 
summary is given in Sect. 7.

2  Models and methods

2.1  Base model and parameter perturbations

Here we provide a summary description of the HadGEM3-
GC3.05 PPE. In this paper we will refer to this as ‘the 
GC3.05-PPE’, or simply ‘the PPE’. Further details, includ-
ing a description of the GC3.05 base model, can be found 
in Yamazaki et al. (2021).

The GC3.05-PPE comprises 20 variants of the UK 
Hadley Centre Unified Model HadGEM3-GC3.05 model, 
which is closely related to the GC3.1 configuration submit-
ted to CMIP6 (Williams et al. 2018). Each ensemble mem-
ber has a horizontal resolution of approximately 60 km at 
mid-latitudes (called ‘N216’) and was run for a 200-year 
period from 1900 to 2100, using CMIP5 historical forcings 
and future scenarios consistent with RCP8.5 emissions 
(accounting for carbon cycle uncertainties). Flux adjust-
ments were applied to each member, in order to mitigate 
the effects of long-term SST (and salinity) biases on the 
projected regional changes (Murphy et al. 2018; Yamazaki 
et al. 2021).

Each PPE member is distinguished by taking a unique 
set of values for 47 model parameters across 7 param-
eterisation schemes from the atmosphere, land and aerosol 
model components (A full description of the parameters 
perturbed in this PPE can be found in Table 1 in Sexton 
et al. 2021). The initial distributions of parameter values 
were chosen to target key modelling uncertainties, through 
an elicitation exercise with model experts. The parame-
ter values ultimately used for the 20 PPE members were 
selected through a multi-stage filtering process, based on 
the plausibility of their representation of the climate, and 
on the diversity of their climate change responses.

The latter was assessed using idealised forcing experi-
ments in atmosphere-only simulations, where diversity in 
climate feedbacks, aerosol and CO2 forcings, and regional 
precipitation and temperature responses were targeted 
(Sexton et al. 2021). The plausibility of the variants was 
assessed in a variety of historical and present-day experi-
ments e.g. using large-scale mean climate performance in 
5-day and 5-year atmosphere-only experiments, as well 
as qualitative assessments of circulation, surface air tem-
perature and precipitation over the North Atlantic and 
UK (Sexton et al. 2021). Further screening was applied 
to the variants run as fully coupled simulations. An initial 
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ensemble of 25 members was reduced, first to 20 members 
and then to 15, based on criteria such as: numerical sta-
bility; the strength of the Atlantic meridional overturning 
circulation (AMOC); historical trends in northern hemi-
sphere surface air temperatures; and climatological tem-
perature biases (Yamazaki et al. 2021).

The final 15 members were selected for use in the 
UKCP18 projections (Murphy et al. 2018), but for this 
study we are interested in exploring a diverse range of 
model behaviours, with a focus on a different region (East 
Asia). So, we choose to use the 20 members selected after 
the first stage of coupled screening and which were run for 
the full 200-year period.

One of the 20 PPE members we analyse uses tuned 
parameter values i.e. the same parameter values used for 
the HadGEM3-GC3 model (Williams et al. 2018). We 
refer to this as the ‘standard’ PPE member.

2.2  CMIP5 and CMIP6 models

We also assess a subset of CMIP5 and CMIP6 global cou-
pled models, which allow us to sample uncertainties in 
different model structures, in contrast to the parametric 
modelling uncertainties sampled by the PPE. (We refer 
to these subsets as the ‘CMIP5’ and ‘CMIP6’ ensembles 

when considered separately, and the ‘CMIP’ ensembles 
when considered together.) The PPE and CMIP datasets 
are complementary: CMIP models will provide a useful 
context in which to place our assessment of the PPE, and 
consideration of the results from all three ensembles is 
recommended for users of the projections (but note the 
caveats regarding direct comparisons discussed in the 
Introduction).

The CMIP5 subset is formed from members which were 
selected for the UKCP18 project, based on a qualitative 
assessment of key aspects of global and European/UK cli-
mate, along with a screening of very closely related models 
(see Murphy et al. 2018 for the details of the selection meth-
odology). We use 12 of these 13 selected models – the EC-
EARTH model was not used as not all of the required data 
was available at the time of our analysis. For the historical 
period, the CMIP5 forcings are the same as those used for 
the PPE, whilst for the future period, concentrations from 
the RCP8.5 pathway are used (note the slight difference to 
the PPE here, as carbon cycle uncertainties are not sampled 
for the CMIP5 models).

For our CMIP6 subset we selected the CMIP6 models 
which were most closely related to our CMIP5 subset, and 
for which we had data available. In total, our CMIP6 subset 
contains 10 models. We use CMIP6 historical forcings and 
the SSP5-8.5 future scenario, as this represents the closest 

Fig. 1  Regions of China used in our analysis. The shaded regions 
were selected based on the K-means clustering algorithm described 
in Sect. 2.3. These are North China (N China; orange); Central-East 
China (CE China; purple) and Southeast China (SE China; green). 

Additional regions used in our analysis, covering Northeast China 
(NE China; blue box) and Southwest China (SW China; red box), are 
also shown
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equivalent to the RCP8.5 scenario used for the PPE and the 
CMIP5 subset.

All members of the CMIP subsets are re-gridded from 
their native resolution to that of the PPE members (60 km at 
mid-latitudes) to facilitate the comparison of these ensem-
bles. A table of the CMIP5 and CMIP6 models used here is 
given in Appendix A (Table 3).

2.3  Definition of regions

Part of this study into the East Asian summer monsoon will 
involve an assessment of precipitation across China. As 
noted in the Introduction, the EASM has a complex spatial 

and temporal structure, with the quasi-stationary Meiyu rain 
band influencing different regions through the season. We 
therefore separate China into regions, based on areas that 
display similar characteristics of precipitation variability.

We do this using a K-Means clustering algorithm (Wilks 
2011), where climatological monthly anomalies of pre-
cipitation are calculated for each grid box over China and 
boxes with similar annual cycles are grouped together into 
3 groups. For this analysis we used GPCP observational 
data (covering 1980–2014; Adler et al. 2003), and con-
sidered land points only. The three regions resulting from 

Fig. 2  JJA mean 850 hPa wind 
fields. a 1980–2015 ERA-
Interim climatology, with green 
shading showing the wind 
speeds (magnitude of wind 
vectors). b–f Model biases with 
respect to ERA-Interim for the 
same period. The arrows repre-
sent the zonal and meridional 
components of the wind biases, 
while the shading shows the 
wind speed bias. b Mean bias 
across PPE members. c and d 
Biases for the best (0834) and 
worst (1113) models from the 
PPE, respectively. e and f Biases 
for the best (CNRM-CM5) and 
worst (MRI-CGCM3) models 
from the CMIP ensembles, 
respectively. These were 
selected using RSME values for 
the regions used to calculate the 
RWFI (red boxes)
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this clustering were largely continuous, although some grid 
boxes fell into a different region from their neighbours, par-
ticularly near the borders between regions. Because of this, 
we manually adjusted the regions so they were completely 
continuous (i.e., no ‘floating’ grid boxes), but still reflected 
the broad regions selected by the K-Means algorithm. Addi-
tionally, one of the regions covered a very large domain, 
which included all parts of China except the Southeast and 
Central-East. Much of this domain is not affected by the 
monsoon, so we limited it to only include points eastward 
of 100E.

The three regions selected by this analysis are shown in 
Fig. 1. We label these ‘Southeast’ (SE), ‘Central-East’ (CE) 
and ‘North’ (N) China, and they align with the north–south 
propagation of the EASM. We also define 2 further regions: 

one for ‘Northeast’ (NE) China, covering the important 
maize-growing region; and another for ‘Southwest’ (SW) 
China, where previous versions of Hadley Centre models 
have consistently shown wet biases in the summer (Rod-
ríguez et al. 2017).

2.4  Metrics

2.4.1  Reversed Wang and Fan Index (RWFI)

Indices are used widely in climate science to quantify fea-
tures of the climate system in a simple way (e.g., circulation 
patterns). In this study, we focus on one index used in studies 
of the East Asian summer monsoon—the ‘reversed Wang 
and Fan index’ (RWFI). This is defined, using summer (JJA) 
means, as:

(See the red boxes in Fig. 2.) This index reflects the low-
level shear vorticity over the region and was initially used 
to quantify variability in the western North Pacific summer 
monsoon (Wang and Fan 1999). The complexity of the East 
Asian summer monsoon precludes any index from captur-
ing all aspects of the system (Wang et al. 2008). However, 
Wang et al. (2008) found the RWFI correlates very well with 
the first multivariate EOF for precipitation, surface level 
pressure and winds over China, and thus provides a simple 
metric to capture some key features of East Asian summer 
monsoon variability. We therefore use the RWFI metric as 
our leading-order metric to study low-level circulation for 
the EASM.

