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Abstract
The Coupled Model Intercomparison Project (phase 6) (CMIP6) global circulation models (GCMs) predict equilibrium cli-
mate sensitivity (ECS) values ranging between 1.8 and 5.7 ◦ C. To narrow this range, we group 38 GCMs into low, medium 
and high ECS subgroups and test their accuracy and precision in hindcasting the mean global surface warming observed 
from 1980–1990 to 2011–2021 in the ERA5-T2m, HadCRUT5, GISTEMP v4, and NOAAGlobTemp v5 global surface 
temperature records. We also compare the GCM hindcasts to the satellite-based UAH-MSU v6 lower troposphere global 
temperature record. We use 143 GCM ensemble averaged simulations under four slightly different forcing conditions, 688 
GCM member simulations, and Monte Carlo modeling of the internal variability of the GCMs under three different model 
accuracy requirements. We found that the medium and high-ECS GCMs run too hot up to over 95% and 97% of cases, 
respectively. The low ECS GCM group agrees best with the warming values obtained from the surface temperature records, 
ranging between 0.52 and 0.58 ◦ C. However, when comparing the observed and GCM hindcasted warming on land and ocean 
regions, the surface-based temperature records appear to exhibit a significant warming bias. Furthermore, if the satellite-
based UAH-MSU-lt record is accurate, actual surface warming from 1980 to 2021 may have been around 0.40 ◦ C (or less), 
that is up to about 30% less than what is reported by the surface-based temperature records. The latter situation implies that 
even the low-ECS models would have produced excessive warming from 1980 to 2021. These results suggest that the actual 
ECS may be relatively low, i.e. lower than 3 ◦ C or even less than 2 ◦ C if the 1980–2021 global surface temperature records 
contain spurious warming, as some alternative studies have already suggested. Therefore, the projected global climate warm-
ing over the next few decades could be moderate and probably not particularly alarming.

Keywords CMIP6 climate models · Global temperature records · Equilibrium climate sensitivity · Global warming · Model 
validation and testing

1 Introduction

The Coupled Model Intercomparison Project (phase 6) 
(CMIP6) collects several simulations of global climate 
models (GCM) currently used to interpret past and future 
climate changes (Eyring et al. 2016; IPCC 2021). However, 
these GCMs calculate equilibrium climate sensitivity (ECS) 
values ranging from 1.8 to 5.7 ◦ C IPCC (2021). The ECS 
is the most important climatic parameter as it measures 

the long-term increase in air temperature near the surface 
that should result from an increase in radiative forcing of 
approximately 3.8 W/m2 , which corresponds to a doubling 
of the atmospheric  CO2 concentration from 280 ppm (which 
is defined as the preindustrial level) to 560 ppm. The uncer-
tainty of the ECS is highly problematic as it indicates that 
the climate system is still poorly understood and modeled. 
Consequently, also the extent of future climate change is 
rather uncertain as the impact of anthropogenic  CO2 emis-
sions on the climate cannot yet be adequately quantified (cf. 
Knutti et al. 2017).

The uncertainty of the ECS stems from the fact that 
various climate feedback mechanisms—in particular 
water vapor and cloud cover—are still too little known 
and modeled, as already found 60 years ago by Möller 
(1963). In the absence of climate feedback mechanisms, 
the Stefan–Boltzmann law for blackbodies predicts that 
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a doubling of the atmospheric  CO2 concentration could 
cause an increase in global surface temperature of about 
1 ◦ C. Therefore, only strong positive climate feedbacks 
could significantly increase the ECS above such a value, 
but their existence is still debated.

Constraining the ECS value is an urgent task of climatol-
ogy. In fact, at least two-thirds of the CMIP6 GCMs could 
be severely defective. For example, by grouping models into 
low ( 1.5 < ECS ≤ 3.0 ◦C), medium ( 3.0 < ECS ≤ 4.5 ◦ C) 
and high ( 4.5 < ECS ≤ 6.0 ◦ C) sensitivity values, if, say, the 
actual ECS is less than 3.0 ◦ C, the GCMs with ECS > 3 
◦ C should be ignored. Therefore, it is very important that 
detailed evaluations of the models are carried out in order 
to determine if, where and how the models should improve 
both on a global scale—as proposed, for example, in this 
work—and on regional scales, as done in numerous other 
studies (e.g.: and many others Heo et al. 2014; Seo et al. 
2018).

Constraining ECS also has important policy implications 
because the expected warming for the 21st century depends 
on the value of the model’s ECS (Grose et al. 2017; Scafetta 
2022): the higher the ECS, the greater the expected warm-
ing due to GHG emissions. For example, Huntingford et al. 
(2020) found that the wide ECS range of CMIP6 GCMs 
implies that at thermal equilibrium the global surface tem-
perature could warm up between 1.0 and 3.3 ◦ C above the 
pre-industrial period (1850–1900) even if anthropocentric 
emissions cease today.

Scientists already wondered whether a strong response to 
greenhouse gases could be realistic (Voosen 2019). Indeed, 
high ECS CMIP6 models have already been found to per-
form poorly (e.g.: Ribes et al. 2021; Scafetta 2022; Tokarska 
et al. 2020; Zhu et al. 2020) while the medium and even the 
low ECS models are being carefully evaluated.