2.4.2  Nino‑3.4 index

In our analysis of the connections between modes of vari-
ability affecting the EASM (Sect. 3.3) we consider the role 
of ENSO and its impact on the EASM circulation. We quan-
tify ENSO using the Niño-3.4 index, which is defined using 
the long-term anomalies of the monthly-mean SST aver-
aged over the Niño-3.4 region (5º S–5º N, 170º W–120º W), 
where we use a baseline climatology period from 1950 to 
2006. We then smooth the time series using a 5-month 
window and normalise using the standard deviation of the 
smoothed time series over the climatological period.1

RWFI = u850(22.5
◦ − 32.5◦N, 110◦ − 140◦E)

−u850(5
◦ − 15◦N, 90◦ − 130◦E)

Fig. 3  a Mean climatologies (1980–2015) for RWFI and its north and 
south components (see definition in Sect. 2.4.1). PPE members (green 
points) are shown alongside CMIP5 (pink) and CMIP6 (orange) mod-
els. ERA-Interim values are shown as black crosses. Values for the 
PPE standard member are shown by the red points. b RWFI interan-
nual variability (after removal of a linear trend) over the same period

1 The definition of this Nino-3.4 index can be found in the ‘Technical 
Notes’ section of https:// clima tedat aguide. ucar. edu/ clima te- data/ nino- 
sst- indic es- nino- 12-3- 34-4- oni- and- tni.

https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
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3  Present‑day performance of the EASM

3.1  850 hPa circulation

We start with an assessment of the lower-level (850 hPa) 
circulation over the region. Figure 2a shows the JJA mean 
climatological 850 hPa circulation from reanalysis (ERA-
Interim; Dee et al. 2011) for the period 1980–2015. It is 
characterised by an airflow along the Somali coast, across 
the Arabian Sea (a moisture source for the Indian monsoon) 
and the Bay of Bengal and into the South China Sea. This 
circulation develops rapidly during May (Ding and Chan 
2005) and persists through NH summer. The Bay of Bengal, 
the Philippine Sea and the South China Sea are key moisture 
sources for the EASM (Zhou 2005).

The PPE mean bias field (Fig. 2b) shows substantial 
errors in this circulation, with a cyclonic bias over South-
east Asia and the west Pacific. The westerly bias centred on 
the South China Sea, resulting from an over-extension of 
the Indian monsoon flow, is particularly strong. This bias is 

characteristic of a known circulation error that has affected 
previous generations of Hadley Centre models (Ringer et al. 
2006; Bush et al. 2015) and is present in atmosphere-only 
(as well as coupled) simulations, and across resolutions 
(Rodríguez et al. 2017; Chen et al. 2018). It is associated 
with biases in the representation of the western North Pacific 
subtropical high (WNPSH), which tends to be too weak and 
shifted too far to the east in these models (Chen et al. 2018).

Figure 2c–f show examples of the ‘best’ and ‘worst’ 
members from the PPE and the CMIP ensembles, as meas-
ured by root-mean-squared errors of the zonal wind com-
ponent over the area highlighted by the red boxes (see 
Sect. 2.4.1). The cyclonic bias pattern in the PPE mean 
is also seen in the best and worst PPE members (labelled 
‘0834’ and ‘1113’, respectively; Fig. 2c and d). In the lat-
ter case, the errors over the South China Sea reach up 
to 9.2  ms−1 but the errors are clearly much reduced for 
member 0834. A similar bias is seen for the worst amongst 
the CMIP models (MRI-CGCM3, from CMIP5; Fig. 2f), 
but the best model here (CNRM-CM5, also from CMIP5) 
performs well over the whole domain (Fig. 2e).

Fig. 4  Annual cycles of precipitation for regions in China (see 
Sect.  2.3 for definitions). Monthly climatologies (based on 1980–
2014 means) are shown for observations from GPCP (black lines) and 
for each PPE member. The colours used for each PPE member indi-

cate the month when CE China precipitation reaches its maximum: 
red indicates a maximum in June; grey, a maximum in July and blue, 
a maximum in August
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These features are seen across the PPE and CMIP 
ensembles, as shown in the 1980–2015 mean climatolo-
gies of the RWFI (Fig. 3a), which measures the 850 hPa 
vorticity over the region (as sampled by the red boxes 
in Fig. 2; see Sect. 2.4.1). The RWFI climatologies for 
the PPE members show a structural negative bias for the 
PPE, with the cyclonic nature highlighted by consistently 
negative biases for RWFI-North and positive biases for 
RWFI-South.

Negative RWFI biases are also seen in most of the CMIP 
models (Fig. 3a). This is consistent with previous studies 
of the EASM circulation in CMIP5 models, where the low-
level westerly jet is typically found to be too strong, and is 
associated with northeastward shifts in the WNPSH (Song 
and Zhou 2014a, b). However, there are instances of positive 
RWFI biases e.g., ACCESS1-3 (CMIP5) and CNRM-CM6-1 

(CMIP6). In the PPE and the CMIP ensembles, the spread in 
RWFI values results mainly from the southern component: 
understanding the processes and structural changes driving 
the spread in this region could be crucial for resolving this 
model error (Bush et al. 2015; Martin et al. 2021).

Figure 3b shows the interannual variability in RWFI (and 
its components) for each ensemble member. All 3 ensem-
bles span a range of variability, from 1.0 to 3.5  ms−1, which 
includes the value from the ERA-Interim reanalysis. PPE 
members typically show less variability than the reanalysis 
in all components. Figure 3b also shows that CMIP models 
are typically less variable than the reanalysis for RWFI-
North, but there are examples of enhanced variability for 
RWFI and RWFI-South. One notable model is CESM2 
(from CMIP6) which has the most overestimated variability 
in all 3 RWFI components but is amongst the best of all the 
models for the mean climatologies for these components. 
This highlights the importance of considering multiple met-
rics of when judging the performance of models.

3.2  Precipitation

As noted in the Introduction, a key characteristic of the 
EASM is the northward progression of the Meiyu rain band 
across the region, from June to August. Accordingly, we start 
by evaluating the performance of the PPE for precipitation 
using the annual cycles across the distinct regions defined 
in Sect. 2.3, to capture the large-scale spatial and temporal 
characteristics of the EASM precipitation (see Fig. 4).

Across all of the regions, the observed annual cycles 
(GPCP; Adler et al. 2018) show a continuous increase in pre-
cipitation from winter to a peak in summer and a subsequent 
decrease after the retreat of the EASM. These variations 
are broadly captured by the PPE, although values for MAM 
are consistently overestimated by all members, across the 
regions. This bias was also noted by Rodríguez et al. (2017) 
for a previous, atmosphere-only configuration of HadGEM3 
(GA6; Walters et al. 2017), and is associated with errors in 
the moisture convergence.

The timings of the peak of the precipitation in summer is 
well captured across PPE members for N, NE and SW China, 
but there is a notable spread in CE and SE China. Members 
that peak prematurely in CE China (i.e., in June rather than 
the observed peak in July) also tend to have a premature 
peak in SE China (see the red curves in Fig. 4e), indicating 
coherence in these timing errors across the PPE. However, 
this subset tends to capture the JJA mean precipitation in 
SW China more accurately than the members with the cor-
rect peak timing (in July) in CE China. This can be seen by 
comparing the red curves to the grey curves in Fig. 4c and d.

We show 1980–2014 mean JJA precipitation values for 
PPE members in Fig. 5a, along with the CMIP ensembles 
and GPCP observations. Clear wet biases are seen in SW 

Fig. 5  a JJA mean precipitation climatologies (1980–2014) for 
regions in China (see Sect.  2.3 for definitions). PPE members (blue 
points) are shown alongside CMIP5 models (pink points), CMIP6 
models (orange points) and observations from GPCP (black crosses). 
Values for the PPE standard member are shown by the red points. b 
Interannual variability of JJA precipitation (after removal of a linear 
trend) over the same period
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and SE China, which is consistent with previous configura-
tions of HadGEM3 (Rodríguez et al. 2017). The fact that all 
PPE members show wet biases in these regions indicates 
that these biases are structural. No such structural biases are 
found for N China; NE China, which is an important crop 
growing region; and CE China, which covers the Yangtze 
River valley.

Biases in the CMIP models also vary spatially. Despite 
the differences in their constructions (as noted in the Intro-
duction), the PPE, CMIP5 and CMIP6 ensembles all span 
the observed climatology in CE, N and NE China. In SW 
and SE China there are examples of positive and negative 
biases in both CMIP5 and CMIP6. Notably, in SW China all 
but one of the CMIP6 models has a wet bias (similar to the 
PPE), but in SE China all but two of the CMIP5 models has 
a dry bias (in contrast to the PPE). In these regions the value 
of combining these ensembles to more thoroughly capture a 
diversity in performance is clear.