For example, Nijsse et al. (2020) derived that the most 
likely ECS interval should be 1.9–3.4 ◦ C while alterna-
tive studies, often empirical based, have suggested that 
the actual ECS could be even lower, probably between 1 
and 2.5 ◦ C (e.g.: Lewis and Curry 2018; Lindzen and Choi 
2011; Scafetta 2013; Stefani 2021; Wijngaarden and Hap-
per 2020). Most GCMs seem to overestimate the observed 
surface warming since 1980 (Scafetta 2021b, 2022) and also 
that observed in the global (McKitrick and Christy 2020) 
and tropical troposphere (Mitchell et al. 2020), in particular 
at its top (200–300 hPa) where the CMIP6 GCMs predict an 
unobserved hotspot (McKitrick and Christy 2018). A similar 
situation also occurred with the previous CMIP3 and CMIP5 
GCMs (Fu et al. 2011; Scafetta 2012a, 2013). Actually, as 
Knutti et al. (2017) acknowledged, there is a dichotomy 
between the observed and modeled ECS as GCMs tend to 
favor sensitivity values at the top of the probable range, 
while several studies based on instrumentally recorded 

warming and some from paleoclimate favor values in the 
lower part of the range. Therefore, not only the models with 
high ECS, but also those with medium ECS should be and 
are being seriously questioned.

Scafetta (2021a) and Scafetta (2022) showed that the per-
formance of the GCMs improves as their ECS decreases 
and, in any case, the low ECS GCMs appear to be the best 
performing models. However, even low-ECS GCMs need 
further evaluation because biases in some regions (e.g. on 
land) could be offset by opposite biases in other regions (e.g. 
on ocean). Furthermore, serious uncertainties remain in the 
solar forcing and in the temperature records themselves 
(Connolly et al. 2021; D’Aleo 2016; Watts 2022). These 
uncertainties question the warming trend reported by the 
available climate records and, directly or indirectly, the mod-
els themselves. Finally, climate systems seem to be regulated 
by various natural oscillations from the decadal to the mil-
lennial scales, which the GCMs are unable to reproduce, 
the presence of which would also imply low ECS values, 
probably between 1 and 2 ◦ C (Scafetta 2012a, 2013, 2021c).

Focusing on the performance of the CMIP6  GCMs, 
Scafetta (2022) proposed that the probable ECS range could 
be constrained by statistical investigation to find which GCM 
group—low, medium or high ECS—best reproduces the 
observed global surface warming between the 1980–1990 
and 2011–2021 as reported by ERA5-T2m (Hersbach et al. 
2020; Simmons et al. 2021). The period 1980–2021 was 
chosen because it is optimally covered by all available cli-
matic temperature records. Scafetta (2022) analyzed the 
“average” simulations provided by the Koninklijk Neder-
lands Meteorologisch Instituut (KNMI) Climate Explorer 
(Oldenborgh 2020) of 38 CMIP6 GCMs with three shared 
socioeconomic pathways (SSP) emission scenarios, which 
also counted for a partial evaluation of the internal vari-
ability of the models. The low ECS GCM group was found 
to be perfectly compatible, at least on a global scale, with 
the 2011–2021 warming relating to the 1980–1990 period. 
Conversely, both GCM groups with medium and high ECS 
showed too high warming trends.

A possible objection to the analysis proposed in Scafetta 
(2022) is that temperature records should be compared with 
actual members of the CMIP6 GCM ensemble instead of 
their ensemble averages because the unforced internal vari-
ability of the models produces different results due to uncer-
tainties in the initial conditions as well as in the internal 
parameters of the models. This problem will be addressed 
in this paper considering that: 

1. physical models, including the GCMs, should be accu-
rate and precise (see Appendix 2);

2. there are still open issues regarding the reliability of the 
available global surface temperature records.
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In fact, theoretical models must reproduce observations 
within a reasonably small error. In our case it should be 
evident that the poor precision of a GCM cannot be used as 
a pretext to justify its poor accuracy. For example, a low-
precision model could produce a very wide range of different 
hindcasts due to its internal variability. In this situation, even 
if some of its hindcasts fit the observations, the result should 
still be considered unsatisfactory if the mean of the GCM set 
diverges too much from the actual data. Similarly, if an ECS 
GCM group produces a set of hindcasts that too sparsely 
encompass the observations, the ECS values that character-
ize that group should be considered unrealistic even though 
some of the models in the same group might perform bet-
ter than others. In general, the accuracy, precision and ECS 
category of the GCMs must be evaluated simultaneously.

Furthermore, surface-based temperature records appear 
to exhibit non-climatic warming biases due to poorly cor-
rected urban heats or other local surface phenomena (e.g.: 
Connolly et al. 2021; D’Aleo 2016; Scafetta 2021a; Watts 
2022). To account for this problem, the satellite temperature 
measurements of the lower troposphere using microwave 
resonance units (MSU) proposed by the U. of Alabama 
Huntsville (UAH-MSU-lt v6) (Spencer et al. 2017) will also 
be analyzed.

UAH-MSU-lt is the temperature record that features the 
lowest global warming trend (about 0.13 °C/decade) from 
1980 to 2021 among all available global temperature 
records. According to GCM simulations, the troposphere 
is expected to warm up faster than the surface (up to a fac-
tor of 3) because greenhouse gases are expected to warm 
the atmosphere first (Mitchell et al. 2020). Consequently, 
the global warming trend of the troposphere estimated from 
satellite measurements should be further reduced to simulate 
the global warming trend at the surface. Here, these correc-
tions are ignored and UAH-MSU-lt is assumed to represent 
the possible lowest limit for the global warming trend of the 
surface. Therefore, comparison with this satellite tempera-
ture record could help assess the presence of non-climatic 
warming bias in the surface temperature records, particularly 
on land where large contaminated areas appear to exist (cf. 
Scafetta and Ouyang 2019; Scafetta 2021a).