The interannual variability in JJA precipitation is shown 
in Fig. 5b. The variability for PPE members structurally high 
across all regions, with values ranging between 0.92 and 
2.09 times the observed standard deviation values. CMIP 
models also tend to overestimate the variability, but there 
are examples of models with too little variability, reflecting 
a more diverse sampling of precipitation variability in the 
CMIP models compared to the PPE.

We have also calculated precipitation variability scaled 
by the climatological mean for each region (not show) and 
found that these were also consistently overestimated in the 
PPE. The reasons why the PPE overestimates precipita-
tion variability is not clear, but some of this may be driven 
through relationships with the monsoon circulation (Wang 
et al. 2008; also see Sect. 3.3). An overestimation of precipi-
tation variability could be driven by too much variability in 
the circulation acting through this teleconnection, or from 
errors in the teleconnection itself. However, we do not find 
evidence of this in the PPE. As shown in Fig. 3b, the vari-
ability of the RWFI in the PPE is reasonable (even slightly 
underestimated). We have also analysed the relationships 
between circulation and CE China precipitation in the PPE 
(see Sect. 3.3) but find that values of the fraction of vari-
ance of precipitation explained by RWFI are between 0.02 
and 0.35 (the observed value is 0.29), indicating that other 
influences are driving our overestimated precipitation vari-
ability in this region.

3.3  Variability relationships

Well known relationships exist between interannual anom-
alies in EASM circulations, summer precipitation over 
East China, and ENSO (e.g., Ronghui and Yifang 1989; 
Wang et al. 2000, 2008; Chang et al. 2000; Wu et al. 2003; 
Zhou 2005; Li et al. 2016). Here, we explore how these 

relationships are represented in the PPE by focusing on the 
connection between the RWFI, JJA mean precipitation for 
CE China and ENSO.

We focus on CE China, as this coincides with the Yang-
tze River valley—a region where the impacts of interannual 
rainfall changes can be great, but also where the strength of 
these relationships is strong, opening up opportunities for 
exploiting predictability in models (Bett et al. 2018; Martin 
et al. 2020). Also, as described in Sect. 3.2, our PPE vali-
dates reasonably well against observations in this region.

We start with the relationship between JJA mean pre-
cipitation for CE China (‘prC’) and the RWFI. Wang et al. 
(2008) showed a strong relationship between the RWFI 
and the first multivariate EOF of EASM variability, where 
positive RWFI anomalies are associated with enhanced pre-
cipitation over a region which coincides with our CE China 
region (see Fig. 2a in Wang et al. 2008). These anomalies 
are characteristic of an enhanced south-westerly flow over 

Table 1  Relationships between CE China precipitation (prC), EASM 
circulation (using the RWFI) and ENSO (using the Niño-3.4 index) 
for observations (top row) and the PPE (remaining rows)

Values are calculated as the slope of the linear relationship between 
interannual anomalies of these metrics for the period 1980–2014. For 
prC and RWFI we use JJA means, whilst for the Niño-3.4 index we 
use DJF means from the preceding winter. Values in brackets give the 
uncertainties capturing the 95% confidence range. Crosses (x) denote 
slopes which are not significant, whilst daggers (†) denote a signifi-
cant difference from the observed value. Values with neither a cross 
nor a dagger therefore denote significant slopes which are consistent 
with the observed value. (Significance is assessed at the 5% level)

Member prC-RWFI RWFI-Niño-3.4

X OBS 0.200 [0.110] 0.970 [0.525]
A 0000 0.392 [0.262] 0.371 [0.409]x

B 0090 0.349 [0.232] 0.030 [0.416]x†

C 0605 0.311 [0.255] 0.262 [0.520]x

D 0834 0.117 [0.309]x − 0.193 [0.371]x†

E 1113 0.253 [0.141] 0.956 [0.633]
F 1554 0.246 [0.230] 0.538 [0.382]
G 1649 0.281 [0.170] − 0.322 [0.560]x†

H 1843 0.305 [0.234] 0.169 [0.488]x†

I 1935 0.344 [0.215] 0.205 [0.520]x†

J 2089 0.253 [0.164] 1.237 [0.467]x

K 2123 0.224 [0.246]x − 0.051 [0.525]x†

L 2242 0.257 [0.240] − 0.231[0.614]x†

M 2305 0.236 [0.200] 0.109 [0.557]x†

N 2335 0.146 [0.212]x 0.339 [0.605]x

O 2491 0.330 [0.212] 0.730 [0.486]
P 2753 0.562 [0.270]† 0.073 [0.420]x†

Q 2832 0.090 [0.223]x 0.498 [0.431]
R 2868 0.260 [0.166] 0.474 [0.742]x

S 2884 0.154 [0.143] 0.423 [0.611]x

T 2914 0.254 [0.165] 0.400 [0.504]x
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the South China Sea (and a reduction in the zonal wind as 
measured by RWFI-S), associated with a south-westward 
extension of the WNPSH, a weakened monsoon trough in 
the western North Pacific and a southward shift of the upper 
East Asian jet steam (Chang et al. 2000; Zhou 2005; Wang 
et al. 2008).

A simple way to characterise this relationship is to evalu-
ate the slope of a simple linear fit to interannual anoma-
lies of CE China precipitation against the RWFI index. We 
show these values in Table 1 (column ‘prC-RWFI’). The 
‘observed’ (‘OBS’) value is derived from 35 years of data 
from GPCP (for prC) and ERA-Interim (for RWFI) where 
these two datasets overlap (1980–2014). The observed value 
of 0.200 ± 0.110 confirms the expected relationship between 
these quantities is significant. (Uncertainties given are for 
the 95% confidence range and significance is tested at the 
5% level.) The remaining rows in Table 1 give the equiva-
lent values for the PPE members. Most PPE members also 
exhibit significant relationships, with slopes that are indis-
tinguishable from the observed relationship (at the 5% level). 
This can also be seen in the y-values in Fig. 6. The excep-
tions to this are members 0834, 2123, 2335 and 2832, for 
which our evidence isn’t strong enough to distinguish their 
slopes from zero; and member 2753, which has a steep slope 

that is not consistent with the observations. Most notable 
amongst these is member 0834 (see point labelled ‘D’ in 
Fig. 6). This member has the smallest circulation biases in 
the PPE (see Sect. 3.1), but also has one of the least sensitive 
and least realistic prC-RWFI relationships.

Interannual variability in the EASM is known to be 
strongly influenced by the El Nino-Southern Oscillation 
(ENSO) and many studies have explored the potential 
mechanisms linking ENSO to anomalies in EASM circu-
lation. Wang et al. (2008) showed that the peak of a lead-
lag correlation between their first multivariate EOF, which 
exhibits an anomalous subtropical high in the west Pacific, 
and the Niño-3.4 index, occurs in the preceding winter. That 
is, the anomalous anticyclone, which is associated with an 
enhanced south-westerly flow over the South China Sea 
(decreased RWFI-S and increased RWFI) occurs in the sum-
mer after an El Niño. This has been linked to positive feed-
back mechanisms in the west Pacific and the Indian ocean, 
where ENSO-induced SST anomalies drive Rossby (west 
Pacific) and Kelvin (Indian ocean) waves, which reinforce 
the anticyclonic circulation, allowing it to persist into the 
summer (Wang et al. 2000; Xie et al. 2016; Xie and Zhou 
2017; Hardiman et al. 2018).

Fig. 6  Relationships between 
interannual anomalies in JJA 
mean precipitation (for CE 
China), RWFI and Niño-3.4, 
based on the period 1980–2014. 
Values for the gradient of the 
relationship between CE China 
precipitation and RWFI are 
plotted on the y-axis, whilst 
RWFI-Niño-3.4 gradient values 
are plotted on the x-axis. The 
black cross is for the observed/
reanalysis values GPCP and 
Era-Interim, while the PPE 
members are shown as blue 
points (with labels for each PPE 
member shown in the legend). 
The black error bars show the 
uncertainties capturing the 95% 
confidence range on these gradi-
ents for observations/reanalysis. 
The blue error bars show the 
equivalent for the mean uncer-
tainty across the PPE members
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We characterise this relationship in a similar way to the 
prC-RWFI relationship – using the slope of a simple lin-
ear regression between the RWFI and the Niño-3.4 index 
(see definition in Sect. 2.4.2). We use DJF averages for the 
Niño-3.4 index and regress against the RWFI for the fol-
lowing summer, to capture the peak of the lead-lag correla-
tion described in Wang et al. (2008). As with the prC-RWFI 
relationship, we use the period 1980–2014 to evaluate the 
slopes (with the data for the Niño-3.4 index starting from 
December 1979). The results are shown in the third column 
of Table 1 (‘RWFI- Niño-3.4’). The observed relationship 
is significant, as expected, with a value of 0.970 ± 0.525. 
However, the PPE exhibits different behaviours: for most of 
the members (15 out of 20) the RWFI vs Niño-3.4 slope is 
not distinguishable from zero, and 9 of these have distinctly 
different relationships to the observations. This can be seen 

quite clearly in Fig. 6 (x-values), where PPE members gen-
erally have smaller RWFI-Niño-3.4 slope values than the 
observations, with some values even being negative. The 
exceptions to this are PPE members 1113, 1554, 2089, 2491 
and 2832, which are indistinguishable from the observed 
relationship (at a 5% confidence level). Except for 2832, 
these members all matched the observed prC-RWFI relation-
ship too, as highlighted by the clustering of these members 
around the observations in Fig. 6.

We again note the case of member 0834, which has the 
smallest circulation errors but captures neither the prC-
RWFI relationship nor the RWFI-Niño-3.4 relationship 
(see point ‘D’ compared to the observations in Fig. 6). This 
highlights the fact that a model with good performance in 
some respects (e.g., circulation) does not imply it is a better 
model in general, and that multiple metrics of performance 

Fig. 7  Changes in JJA mean 
850 hPa winds for 2070–2099 
vs 1980–2009. The arrows show 
the changes in the zonal and 
meridional components of the 
wind, while the shading shows 
the change in the wind speed. 
a PPE mean. b PPE member 
with best circulation perfor-
mance (0834). c and d PPE 
members with the lowest (2242) 
and highest (1113) changes 
in RWFI, respectively. e and f 
CMIP members with the lowest 
(MPI-ESM-MR) and highest 
(CanESM5) changes in RWFI, 
respectively
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should be considered when using these models (e.g., for 
future projections).

4  Future changes in the EASM

Each PPE member was simulated out to 2100 under the 
CMIP5 RCP8.5 scenario (as outlined in Sect. 2). Here we 
assess how the EASM responds to this future scenario across 
our PPE members, in terms of the mean-state and variabil-
ity of the low-level circulation (Sect. 4.1) and precipitation 
(Sect. 4.2). In Sect. 4.2.1 we use a more detailed moisture 
budget analysis for changes in precipitation of the CE China 
region, to highlight the relative impact of thermodynamic 
and dynamic changes on the precipitation response.

4.1  850 hPa circulation

Twenty-first century circulation changes, based on differ-
ences in 30-year averages around 1995 (1980–2009) and 
2085 (2070–2099), are shown in Fig. 7. The PPE mean 
(Fig. 7a) shows a clear anti-cyclonic change over the region, 
with a weakened westerly flow over the SE Asian peninsula 
and South China Sea, and increased south-westerly flow over 
East China, suggesting an intensification of the EASM cir-
culation. This change is seen consistently, but with varying 
magnitudes, across individual PPE members (Fig. 7b–d). 
The mean state changes in the RWFI (and its components) 
shown in Fig. 8a are consistent with this: westerly (easterly) 
changes are seen in the north (south) components, and the 
RWFI change is consistently positive as a result. This sys-
tematic change across PPE members suggests it is driven 
by a structural response of HadGEM3-GC3.05, which the 
parameter perturbations do not alter significantly.

Amongst the CMIP models there are examples of both 
anti-cyclonic and cyclonic changes in the region (2 exam-
ples are shown in Fig. 7e and f). This is particularly the 
case for CMIP5; amongst our CMIP6 models all but two 
have a positive RWFI change, as in the PPE. But without 
PPEs based on the CMIP models it is not possible to assess 
whether any of these are systematic responses (as we find for 
HadGEM3-GC3.05). Interestingly, Chen et al. (2020a) found 
that constraining CMIP5 models, based on present-day SST 
patterns associated with uncertainties in projections of the 
WNPSH, favoured models with a future strengthening of the 
WNPSH. Such a change is consistent with the circulation 
changes we have found in the PPE. Even so, Fig. 8a shows 
that magnitudes of the changes for the CMIP5 (and CMIP6) 
models are smaller than in the PPE; that is, the PPE appears 
to have particularly strong circulation changes.

In Fig. 9 we show these circulation changes against the 
present-day mean values. This shows a cluster of 6 PPE 
members (with present-day means > − 9  ms−1) which have 

comparable performance to the CMIP models. This cluster 
of PPE members samples future changes at the lower end of 
the PPE, but that are systematically higher than the CMIP 
model changes. Again, this highlights the benefit of consid-
ering information from across these ensembles, with CMIP5 
and/or CMIP6 providing a wide diversity of future behav-
iours, and the PPE providing more examples of large, but 
still plausible, future changes. Note though, that the combi-
nation of the PPE and CMIP ensembles should not be con-
sidered as one entity, so the combined scatter should not be 
considered as evidence of an emergent relationship without 
more information e.g., PPEs based on each CMIP member. 
Figure 9 also shows that, whilst there is little evidence of a 
relationship between present-day biases and future changes 
in the CMIP models, there is a significant relationship for the 
PPE (at the 5% level;  R2 = 0.38), where models with larger 
present-day biases tend to have stronger future changes.

Figure 8b shows the change in variability (the standard 
deviation) in the RWFI components. No consistent change in 
the variability is seen for any component—the PPE, CMIP5 
and CMIP6 ensembles have members with increases and 
decreases in variability, and the magnitude of these changes 
are similar in each ensemble.

4.2  Precipitation

Future changes in JJA precipitation, for 2070–2099 
vs 1980–2009, are shown for our 5 regions in Fig. 10. 
Positive changes in both the mean state and interannual 
variability are widespread: all PPE members get wetter 
in all regions, as do most CMIP5 and CMIP6 members 
(Fig. 10a). A small number of CMIP models show a slight 
drying in some regions e.g., IPSL-CM5A-MR in SW, SE 
and CE China. For some members/regions, the changes are 
weak and not statistically significant (at the 5% level)—
for example CNRM-CM5 does not show a significant 
change over SW, SE and CE China, whilst a weak drying 
in CNRM-CM6-1 for SW and CE China is also not sig-
nificant. Typically, however, the future changes are sig-
nificant, particularly in the PPE. Variability also typically 
increases in these regions (Fig. 10c; Zhang et al. 2021), 
except for a handful of members from each ensemble.

As described in Sect. 3.2, biases vary across the differ-
ent models and our chosen regions. For climate service 
applications, users may want to apply bias corrections by 
analysing the percentage change in summer precipitation 
to the modelled climatology, which we show in Fig. 10b. 
In both the percentage and absolute changes, the precipita-
tion changes in the PPE are typically larger than those in 
the CMIP5 and CMIP6 ensembles: PPE values range from 
0.3 to 4.5 mm/day (7 to 57%), whilst CMIP5 values range 
from − 0.7 to 2.9 mm/day (− 15 to 36%) and CMIP6 from 
− 0.4 to 3.3 mm/day (− 5 to 40%). This is most notable 
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in SE and CE China, although there is substantial overlap 
between the ensembles across the regions.

We emphasise that the structural precipitation responses 
seen in the GC3.05-PPE may also be present in CMIP mod-
els. But without PPEs based around these models we can-
not assess this. As was the case for the precipitation biases 
(Sect. 3.2), considering a combination of these ensembles 
will clearly be of benefit to users interested in capturing 
an appropriate level of plausible diversity in precipitation 
changes over China.

4.2.1  Drivers of precipitation changes

In the previous section we showed that PPE members con-
sistently project increases in precipitation for China over 
the twenty-first century, but that there is a sizable amount 
of spread in the magnitude of this change. We now look 

in more detail at what is driving these changes for the CE 
China region, starting with a simple assessment of future 
prC-RWFI relationships, followed by a closer look at 
changes in the moisture budget. We use this region because, 
as noted in the Introduction, it has been particularly sensi-
tive to the impacts of climate variability. Additionally, in 
this paper we have shown that the GC3.05-PPE captures the 
observed summer precipitation well over the region.

In Sect. 3.3 we showed positive relationships between 
anomalies in summer precipitation for CE China (prC) and 
RWFI for the PPE, as well as observations. We have also 
seen increases in the mean values for both prC and RWFI, 
so a simple question to ask is: can the PPE’s future changes 
in prC be explained by the future changes in RWFI applied 
to the present-day prC-RWFI relationship? This is analo-
gous to the rainfall changes being driven by changes in the 
large-scale monsoon circulation (to the extent that this is 
described solely by RWFI), but assuming that any adjust-
ments in precipitable water or the relationship between 
RWFI and prC are small. The second of these assump-
tions (stationarity of prC-RWFI relationship throughout 
the twenty-first century) is also related to changes in the 
large-scale circulations: for example, future changes in the 
strength or position of the WNPSH could alter the relation 
between RWFI and prC.