Indeed, preliminary analyzes have shown that the land 
seems to have warmed too much and too quickly compared 
to the ocean (Scafetta 2021a). Connolly et al. (2021) used 
data from rural stations only and showed that the warm-
ing of the Northern Hemisphere’s land surface should be  
significantly lower than what  reported by the  available 
surface-based temperature records based on both rural 
and urban stations. Watts (2022) examined the quality 
of the U.S. temperature stations from which official tem-
perature records are obtained and concluded that approxi-
mately 96% of them could not meet the National Oceanic 
and Atmospheric Administration (NOAA) requirements for 

“acceptable placement” because they could be significantly 
contaminated by different heat sources. In general, the sur-
face temperature records and the homogenization algorithms 
used to adjust them present several problems that may have 
exaggerated the warming. Thus, the integrity of the available 
global surface temperature records and, therefore, the ability 
to correctly determine the global warming trend of the 20th 
and 21st century should be questioned as well (Connolly 
et al. 2021; D’Aleo 2016).

There is a different MSU record (Mears and Wentz 2016), 
which shows a warming trend that is more compatible with 
those presented by the surface-based temperature records. 
However, this alternative satellite-based record is not ana-
lyzed here because it would overlap the results of the sur-
face-based temperature records. In any case, adopting it in 
the present study may not be optimal because it only cov-
ers the latitude range from 70.0◦ S to 82.5◦ N and because 
it appears to perform worse than UAH-MSU-lt that better 
agrees with the radiosonde temperature database (Christy 
et al. 2018).

Here, we significantly expand the analysis presented 
by Scafetta (2022) by testing 143  GCM average simula-
tions and all 688 GCM member simulations available on 
the KNMI website against four surface-based global tem-
perature records (ERA5-T2m, HadCRUT5, GISTEMP v4, 
NOAAGlobTemp v5) and the UAH-MSU-lt v6 satellite-
based record. Since we wish to narrow the ECS range, we 
again group the models into three classes corresponding to 
low, medium and high ECS values, as proposed in Scafetta 
(2022). ECS GCM groups that produce systematically 
biased trends (e.g. too hot or too cold relative to the observed 
temperatures) should be questioned and not used for policy 
even though some simulations may appear to reproduce 
the observations. Finally, we compare the GCM hindcasts 
with observed land and ocean warming values to determine 
whether the surface-based records could be regionally biased 
and whether the ECS should be further constrained towards 
lower values.

2  Data and methods

We analyze the monthly reanalysis field near-surface air 
temperature (ERA5-T2m) record from 1980 to 2021 (Hers-
bach et al. 2020; Simmons et al. 2021). We repeat the same 
analysis using the HadCRUT5 (infilled data) (Morice et al. 
2021), GISTEMP v4 Lenssen et al. (2019), and NOAA-
GlobalTemp v5 (Zhang et al. 2019) global surface tempera-
ture records. Some of these records, however, may not cover 
the entire surface of the globe from 1980 to 2021. There 
are other global surface temperature records such as those 
proposed by the Japanese Meteorological Agency (JMA, 
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Ishihara 2006) and by the Berkeley Earth group (BE, Rohde 
and Hausfather 2020), which will also be discussed briefly. 
For completeness, as explained in the Introduction, we add a 
comparison with the UAH-MSU-lt v6 temperature measure-
ments (Spencer et al. 2017).

We also analyze all 143 “average” surface air temperature 
(tas) records and all 688 ensemble member records from 38 
different CMIP6 GCMs downloadable from KNMI Climate 
Explorer. These simulations were produced using historical 
forcings (1850–2014) further extended up to 2100 with four 
different SSP scenarios: SSP1-2.6 (low GHG emissions), 
SSP2-4.5 (intermediate GHG emissions), SSP3-7.0 (high 
GHG emissions ) and SSP5-8.5 (very high greenhouse gas 
emissions) (IPCC 2021). These four scenarios are nearly indis-
tinguishable until 2021. Thus, from 1850 to 2021,  the four 
simulation sets can be considered independent assessments 
of the same models under nearly identical forcing conditions, 
which also helps to assess in first approximation the internal 
variability of the models.

The 1980–2021 period was chosen to better evaluate the 
performance of the CMIP6 GCMs. This period is optimally 
covered by numerous climatic temperature records including 
those based on satellite measurements that are alternative to 
those based on land and oceanic measurements that could be 
affected by various non-climatic biases, which are difficult to 
eliminate (D’Aleo 2016; Watts 2022). In fact, going back in 
time from 1980 to 1850, the temperature records are affected 
by ever-larger uncertainties and uncovered areas, which makes 
evaluating the CMIP6 models even more difficult. A possi-
ble advantage of the present study is that previous studies 
evaluating the performance of the CMIP6 models attempted 
to constrain the ECS by comparing GCM simulations only 
with surface climate records from 1850 to 2020 (Ribes et al. 
2021) or from 1981 to 2014 (Tokarska et al. 2020), or even 
using uncertain paleoclimate records (Zhu et al. 2020) and 
concluded that only high-ECS models ( ECS > 4.5 ◦ C) could 
be excluded. However, there are open questions as to whether 
cooling adjustments applied to different Earth surface tempera-
ture records from 1850 to 1980 are justified (D’Aleo 2016) and 
whether more recent periods of the same climate records are 
affected by non-climatic warming biases (Connolly et al. 2021; 
Scafetta 2021a). These biases could have exaggerated the 20th 
century warming trend and incorrectly provided support for 
the medium-ECS GCMs.

The 1980–2021 warming for each record is calculated by 
evaluating the 2011–2021 average temperature anomaly rela-
tive to the 1980–1990 period. 11-year intervals are used to 
bypass biases due to interannual fluctuations such as those 
related to ENSO and the 11-year solar cycle. Then, we apply 
standard statistical tests to decide if and how the observed 
warming values for each of the temperature records are repro-
duced by the three ECS GCM groups.

The ERA5-T2m global surface temperature average warm-
ing from 1980–1990 to 2011–2021 is estimated to be:

The other temperature records give: HadCRUT5 (infilled 
data), ΔTmean = 0.581 ◦ C; GISTEMP v4, ΔTmean = 0.570 
◦ C; NOAAGlobalTemp v5, ΔTmean = 0.523 ◦ C. Had-
CRUT5 (infilled data), GISTEMP, and ERA5-T2m give 
nearly identical warmings. We also observe that HadCRUT5 
(non-infilled data) gives 0.549 °C and HadCRUT4 (Morice 
et al. 2012) gives 0.521 °C. BE gives ΔTmean = 0.591 ◦ C and 
JMA gives ΔTmean = 0.557 ◦ C, which do not differ much 
from the above estimates. Thus,   the available surface-
based global temperature records measure that the global 
surface warming from 1980–1990 to 2011–2021 has been 
between 0.52 and 0.59 ◦ C, or approximately between 0.50 
and 0.60 ◦ C, with an average of 0.56 ◦ C. In contrast, the 
satellite-based UAH-MSU-lt v6 temperature record gives 
ΔTmean = 0.402 ◦ C, suggesting that 2011–2021 actual 
warming may have been even less than 0.40 ◦ C because, as 
explained in the introduction, according to the GCMs the 
temperature trend of the troposphere should be scaled down 
to make it compatible with the surface warming trend.

For the temperature records, since 1980 the error of the 
average over an 11-year period can be estimated to be very 
small, �̄�95% ≈ 0.01 ◦ C (see Appendix 1), which represents 
about 2% of the warming from 1980–1990 to 2011–2021, 
and is less than the differences between the various tem-
perature records.

As explained in Sect. 1, the proposed analysis groups 
the CMIP6 GCMs into three subsets characterized by low 
( 1.5 < ECS ≤ 3.0 ◦C), medium ( 3.0 < ECS ≤ 4.5 ◦ C) and 
high ( 4.5 < ECS ≤ 6.0 ◦ C) sensitivity values. This choice 
is based on the following heuristic considerations. In fact, 
the IPCC (2013) estimated that the ECS had to have a 
“likely” range of 1.5–4.5 ◦ C. This range can be heuristically 
divided into at least two equal parts: 1.5 < ECS ≤ 3.0 ◦ C and 
3.0 < ECS ≤ 4.5 ◦ C. In 2013, the CMIP5 GCMs were used. 
However, the IPCC (2021) adopted the CMIP6 GCMs that 
extended the ECS range up to 6 ◦ C so that an equally large 
third range, 4.5 < ECS ≤ 6.0 ◦ C, could be added to the pre-
vious two. Zelinka et al. (2020) explained that the causes of 
the increased climate sensitivity in the CMIP6 models were 
due to stronger positive cloud feedbacks due to decreased 
extratropical cloud cover and albedo that, however, might 
be questionable.

Therefore, the interval 1.5 < ECS ≤ 3.0 ◦ C collects 
the GCMs with ECS values most consistent with differ-
ent empirical results, as discussed in Sect. 1; the interval 
3.0 < ECS ≤ 4.5 ◦ C collects the other GCMs that also the 
IPCC (2013) would have considered acceptable; finally, the 
interval 4.5 < ECS ≤ 6.0 ◦ C collects the GCMs included in 

(1)ΔTmean = 0.578 ◦C.
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the IPCC (2021) but which in 2013 the IPCC itself consid-
ered to predict an unlikely high ECS.

3  Analysis of the CMIP6 GCM simulations

Figure 1 shows the GCM simulations (left) and their ensem-
ble mean ± 1� range (right) grouped according to the three 
GCM ECS sets with respect to the ERA5-T2m global 
surface temperature record (black, moving averages at 12 
months). All records are temperature anomalies relative to 
the period 1980–1990. Figure 2 shows a similar comparison 
with respect to the HadCRUT, GISTEMP, NOAAGlobTemp 
and UAH-MSU-lt temperature records.

Both figures show that as the ECS increases, the global 
surface warming predicted by the models also increases. 
However, only the low-ECS GCM group can be considered 
perfectly consistent with the surface-based global tempera-
ture records because it encloses them well within the ±1 � 
GCM range (yellow area).