We tested the stationarity of the prC-RWFI relation-
ship by calculating the gradients for the prC-RWFI linear 
fits in four 50-year periods across the twenty-first century 

Fig. 8  a Change in the mean for RWFI and its north and south com-
ponents, for 2070–2099 vs 1980–2009. PPE members are shown in 
green, while CMIP5 models are shown in pink and CMIP6 models 
are shown in orange. The PPE standard member is shown in red. b 
Equivalent to a, but for the change in the interannual variability of 
RWFI and its components (after the removal of linear trends for the 
two periods)

Fig. 9  The change in mean RWFI (for 2070–2099 vs 1980–2009) 
vs present-day mean RWFI values (1980–2015) for the PPE (green 
points), CMIP5 models (pink points) and CMIP6 models (orange 
points). The PPE standard member is shown in red. The present-day 
value from the ERA-Interim reanalysis is shown with a vertical black 
line
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(1989–2039, 2009–2059, 2029–2079 and 2049–2099) and 
comparing to gradients for 1969–2019. The results are 
shown in Fig. 11. This shows the prC-RWFI relationships are 
not constant, with gradient values at the end of the twenty-
first century showing little correlation with 1969–2019 val-
ues. For instance, member 2242 has a prC-RWFI gradient 
of 0.21 for 1969–2019 (closely matching the observed value 

of 0.20 for 1980–2014), but has a quite different relationship 
for 2049–2099, with a slope of − 0.22. Conversely, mem-
ber 2832 has a weak gradient of 0.04 for 1969–2019, but 
stronger relationships of 0.22 and 0.26 for 2029–2079 and 
2049–2099, respectively. The variability in the prC-RWFI 
relationship suggests that this simple framework is not suf-
ficient for understanding prC changes, and a more detailed 
analysis of changes in the moisture budget is required.

To do this we analysed daily means of precipitation, 
evaporation and variables contributing to the moisture 
convergence—including its decomposition into thermody-
namic and dynamic contributions. From these, we determine 
changes in the components of the moisture budget for CE 
China, averaged over summer (JJA) for two 30-year periods: 
1980–2009 and 2070–2099. The details of these calculations 
are given in Appendix B. The results of this decomposition 
are shown in Fig. 12.

The precipitation changes (DP) shown in Fig. 12 are 
equivalent to those for CE China in Fig. 10. Changes in 
evaporation (DE) are small, with values ranging from -0.16 
to 0.39 mm/day (not shown). Consequently, the precipita-
tion changes are largely driven by changes in the moisture 
convergence  (R2 = 0.84; see Eq. 9 in Appendix B).

The residual term (DRES) from the decomposition is also 
shown in Fig. 12. Whilst values are small compared to DP 
and DconvQ, they are typically negative across the PPE, 
ranging from − 0.52 to 0.06 mm/day. The main driver of this 
residual is not clear, but there will be contributions from the 
change in the surface term (see Eq. 1 in Appendix B), from 
errors introduced through the use of daily means and from 
errors in the divergence and integration calculations. The 
size of these residuals places limits on how confidently we 
can discuss terms in the moisture budget analysis.

Results from the further decomposition of DconvQ into 
thermodynamic (DTH) and dynamic terms (DDYN; see 
Eqs. 5–12 in Appendix B) are also shown in Fig. 12. We 
find that DTH is always positive, as expected from the mois-
tening of the atmosphere in a warmer climate. DDYN also 
typically contributes positively to DconvQ: only three mem-
bers have negative dynamic changes, and their magnitudes 
are small.

In Fig. 13a and b we show correlations between DP-DE 
and these components. These show that the spread in DP-DE 
is driven mainly by the dynamic changes, which explain 60% 
of the variance across PPE members. The importance of 
changes in circulation here is consistent with results from 
CMIP5 and CMIP6 (He and Zhou 2015; Zhou et al. 2018; 
Chen et al. 2020b). In contrast, the thermodynamic changes 
show little correlation with DP-DE  (R2 = 0.01), and typical 
values for DRES (indicated by the error bars) are compara-
tively small.

The dynamic component of this decomposition (DDYN) 
is a sum of contributions from changes in the mean 

Fig. 10  a Change in JJA mean precipitation for regions in China (for 
2070–2099 vs 1980–2009) for the PPE (blue points), CMIP5 mod-
els (pink points) and CMIP6 models (orange points). The PPE stand-
ard member is shown in red. b Equivalent to a, but with the change 
expressed as a percentage change from the reference period (1980–
2009). c Change in the interannual variability of precipitation (after 
the removal of linear trends for the two periods)



3915Evaluation and projections of the East Asian summer monsoon in a perturbed parameter ensemble  

1 3

circulation, transient eddies, and a non-linear term (DMCD, 
DTE and DNL, respectively; see Eqs. 6–8 in Appendix B). 
The DMCD component, which describes moisture conver-
gence changes resulting from changes in the mean circula-
tion with the humidity held fixed (at present-day values), 
accounts for 24% of the variance in DP-DE (Fig. 13c). This 
relationship is clearly degraded compared to DDYN and 
suggests the other dynamical components (DTE, DNL and 
covariance terms) also contribute.

The contributions from all these components highlights 
the need for the in-depth moisture budget analysis over the 
simpler RWFI-based analysis we presented above. Like the 
DMCD component, the RWFI-based analysis attempted 
to capture the effect of changes in the mean circulation. 
However, they represent quite different ways to capture 

the effects of the changing circulation: the DMCD com-
ponent describes moisture convergence changes resulting 
from changes in the mean circulation with the humidity 
held fixed, whilst our RWFI-based analysis estimated the 
effects of holding the present-day relationship between 
precipitation and circulation anomalies fixed. Whilst we 
might expect some level of relationship between DMCD 
and DRWFI (indeed they are correlated with  R2 = 0.53), 
the latter clearly misses several aspects of the drivers of 
the precipitation change i.e., the remaining components 
of DDYN, as well as the contributions from DTH and DE. 
Figure 13d highlights this, which shows that DRWFI only 
explains a similar amount of the variance in DP-DE as 
DMCD.

Fig. 11  Relationships between JJA mean precipitation in CE China 
(prC) and RWFI, compared for different time periods. Gradients of 
prC vs RWFI are shown for 4 50-year time periods: a 1989–2039, 
b 2009–2059, c 2029–2079 and d 2049–2099, and each are plotted 
against the gradient for 1969–2019. Each point represents a single 

PPE member. The gradients were evaluated using detrended data, 
where 35-year running means were first subtracted from the prC and 
RWFI time series data. Detrending was applied separately for each 
PPE member
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Fig. 12  Changes in moisture 
budget components for CE 
China, based on JJA means 
for 2070–2099 vs 1980–2009. 
Values are shown for changes 
in precipitation (DP); pre-
cipitation minus evaporation 
(DP-DE); moisture convergence 
(DconvQ); the thermody-
namic (DTH) and ‘dynamic’ 
contributions (DDYN); and a 
residual term (DRES) for the 
discrepancy between DP-DE 
and DTH + DDYN. The details 
of the calculation of these com-
ponents are given in Appendix 
B. Each grey point represents a 
single PPE member. Examples 
from the discussion on sub-
selection of the PPE (Sect. 6) 
are highlighted in colour

Fig. 13  Changes in precipitation 
minus evaporation (DP-DE) 
for CE China plotted against 
changes in: a the thermo-
dynamic; b the ‘dynamic’; 
and c the mean-circulation 
dynamics components of the 
moisture budget for CE China. 
d DP-DE for CE China vs the 
RWFI. Changes are based on 
JJA means for 2070–2099 vs 
1980–2009. The details of 
these calculations are given in 
Sect. 2.4.1 and Appendix B. 
The black point and error bar 
shows the mean and standard 
deviation of the residuals from 
the moisture budget analysis 
(DRES) to give an indication 
of the limit of confidence in 
the moisture budget component 
values. The remaining data are 
as described for Fig. 12. An 
estimate of the fraction of the 
variance in DP-DE explained 
is given in each case using the 
square of the Pearson correla-
tion coefficient  (R2)
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5  Sensitivity of the EASM to parameter 
perturbations

One advantage of the design of PPEs is that the difference 
between the configuration of each member is clear—it is 
the difference in the parameter values each member takes. 
This allows us to potentially trace different outcomes to 
specific parameters and processes within the model. Here, 
we present linear analyses of the relationships between 
parameters and the EASM in the GC3.05-PPE, using 
simple causal networks (Pearl 2009). The basic setup for 
these networks is shown in Fig. 14 (Textor et al. 2017; see 
Appendix C for details). We use these causal network to 
analyse the roles of ‘direct’ atmospheric effects, and ‘indi-
rect’ effects which are mediated through the parameters’ 

influence on sea-surface temperature patterns (see Exam-
ple 3, Kretschmer et al. 2021).

We could build and analyse causal networks for any of 
the EASM metrics we have studied in this paper. However, 
the precipitation metrics cover relatively small domains over 
China, and they can be influenced by many of the param-
eters/processes we perturb in the PPE. This can make the 
task of finding clear links between precipitation and model 
parameters challenging, especially given our limited sample 
size. Because of this we do not analyse parameter sensitivi-
ties for the precipitation metrics. We focus instead on the 
circulation metrics, namely present-day values and future 
changes in the reversed Wang and Fan index (RWFI and 
ΔRWFI).

One constraint on this analysis is the small number of 
members in the GC3.05-PPE (20) compared to the number 
of model parameters which are perturbed (47). This limits 

Fig. 14  Schematic of the causal network used to assess how PPE 
parameters affect metrics of the EASM in the GC3.05-PPE. Direct 
atmospheric effects are modelled for key parameters (denoted by 
arrows labelled α1 and α2) whilst controlling for the effect of changes 
in SSTs (αSST). The indirect effects of the parameters i.e., those which 

are mediated through changes in SSTs, are found by combining the 
impact of the parameters on the SSTs (arrows labelled β1 and β2) with 
that of the SSTs on the EASM (αSST). See Appendix C for details. 
The schematic was built using Dagitty

Table 2  Results from the 
sensitivity analyses for the 
GA7.05-PPE and the linear 
regression analyses for the 
GC3.05-PPE, for each EASM 
metric

Sensitivity values for the GA7.05-PPE are given as the percentage of variance explained in the EASM met-
ric by each parameter. For the GC3.05-PPE causal network regression analyses, the standardised regression 
coefficients are given, representing the effect of a change of 1 standard deviation of each predictor (the 
parameters or ITC metric) on the EASM metric

EASM metric Parameter/SST metric GA7.05-PPE sensitivity 
(% variance explained)

Linear regression coefficients

Direct effect Indirect effect Total effect

RWFI ent_fac_dp 0.58 − 0.65 − 0.13 − 0.76
RWFI amdet_fac 0.29 − 0.08 0.02 0.10
RWFI ITC 0.32 – 0.32
ΔRWFI ent_fac_dp 0.61 0.51 0.07 0.56
ΔRWFI amdet_fac 0.25 0.09 0.00 − 0.04
ΔRWFI ΔITC 0.34 – 0.34
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our ability to detect links between the parameters and out-
comes to the clearest cases, where only a few parameters 
have an influence. In light of this limitation, we use support-
ing evidence to help choose the parameters and SST metrics 
considered in each network, and to mitigate the rejection of 
potentially important effects (Amrhein et al. 2019).

To support the direct atmospheric effects, and to select 
the model parameters which potentially impact the EASM, 
we utilise a related PPE which uses the atmospheric compo-
nent of HadGEM3-GC3.05 as its base model. We will refer 
to this as the GA7.05-PPE (Sexton et al. 2021). The GA7.05-
PPE comprises around 500 members, which allows us to 
build emulators (statistical models that predict the effect of 
parameters on quantities of interest) and use these to per-
form more detailed sensitivity analyses of those quantities 
(Saltelli et al. 1999; Rostron et al. 2020). This is done for 
both the RWFI and ΔRWFI using the method of Rostron 
et al. (2020) to build each emulator. We use results from 
two 5-year fixed-SST experiments (Sexton et al. 2021): an 
amip-like experiment (2005–2009) to analyse the present-
day RWFI values; and an amipFuture-like experiment, which 
uses a prescribed pattern of future SST warming (with a 
mean change of + 4 K) for future changes in the RWFI. We 
use sensitivity analyses from the GA7.05-PPE to determine 
which model parameters individually explain more than 20% 
of the variance for each these metrics (Table 2). The selected 
model parameters are then used as the parameters for the 
corresponding causal network for the GC3.05-PPE.

The indirect effect in the causal networks is used to rep-
resent the impact of model parameters on SSTs, which then 
drive changes in the EASM. To represent the leading order 
effect of SSTs on the EASM we use a metric for the inter-
hemispheric thermal contrast (ITC). Changes in the Asian 
monsoon has been found to vary in-phase with this SST 
pattern across a range of timescales, and future changes in 
the monsoon and the ITC have also been linked (Feudale and 
Kucharski 2013; Li et al. 2017; Chen et al. 2022). Here, we 
use the definition of the ITC from Chen et al. (2022), which 
is the difference in the area-averaged surface temperature 
between 20° N–50° N and 20° S–50° S.

The results from the causal networks are shown in 
Table 2. All the data is standardised before the coefficients 
in the network are determined using linear regression (see 
Appendix C). This means the coefficients represent the effect 
of a change of 1 standard deviation of each predictor (the 
parameters or ITC metric) on the outcome (EASM metric), 
and they can be compared directly.

For present-day values of the RWFI, parameters control-
ling the amplitude of deep-level entrainment (ent_fac_dp) 
and mixing detrainment (amdet_fac) are selected from the 
GA7.05-PPE sensitivity analysis. The coefficients from the 
GC3.05-PPE regression analysis suggests ent_fac_dp has 
a clear influence on the circulation and this is primarily a 

direct effect (− 0.65 vs − 0.13). In contrast to the GA7.05-
PPE, there is little detectable impact of amdet_fac for the 
GC3.05-PPE, for both the direct and indirect effects. How-
ever, there is a sizeable influence from SSTs (0.32), which 
may result from the effects of other parameters, or from 
internal variability.

Increasing the value of ent_fac_dp leads to decreases in 
RWFI values i.e., it drives anomalous cyclonic circulation 
responses over the west Pacific region. This is true for both 
the GC3.05-PPE, as suggested by the negative regression 
coefficients in Table 2, and the GA7.05-PPE (not shown). 
These results are consistent with a previous study using an 
earlier configuration of the atmospheric component of the 
model (HadGEM3-GA3.0), where the Asian monsoon sys-
tem’s sensitivity to entrainment (and detrainment) param-
eters was tested (Bush et al. 2015). Figure 3 in that study 
shows a clear anomalous cyclonic circulation (which would 
be characterised by decreases in the RWFI) in response to 
increases in these parameters.

Studies based on more recent configurations of HadGEM3 
have identified the Maritime Continent as a key region in the 
development of EASM circulation biases on sub-seasonal to 
seasonal timescales, which persist into climatological errors 
consistent with our results in Sect. 3.1 (Rodríguez and Mil-
ton 2019; Martin et al. 2021). One possible explanation for 
the sensitivity we have found to ent_fac_dp could be that an 
anomalous cyclonic circulation over the west Pacific (and an 
associated northward shift of the Hadley cell) results from a 
suppression of convective activity over the Maritime Con-
tinent, driven by increases in this parameter. Further work 
would be required to test this hypothesis in more detail e.g., 
by evaluating how ent_fac_dp values and circulation biases 
relate to metrics of ascending motion over the Maritime 
Continent.

For the future changes in RWFI (ΔRWFI) we again find 
that ent_fac_dp and amdet_fac are the key parameters in the 
GA7.05-PPE. Similarly to the sensitivities for present-day 
RWFI, ent_fac_dp has a clear direct impact on ΔRWFI in 
the GC3.05-PPE (with a regression coefficient of 0.51), but 
there is little evidence of an effect for amdet_fac. The SSTs 
again have an appreciable impact, with a regression coef-
ficient of 0.34 associated with future changes in the ITC.

The positive coefficients for ent_fac_dp imply that mem-
bers with higher values for this parameter have increasingly 
positive ΔRWFI. (A qualitatively similar relationship was 
also found for the GA7.05-PPE.) Since ΔRWFI is consist-
ently positive in the GC3.05-PPE (Fig. 8a) this implies 
larger ent_fac_dp values drive future circulation changes 
over the west Pacific which are more anti-cyclonic. As dis-
cussed for the present-day RWFI sensitivity, one potentially 
key region here is the Maritime Continent. Determining how 
ent_fac_dp impacts future changes in convective activity 
over this region could be key to understanding the physical 
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mechanism linking this parameter to future changes in the 
EASM circulation in the HadGEM3-GC3.05 model. How-
ever, we will leave any further analysis of this to future work.

We have shown that changes across PPE members for 
both the RWFI and ΔRWFI are largely driven by the ent_
fac_dp parameter. This shared dependence, with a negative 
sensitivity for RWFI and a positive sensitivity for ΔRWFI, is 
consistent with the negative correlation between these met-
rics shown in Fig. 9 (and described in Sect. 4.1).

We note that the sensitivities implied by the regression 
coefficients for the GC3.05-PPE are not always consistent 
with those from the GA7.05-PPE analysis. In every case 
the squared coefficients are smaller than the GA7.05-PPE 
explained variance. For amdet_fac in particular we found 
little evidence in the GC3.05-PPE for the sensitivities found 
in the GA7.05-PPE, for both the RWFI and ΔRWFI. These 
discrepancies can arise for several reasons. One may be the 
small number of members in the GC3.05-PPE. This can lead 
to large uncertainties on the regression coefficients when 
the GC3.05-PPE data is considered in isolation. However, 
this does not account for any supporting evidence e.g., the 
fact that these parameters were selected in the GA7.05-PPE 
sensitivity analysis, or qualitative agreement for the impact 
of the parameters between the GA7.05 and GC3.05-PPEs, 

as was found for ent_fac_dp. Another source for the dis-
crepancy may be from coupling effects: the atmosphere 
may respond differently in the presence of coupled SSTs 
compared to prescribed SSTs. There may also be non-linear 
effects, which would only be captured by the GA7.05-PPE 
sensitivity analysis.