Figures 1 and 2 also show that, compared to the satellite 
record, even the GCM group with low ECS seems to overes-
timate the observed warming. In fact, even for the low ECS 
GCM group from 2011 to 2021 the UAH-MSU-lt record 
is not well enclosed within the ±1� model ensemble (yel-
low) area although a better agreement is found in the period 
2015–2020. The latter was characterized by the significant El 
Niño warming events of 2015–2016 and 2020 (Appendix 1, 
Fig. 10). Therefore, the 2015–2020 warming for the period 
2000–2014 could also be temporary (Scafetta 2021c) and 
not related to the warming hindcasted by the models because 
it is clearly due to natural climatic fluctuations while the 
average warming produced by the models is due to anthro-
pogenic forcing. From 2015 to 2022, in fact, a slightly cool-
ing trend is observed. From 2000 to 2014 the UAH-MSU-lt 
v6 record also clearly shows the so-called global warming 
“hiatus” or “pause” (IPCC 2013). This decade-long lack of 
warming began to seriously question the GCMs, and various 
statistical solutions were proposed to circumvent the prob-
lem by referring to the fluctuations of the unforced internal 

Fig. 1  (Left) GCM global surface temperature simulations (colored curves) and (right) ±1� GCM global surface temperature ensembles (yellow 
area) versus the ERA5-T2m record (black, 12-month moving average)
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variability of the models (e.g. Meehl et al. 2011). Figures 1 
and 2 also show that, at the present, the “pause” appears 
missing or attenuated in the latest versions of the surface-
based global temperature records.

3.1  Analysis of the GCM average simulations

Scafetta (2022) analyzed the average simulations of 38 
GCMs using the historical + SSP2-4.5, SSP3-7.0, and 
SSP5-8.5 radiative forcing scenarios up to June 2021; the 
warming values for each model were collected in the table 
there published. Figure 3 graphically shows the results of 
the same analysis, which was updated to the whole year 
2021 and also included the SSP1-2.6 simulations, compared 
to the temperature observations (green vertical lines). 143 
average records are analyzed. For each ECS GCM group the 
statistics provide (see Table 1):

• High-ECS GCMs (51 records): ΔTmean = 0.94 ± 0.22 ◦C;

• Medium-ECS GCMs (43 records): ΔTmean = 0.79 ± 0.10 
◦C;

• Low-ECS GCMs (49 records): ΔTmean = 0.59 ± 0.10 ◦C.

The result confirms that the GCM group with low ECS is 
perfectly compatible with the observed warming (Eq. 1) 
within the ±1 � range. In contrast, both GCM groups with 
medium and high ECS show warming biases. Moreover, 
as Scafetta (2022) already observed, Fig. 3 also shows that 
none of the medium and high ECS models predict an aver-
age warming of less than 0.6 ◦ C, which is above the warm-
ing reported by all global temperature surface records. This 
result suggests that models with ECS > 3 ◦ C should be ques-
tioned at the 95% confidence level. Thus, by considering 
only the GCM ensemble averages for the four SSPs, the real 
ECS should be equal to or lower than 3 ◦C.

However, Fig. 3 also shows that if the UAH-MSU-LT 
record better reproduces the actual 2011–2021 warming, the 

Fig. 2  GCM global surface temperature ensembles (yellow area, ±1� ) versus HadCRUT5 (infilled data), GISTEMP v4, NOAAGlobTemp v5, 
and UAH-MSU-lt v6 temperature records (black, 12-month moving average).
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GCM group with low ECS would also be too hot because, 
out of 49 GCM ensemble averages with low ECS, 48 cases 
(98%) are warmer than 0.40 ◦ C. The GCM that best agrees 
with the satellite record is CAMS-CSM1-0 whose ECS is 
2.29 ◦C.

3.2  Analysis of the full range of the GCM ensemble 
members

Figure  4 shows in four panels the temperature vari-
ations (2011–2021 minus 1980–1990) of the 688 

Table 1  Warming from 1980–1990 to 2011–2021 for average simulations of 38 GCMs using historical + SSP1-2.6, SSP2-4.5, SSP3-7.0, and 
SSP5-8.5 forcings

See Fig. 3

ECS GROUP GCM ECS ( ◦C) SSP1-2.6 ( ◦C) SSP2-4.5 ( ◦C) SSP3-7.0 ( ◦C) SSP5-8.5 ( ◦C) Mean ± 1� ( ◦C)