6  Discussion on robustness 
and sub‑selection of PPE members

The 20-member HadGEM3-GC3.05 PPE was developed 
to provide users with raw global model output, suitable for 
use in regional impacts and adaptation studies. However, 
a dataset of this size may not be practical or desirable to 
use, for example due to human or computational resource 
limitations. In such cases a subset of members could be 
chosen, which were deemed to be plausible but still repre-
sentative of the future changes explored by the full ensemble 
(McSweeney et al. 2015). The details of this sub-selection 
will depend on the application, but here we discuss some 
considerations for sub-selecting the PPE in the context of 
the EASM.

Fig. 15  Changes in the thermo-
dynamic (DTH) vs the dynamic 
(DDYN) components of the 
moisture budget for CE China 
(using JJA means for the peri-
ods 2070–2099 vs 1980–2009; 
see Appendix B for details). 
The data shown are as described 
for Fig. 13. Grey diagonals are 
lines of constant DTH + DDYN. 
Given small values for DRES 
and DE (see Fig. 12), these 
provides an estimate for changes 
in the moisture convergence 
(DconvQ) and precipitation 
(DP). The red line indicates 
where DTH and DDYN con-
tribute equally to the moisture 
budget changes
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A key consideration will be the robustness of the infor-
mation provided by the models i.e., are they plausible? This 
could be based on the global and/or regional performance 
of the models. For example, Yamazaki et al. (2021) describe 
how members of the GC3.05-PPE were selected for inclu-
sion in the UKCP18 project, based on: the performance of 
regional SSTs over the globe; the Atlantic Meridional Over-
turning Circulation (a key driver of climate and variability 
for the North Atlantic and Europe); twentieth century NH 
temperature trends; and present-day climatologies of tem-
perature and precipitation over Europe. Using these, the PPE 
was reduced from 25 to 20 members (which we have used 
in this paper) in a first round of filtering, and to 15 members 
after a second round of filtering.

In this paper we have assessed leading-order metrics for 
the EASM, to give a broad indication of the performance of 
the PPE for this key mode of climate variability for China. For 
precipitation we have shown the PPE has a reasonable perfor-
mance (compared to CMIP5 and CMIP6 models) in the mean 
states and variability. The performance does depend on the 
region (see Fig. 5), but the PPE has notably good performance 
for the key CE China region, covering the Yangtze River basin.

For low-level circulation we find a structural bias in the 
PPE, where all members are found to have a cyclonic bias 
in JJA over the East Asia/West Pacific region. In compari-
son, the CMIP models do encompass the observed mean 
state for the RWFI (Fig. 3a). However, since the CMIP5 and 
CMIP6 ensembles are comprised of single variants of differ-
ent model structures, we cannot tell whether these models 
are themselves structurally biased. We note that several PPE 
models have a comparable level of performance to CMIP 
models for the RWFI, and that PPE models compare well in 
terms of RWFI variability (Fig. 3b). Of course, the tolerance 
level on the mean state could be set such that no PPE mem-
bers are accepted, but this will depend on the user and could 
have implications for the level of diversity if set too strictly.

Once a plausible subset of models has been identified, 
users may want to sub-select further in a way that still cap-
tures the diversity in the projected changes being studied. As 
an example of this, we consider a simple sub-selection of the 
PPE for projections of CE China precipitation, based on the 
moisture budget analysis shown in Sect. 4.2.1. We have shown 
a range of changes for CE China precipitation across the PPE, 
and that changes in the dynamics (DDYN) are a key driver 
of this. In this context, a representative subset would target 
high and low values of changes in CE China precipitation 
and DDYN. We have highlighted two PPE members which 
do this in Figs. 12, 13, 14, 15, 16. Member 2242 (marked by 
a filled red circle) has a low precipitation change relative to 
other PPE members, driven in part by a slightly negative con-
tribution from dynamical changes. In contrast, member 2884 
(filled blue circle) has a relatively high change in CE China 
precipitation, with a large positive contribution from DDYN.

These two models sample high and low values in other 
metrics too, for example for changes in the mean circulation 
metrics (shown in Fig. 13c and d), and in their thermody-
namic changes (Fig. 13a). The thermodynamic contributions 
of these two models partially offsets some of the differences 
from the dynamics i.e., DTH is large for in our low precipita-
tion change scenario (member 2242), whilst DTH is small 
for our high precipitation change scenario (member 2884). 
This diversity is shown clearly in Figs. 15 and 16. In Fig. 15 
our two example members lie in opposing corners of the 
DTH and DDYN values sampled by the full PPE and repre-
sent high and low precipitation changes due to the key role 
of the DDYN component. In Fig. 16 we show DTH fields 
overlaid with the mean 850 hPa wind field for 1980–2009 
(top row) and DDYN fields overlaid with changes in the 
850 hPa winds (2070–2099 vs 1980–2009; bottom row) for 
the two members. The 850 hpa winds are included to give 
an indication of the contribution of the mean circulation to 
both DTH and DDYN (see Eqs. 5 and 6 in Appendix B). 
The differences in the DDYN field, and the associated mean 
circulation changes, are striking and clearly affect the CE 
China region (covered by the red box), with large circulation 
changes bringing additional moisture into the region from 
the south for member 2884, but much weaker circulation 
changes for member 2242. Meanwhile, differences in DTH 
fields, and in the present-day circulation, are much more 
modest between the members – reflecting the smaller spread 
in DTH compared to DDYN.

Here we have covered one simple example of sub-selec-
tion, based on capturing diversity in the physical processes 
underlying twenty-first century precipitation changes. 
But there are many other ways a subset could be chosen. 
Even within the same framework of our moisture budget 
decomposition, other choices could be made. For example, 
we have highlighted two alternative (or additional) mem-
bers in Figs. 12, 13, 14, 15 (see the cyan and pink circles), 
which also sample high and low DDYN values, although 
these members have very similar thermodynamic changes, 
in contrast to our earlier example. These members also 
have the highest/lowest CE China precipitation changes 
and could provide useful scenarios for studies of flooding 
and/or drought in the region. Alternative ways to sub-select 
might focus on other variables (e.g. temperatures or heat 
stress metrics for heat waves), or consider a wider set of 
metrics in multi-sector studies or more generic assessments 
(McSweeney et al. 2015; Palmer et al. 2021).

7  Summary

In this paper we have evaluated the simulation of the East 
Asian Summer Monsoon in a perturbed parameter ensemble 
of HadGEM3-GC3.05 coupled models by analysing their 



3921Evaluation and projections of the East Asian summer monsoon in a perturbed parameter ensemble  

1 3

performance with respect to the observed climatology, and 
their projected changes. We focussed on leading-order met-
rics of the low-level (850 hPa) circulation and precipitation. 
In summary:

• For low-level circulation we find a structural bias in the 
PPE, where all members are found to have a cyclonic bias 
over the East Asia/West Pacific region (for JJA means). 
This bias is known to have affected previous Hadley Cen-
tre models, and the structural nature of the bias revealed 
by the PPE suggests it cannot be easily corrected by 
model parameter choices. Using the reversed Wang and 
Fan index (RWFI) we find negative biases are typical in 
the PPE and in CMIP5 and CMIP6 models, but there are 
examples of much smaller (and even positive) biases in 
CMIP5 and CMIP6.

• For precipitation we find the performance of PPE mem-
bers varies spatially and temporally, with good perfor-
mance for JJA climatologies in CE and NE China, but 
wet biases over southern China. The performance of 
CMIP models also varies by region, with differences 

between the performance of the PPE and CMIP models 
highlighting the benefits of considering both ensembles. 
Interannual variability is typically overestimated by 
both ensembles, but especially by the PPE. For seasonal 
cycles, we have indicated a split in the spatial and tempo-
ral modes of variability in the PPE, where members with 
smaller biases in southern China tend to show a seasonal 
cycle that peaks too early over CE China.

• The observed relationship between the RWFI and precip-
itation for CE China is captured in most PPE members. 
The PPE does not perform as well for the relationship 
between RWFI and Niño-3.4, with most members having 
a circulation response that is too weak.

• Changes for the twenty-first century for low-level cir-
culation over the region are consistently anti-cyclonic 
in the PPE, suggesting a structural future change in the 
HadGEM3-GC3.05 model. There are examples of both 
cyclonic and anti-cyclonic circulation changes in CMIP5 
and CMIP6, but without PPEs based on these models the 
structural nature of these changes is not known.