High ECS CIESM 5.67 0.67 0.75 0.71 0.71 ± 0.04

CanESM5-CanOE-p2 5.62 1.15 1.17 1.17 1.16 1.16 ± 0.01

CanESM5-p1 5.62 1.21 1.20 1.21 1.23 1.22 ± 0.01

CanESM5-p2 5.62 1.22 1.23 1.23 1.23 1.23 ± 0.01

HadGEM3-GC31-LL-f3 5.55 1.29 1.27 1.10 1.22 ± 0.11

HadGEM3-GC31-MM-f3 5.42 0.84 0.87 0.85 ± 0.02

UKESM1-0-LL-f2 5.34 1.15 1.12 1.10 1.13 1.13 ± 0.02

CESM2 5.16 0.80 0.76 0.77 0.81 0.78 ± 0.02

CNRM-CM6-1-f2 4.83 0.68 0.66 0.66 0.69 0.67 ± 0.01

CNRM-ESM2-1-f2 4.76 0.64 0.62 0.63 0.66 0.64 ± 0.02

CESM2-WACCM 4.75 0.99 0.92 0.89 0.94 0.93 ± 0.04

ACCESS-CM2 4.72 0.83 0.82 0.88 0.87 0.85 ± 0.03

NESM3 4.72 0.98 0.96 1.03 0.99 ± 0.04

IPSL-CM6A-LR 4.56 0.76 0.77 0.76 0.77 0.77 ± 0.01

mean ± 1� 0.94 ± 0.23 0.94 ± 0.23 0.93 ± 0.23 0.94 ± 0.20 0.94 ± 0.23

Medium ECS KACE-1-0-G 4.48 0.96 0.96 0.94 0.97 0.96 ± 0.01

EC-Earth3-Veg 4.31 0.86 0.87 0.84 0.88 0.86 ± 0.02

EC-Earth3 4.3 0.86 0.76 0.90 0.89 0.85 ± 0.06

CNRM-CM6-1-HR-f2 4.28 0.76 0.72 0.72 0.74 0.73 ± 0.02

GFDL-ESM4 3.9 0.69 0.73 0.68 0.66 0.69 ± 0.03

ACCESS-ESM1-5 3.87 0.83 0.84 0.85 0.82 0.84 ± 0.01

MCM-UA-1-0 3.65 0.87 0.83 0.80 0.91 0.85 ± 0.05

CMCC-CM2-SR5 3.52 0.61 0.69 0.69 0.66 ± 0.04

AWI-CM-1-1-MR 3.16 0.79 0.80 0.77 0.79 0.79 ± 0.01

MRI-ESM2-0 3.15 0.75 0.71 0.64 0.80 0.73 ± 0.07

BCC-CSM2-MR 3.04 0.64 0.65 0.66 0.67 0.65 ± 0.01

mean ± 1� 0.80 ± 0.10 0.77 ± 0.10 0.77 ± 0.10 0.80 ± 0.10 0.79 ± 0.10

Low ECS FGOALS-f3-L 3 0.75 0.69 0.71 0.69 0.71 ± 0.03

MPI-ESM1-2-LR 3 0.58 0.58 0.58 0.56 0.57 ± 0.01

MPI-ESM1-2-HR 2.98 0.54 0.57 0.60 0.57 0.57 ± 0.02

FGOALS-g3 2.88 0.76 0.62 0.60 0.61 0.65 ± 0.08

GISS-E2-1-G-p1 2.72 0.71 0.71
GISS-E2-1-G-p3 2.72 0.44 0.59 0.41 0.46 0.47 ± 0.08

MIROC-ES2L-f2 2.68 0.63 0.59 0.57 0.57 0.59 ± 0.03

MIROC6 2.61 0.50 0.49 0.48 0.52 0.50 ± 0.02

NorESM2-LM 2.54 0.71 0.62 0.77 0.72 0.70 ± 0.06

NorESM2-MM 2.5 0.75 0.78 0.68 0.72 0.73 ± 0.04

CAMS-CSM1-0 2.29 0.42 0.42 0.39 0.42 0.41 ± 0.02

INM-CM5-0 1.92 0.62 0.59 0.66 0.61 0.62 ± 0.03

INM-CM4-8 1.83 0.56 0.54 0.54 0.60 0.56 ± 0.02

mean ± 1� 0.61 ± 0.12 0.59 ± 0.09 0.59 ± 0.12 0.59 ± 0.09 0.60 ± 0.12
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simulations of GCM ensemble members available per forc-
ing set (Hist+SSP1-2.6, Hist+SSP2-4.5, Hist+SSP3-7.0 
and Hist+SSP5-8.5; red dots) against the five temperature 
records (vertical lines). The figure visually confirms that the 
vast majority of ensemble member simulations produced by 
the GCM groups with medium and high ECS run too hot 
relative to  all five temperature records.

To examine how observed warming values are placed 
within the distributions of possible GCM hindcasts for each 
of the three ECS groups, we count how many member simu-
lations record temperatures colder or warmer than each of 
the five temperature records. Table 2 reports the results.

The analysis confirms that the low-ECS models produce 
results that well enclose the 2011–2021 average tempera-
tures obtained using the surface temperature temperature 
records, which always fall within the statistical interval ±1� 
(corresponding to the 16–84% probability interval) of the 
distribution of the GCM hindcasts. In contrast, 94–100% and 
97–100% of hindcasts produced by the GCMs with medium 

and high ECS are warmer than all five temperature records, 
respectively. Therefore, also considering the full range of the 
available CMIP6 GCM simulations, the GCMs with medium 
and high ECS run too hot. Thus, the actual ECS should be 
equal to or lower than 3 ◦C.

However, 96% of GCM simulations from the low-ECS 
GCM are warmer and only 4% cooler than the lower tropo-
sphere temperature record. Thus, once again, we found that 
if UAH-MSU-lt better reproduces the actual global warming 
from 1980–1990 to 2011–2021, the vast majority of the low-
ECS GCM ensemble members would also be found to run 
too hot.

3.3  Statistical modeling of the GCM unforced 
internal variability

Figure 5 shows the boxplots relating to the simulations 
shown in Fig. 4 for each model. Again, the GCM group 
with low ECS is best centered around the surface-based 

Fig. 3  Average temperature changes (2011–2021 minus 1980–1990) 
hindcasted by 38 CMIP6 GCMs mean simulations. The blue ver-
tical lines represent the temperature change measured by Had-
CRUT5 (infilled data), ERA5-T2m, GISTEMP v4, NOAAGlobTemp 
v5, and UAH-MSU-lt v6 temperature records, respectively, with their 

95% confidence interval. The three yellow boxes represent the ±1� 
dispersion of the data referring to the low ( 1.5 < ECS ≤ 3.0 ◦C), 
medium ( 3.0 < ECS ≤ 4.5 ◦ C) and high ( 4.5 < ECS ≤ 6.0 ◦ C) ECS 
GCMs. See Table 1
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observations indicated by the horizontal blue lines while 
the GCM groups with medium and high ECS exhibit sys-
tematic warming bias except for very few models. How-
ever, the dispersion of the boxplots varies greatly among 
the GCMs because the models are not physically equiv-
alent to each other and, furthermore, probably because 
of the different number of simulations available for each 
model.

In fact, the GCMs are represented unevenly in the KNMI 
collection because the number of simulations available for 
each GCM varies from 3 to 100 among the models: see 
Fig. 5. Therefore, the statistics discussed in Sect. 3.2 may 
be skewed  towards models with a larger number of avail-
able simulations because they will weigh more in the statisti-
cal test reported in Table 3. This problem could be solved by 
using a Monte Carlo strategy to simulate the spread of GCM 
hindcasts that could be associated with unforced internal 
variability. This exercise is proposed below.

It can be assumed that each GCM produces simulations 
distributed around a mean �m with a given standard devia-
tion �m characterizing its internal variability. We note that �m 
should be assumed constant for all GCM averages because it 
could be interpreted as a “precision” requirement for GCMs. 
Indeed, GCM hindcasts should always agree with observa-
tions within an acceptable statistical uncertainty.

We propose three different options for �m covering 
approximately the ranges of the GCM boxplots shown 
in Fig.  5: �H ≈ 0.05 ◦ C (high precision), �M ≈ 0.10 ◦ C 
(medium precision), and �L ≈ 0.15 ◦ C (low precision).

Figure  5 suggests that the high-precision option 
( �H ≈ 0.05 ◦ C) could be satisfied by most GCMs; it requires 
the model mean to be within ±0.1 ◦ C (95% confidence inter-
val) of the actual warming value. The 95% confidence range 
becomes ±0.2 ◦ C for the medium-precision requirement 
( �M ≈ 0.10 ◦ C) and ±0.3 ◦ C for the low-precision option 
( �L ≈ 0.15 ◦C).

Fig. 4  Temperature change (2011–2021 minus 1980–1990) hind-
casted by the full range of model simulations (red dots). The verti-
cal lines represents the global surface warming from 1980–1990 to 
2011–2021 reported by HadCRUT5  (infilled data), ERA5-T2m, 

GISTEMP v4, NOAAGlobTemp v5, and UAH-MSU-lt v6 tempera-
ture records, respectively, with their 95% confidence interval. Each 
of the four panel represents a set of forcing: a Hist+SSP1-2.6, b 
Hist+SSP2-4.5, c Hist+SSP3-7.0 and d Hist+SSP5-8.5
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Appendix 2 shows that the interval ±0.1 ◦ C (95% con-
fidence), which corresponds to the high precision option, 
�H ≈ 0.05 ◦ C, should be the preferred choice for the accept-
able uncertainty related to the internal variability that should 
be requested for the GCMs because it could be derived from 
the variability of the temperature records themselves.

Figure  5 also shows that the low-precision option 
�L ≈ 0.15 ◦ C is only consistent with the EC-Earth3 GCM. 
The usefulness of this model should be questioned because 
it hindcasts 2011–2021 global surface warming values rang-
ing between 0.5 and 1.2 ◦ C with an average of 0.82 ◦ C. This 
means that EC-Earth3 is both inaccurate and imprecise in 
hindcasting the global surface warming from 1980 to 2021.

Figure 6 shows the combined probability density functions 
(PDF) and the related boxplots derived from all the GCM 
means reported in Fig. 3 and Table 1 with the three precision 

requirements for the three ECS GCM groups compared to the 
warming levels obtained with the adopted five temperature 
records. The complementary Gaussian error function was used 
to evaluate the relative statistical position of the five actual 
warming values within each probability density function.

For each model mean �m and precision � , the probabil-
ity Pm that the GCM hindcast is larger than the measured 
warming ΔT  is

Thus, the mean PΔT<GCMs =
1

N

∑N

m=1
Pm across all models 

for each ECS GCM group gives the probability of obtaining 
simulations warmer than the reference temperature value. 

(2)Pm =
1

�
√

2�

∞

∫
ΔT

e
−

(t−�m )

2�2

2
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1
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Table 2  Number of single 
GCM simulations reporting 
mean temperature changes 
(2011–2021 minus 1980–
1990) lower or higher than 
HadCRUT5 (infilled data), 
ERA5-T2m, GISTEMP v4, 
NOAAGlobTemp v5 and UAH-
MSU-lt v6, respectively

ECS group Total members SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 Total %
141 172 178 197 688

High ECS Model > HadCRUT 86 93 97 93 369 97
Model > ERA5T2m 86 93 97 93 369 97
Model > GISTEMP 88 93 98 93 372 98
Model > NOAAGT 88 95 100 96 379 99.5
Model > UAHMSU 88 96 100 96 380 100
Model < HadCRUT 2 3 3 3 11 3
Model < ERA5T2m 2 3 3 3 11 3
Model < GISTEMP 0 3 2 3 8 2
Model < NOAAGT 0 1 0 0 1 0.5
Model < UAHMSU 0 0 0 0 0 0