Fig. 16  a and b Maps of the changes in the thermodynamic (DTH) 
component of the moisture budget, overlaid with climatological 
850  hPa winds, for members 2242 and 2884, respectively. c and d 
Changes in the dynamic (DDYN) component of the moisture budget 

overlaid with changes in the 850 hPa winds for the same members. 
JJA means are shown in each case, with climatologies based on the 
period 1980–2009 and changes based on 2070–2099 vs 1980–2009. 
(See Appendix B for details of the moisture budget calculations.)
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• Increases in mean precipitation are projected for the 
twenty-first century across China for all PPE members, 
and most CMIP members, with increases in variabil-
ity also projected for all but a handful of members. For 
the CE China region, we find that both thermodynamic 
(atmospheric moistening) and dynamic (circulation) 
changes contribute to the increased precipitation, with 
the spread amongst PPE members largely caused by dif-
ferences in the dynamic response.

• Using a parameter sensitivity analysis we found a param-
eter controlling the amplitude of deep-level entrainment 
is a key driver of the PPE spread for EASM circulation 
metrics.

We have also discussed how these projections may be used 
in practice, where considerations about the plausibility and 
usability of the models will be important, giving a simple 
example of sub-selecting PPE members aimed at capturing 
diversity in their projected precipitation changes. Users should 
also be aware of the limitations of these models in relation 
to structural biases which, as we have shown, are readily be 
exposed by PPEs. Of course, these limitations apply to each of 
the CMIP5 and CMIP6 members but as we have highlighted 
through the text, one needs a PPE about each CMIP model to 
properly understand their individual structural biases. Indeed, 
as shown by Rostron et al. (2020), the errors of the tuned vari-
ant of HadGEM3-GA7.05 are not indicative of the structural 
model bias for all variables. Therefore, we encourage wider 
use of PPEs.

Appendix A

See Table 3.

Appendix B

In Sect. 4.2.1 we analyse twenty-first century changes in sum-
mer precipitation for the Central-East China region. Part of the 
analysis is based on changes in the components of the moisture 
budget for this region, which we calculate following a similar 
method to Seager et al. (2010). Following their Eq. 1, clima-
tological averages of the difference between precipitation (P) 
and evapotranspiration (E) are balanced by the convergence of 
the vertically integrated moisture fluxes:

here, p denotes pressure, q is the specific humidity and v 
is the horizontal wind vector. Overbars denote monthly 
climatologies, while dashes denote the difference between 
daily mean values and the climatology (e.g., q = q + q� ). 
Surface values are denoted with subscript ‘s’. The term 
qsvs ⋅ ∇ps in Eq. (1) accounts for the contribution to mois-
ture fluxes from the flow at the surface (Seager et al. 2010). 
We incorporate this into a residual term (RES), which we 
use to account for imbalances between P-E and the verti-
cally integrated moisture fluxes. Additional contributions 
to this residual will result from the fact the monthly means 
for the cross terms are derived from daily mean data (rather 
than timestep data), and from errors in the divergence and 
integration calculations (from the use of 17 discrete pres-
sure levels), for example. From Eq. (1)–(2) we have used 
qv = qv + qv� + q�v + q�v�  , where the cross terms in this 
equation are 0 (since q� = v� = 0 ). At the timescales we 
consider in our analysis (30-year climatologies), changes 
in the total water content of the column are assumed to be 
negligible (Rodríguez et al. 2017).

We calculate changes in the moisture budget using dif-
ferences in 30-year means, for the periods 2070–2099 vs 
1980–2009. Denoting these differences as ‘D’, from Eq. (2):

We denote the change in the convergence of integrated 
moisture fluxes (i.e., the first term on the right-hand side of 
Eq. 4) as DconvQ. Further, using the notation from Seager 
et al. (2010), we define the contributions to DconvQ from 
changes in thermodynamics (TH), mean circulation dynamics 
(MCD), non-linear effects (NL) and transient eddies (TE) as:

(1)P − E = −
1

g
∫ ps
0

∇ ⋅ qvdp − qsvs ⋅ ∇ps + RES�

(2)P̄ − Ē = −
1

g
∫ ps
0

∇ ⋅

[

q̄v̄ + q�v�
]

dp + RES

(3)
DP − DE = −

1

g
∫ ps
0

∇ ⋅

[

D
(

qv
)

+ D

(

q�v′
)]

dp + DRES

(4)
DP − DE = −

1

g
∫ ps
0

∇ ⋅

[

D
(

qv
)

+ D

(

q�v�
)]

dp + DRES

Table 3  Sub-selected CMIP5 and CMIP6 models used in this study

CMIP5 model CMIP6 model

1 ACCESS1-3 ACCESS-CM2
2 BCC-CSM1.1 BCC-CSM2-MR
3 CCSM4
4 CESM1-BGC CESM2
5 CMCC-CM CMCC-CM2-SR5
6 CNRM-CM5 CNRM-CM6-1
7 CanESM2 CanESM5
8 GFDL-ESM2G GFDL-ESM4
9 HadGEM2-ES HadGEM3-GC31-MM
10 IPSL-CM5A-MR
11 MPI-ESM-MR MPI-ESM1-2-HR
12 MRI-CGCM3 MRI-ESM2-0
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Conceptually, DTH is the change in moisture flux caused 
by changes in specific humidity carried on the present-day 
wind field, whilst DMCD is the contribution from changes 
in the wind field with specific humidity held to present-day 
values. DNL describes the effect of co-varying changes in 
the long-term averages of the humidity and the winds, whilst 
DTE is the contribution from changes in short-timescale co-
variations in q and v.

Using these, we re-write Eq. (4) as:

Further, we define the sum of the contributions from the 
mean circulation dynamics, the transient eddies and the non-
linear effects to be changes in the dynamics (DDYN):

So that:

Our moisture budget calculations produce monthly means 
for each grid box. For the analysis presented in Sect. 4.2.1 
we average these temporally and spatially to produce values 
for summer (JJA) over the Central-East China region (as 
defined in Sect. 2.3).

Appendix C

We use simple causal networks to describe the interac-
tions between model parameters, sea-surface temperatures 
and EASM metrics in the GC3.05 PPE. The schematic in 
Fig. 14 shows an example of the network for 2 model param-
eters, although we could use more or fewer parameters in 
our analysis. The networks closely follow Example 3 from 
Kretschmer et al. (2021): a small number of parameters are 
modelled to have a ‘direct’ impact on the EASM (operating 
through the atmosphere), whilst also having an ‘indirect’ 
effect, which is mediated through differences in sea-surface 
temperatures (as measured by the ITC or ΔITC).

(5)DTH = −
1

g
∫ ps
0

∇ ⋅

(

vDq
)

dp

(6)DMCD = −
1

g
∫ ps
0

∇ ⋅

(

qDv
)

dp

(7)DNL = −
1

g
∫ ps
0

∇ ⋅

(

DqDv
)

dp

(8)DTE = −
1

g
∫ ps
0

∇ ⋅ D

(

q�v�
)

dp

(9)DP − DE = DconvQ + DRES

(10)DP − DE = DTH + DMCD + DNL + DTE + DRES

(11)DDYN = DMCD + DNL + DTE

(12)DP − DE = DTH + DDYN + DRES

The arrows in the causal network (Fig. 14) are important 
as they determine which terms need to be included in the 
multi-linear regression to obtain unbiased estimates of the 
causal effects, through the rules of causal inference theory 
(Pearl 2009). All data used in these regressions are stand-
ardised by first removing the mean, then normalising the 
residuals by the standard deviation. This allows the strength 
of the regression coefficients to be directly compared.

To measure the direct impact of the model parameters 
on the EASM i.e., that which does not involve changes in 
the SSTs, we need to block the indirect pathway by control-
ling for those SST changes. For the example in Fig. 14, the 
regression model is:

The terms α1 and α2 are the direct effects of the parame-
ters, whilst the αSST term measures the influence of the SSTs 
on the EASM that is independent of the parameters. For the 
RWFI we use the ITC (as defined in Chen et al. 2022) as the 
SST metric, whilst for ΔRWFI we use ΔITC.

To determine the indirect effect of the parameters on the 
EASM i.e., that which is mediated through changes in the 
SSTs, we first find the effect of the parameters on the SSTs 
separately using:

Multiplying these coefficients by αSST (the strength of the 
SSTs effect on the EASM) gives the indirect effect for each 
parameter. We can also determine the total effect of each 
parameter on the EASM by regressing the EASM onto the 
parameters separately:

The total effects will approximately equal the sum of the 
direct and indirect effects, i.e.:

This ‘path-tracing’ rule (Pearl 2013; Kretschmer et al. 
2021) arises because our analysis is based on linear regres-
sion, and because any correlations between parameter values 
is expected to be small.
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