Medium ECS Model > HadCRUT 25 39 29 26 119 94
Model > ERA5T2m 25 39 30 26 120 95
Model > GISTEMP 26 39 30 26 121 96
Model > NOAAGT 26 41 32 26 125 99
Model > UAHMSU 26 42 32 26 126 100
Model < HadCRUT 1 3 3 0 7 6
Model < ERA5T2m 1 3 2 0 6 5
Model < GISTEMP 0 3 2 0 5 4
Model < NOAAGT 0 1 0 0 1 1
Model < UAHMSU 0 0 0 0 0 0

Low ECS Model > HadCRUT 12 14 25 18 69 38
Model > ERA5T2m 12 15 26 19 72 40
Model > GISTEMP 13 16 28 24 81 45
Model > NOAAGT 21 26 35 39 121 66
Model > UAHMSU 27 33 43 71 174 96
Model < HadCRUT 15 20 21 57 113 62
Model < ERA5T2m 15 19 20 56 110 60
Model < GISTEMP 14 18 18 51 101 55
Model < NOAAGT 6 8 11 36 61 34
Model < UAHMSU 0 1 3 4 8 4
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PΔT<GCMs can also be obtained by integrating the probability 
density functions shown in Fig. 6a–c from the green line to 
infinity or by using a Monte Carlo strategy by generating, 
for example, 1000 computer values from a Gaussian distri-
bution with mean �m and standard deviation � . The relevant 
statistics are shown in Table 3.

Figure 6a–c show that the GCM group with low ECS 
(blue curves) always produces predictions well-centered 
on the observed warming for the four surface tempera-
ture records because their 2011–2021  values always fall 
within the ±1� statistical interval (which corresponds to the 
16–84% probability range) of the GCM distributions for the 
high, medium, and low precision options, respectively. How-
ever, once again, if the actual 1980–2021 warming is given 
by  UAH-MSU-lt, even the GCM group with low ECS seems 
to be biased towards too hot values in 95%, 91% and 85% of 
possible cases, respectively, for the three precision options 
(Table 3).

The predictions of the medium (purple) and high (red) 
ECS GCM groups always show significant warming biases. 
Also, particularly for the GCM group with high ECS, the 
PDF appears to have two peaks, implying that the GCMs 
in this group are physically very different from each other 
because they produce very different warming hindcasts that 
are clustered around 0.8 ◦ C and 1.2 ◦ C; the warmest PDF 
peak is mostly due to the CanESM5 GCM.

For the high-precision requirement ( �H = 0.05 ◦C), these 
two GCM groups produce results warmer than the observed 

values from a minimum of 98% to a maximum of 100% of 
their possible output, which is outside the 95% confidence 
interval. For the medium precision option ( �M = 0.10 ◦C), 
the medium and high GCM groups produce results warmer 
than the observed values from a minimum of 93% to a maxi-
mum of 100% of their possible outputs, which is at the limit 
of the 95% confidence interval. For the low precision option 
( �L = 0.15 ◦C), the GCM groups with medium and high ECS 
produce warmer results than the four surface-based tempera-
ture records from 88 to 95% of cases. Conversely, 99% or 
more of the theoretical hindcasts of the GCM groups with 
high and medium ECS would be warmer than UAH-MSU-lt 
even for the low precision option ( �L = 0.15 ◦C).

The boxplots illustrated in Fig. 6d–f were obtained using 
the Monte Carlo strategy proposed above which simulates 
1000 randomly distributed outputs for each of the 143 model 
averages for each of the three precision options (for a total 
of 3 × 143,000 theoretical hindcasts). The three panels show 
that in all cases, with respect to the observed temperature 
values, the groups with medium and high ECS are well 
outside the 68% confidence interval (i.e. the ±1� interval). 
Furthermore, the GCM groups with medium and high ECS 
indicate levels of warming that are respectively 30% and 
50% greater than those actually observed and, consequently, 
their accuracy is rather low. The accuracy of the low-ECS 
GCM group is good compared to the surface-based tem-
perature records, but it still reports average warming that 
is about  30% larger than that reported by  the satellite 

Fig. 5  Boxplots of the CMIP6 ensemble members depicted in Fig. 4 
for each CMIP6 GCM; # represents the number of the available 
simulations for each GCM. The horizontal blue lines represents the 
global surface warming from 1980–1990 to 2011–2021 reported by 

HadCRUT5  (infilled data), ERA5-T2m, GISTEMP v4, NOAAGlob-
Temp v5, and UAH-MSU-lt v6 temperature records, respectively. The 
whiskers extend from each end of the box for a range up to 1.5 times 
the interquartile range
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temperature record. The whisker extension of the boxplot 
shows that the precision of the low, medium and high ECS 
groups varies from modest ( ±0.2 ◦ C) to very poor ( ±0.5 ◦ C) 
range from low ECS and high precision GCM group to high 
and low precision GCM group.

4  Testing the land versus the ocean 
warming

Surface-based temperature records imply that the GCM 
group with low ECS performs better than those with medium 
and high ECS, which suggests that the most likely ECS value 

should be equal or lower than  3 ◦ C. However, UAH-MSU-
lt implies that even the low-ECS GCMs may perform quite 
poorly. The observed discrepancy between the surface and 
satellite temperature records may be due to the presence of 
various non-climatic warming biases in the surface tempera-
ture records (Connolly et al. 2021; D’Aleo 2016; Scafetta 
2021a; Watts 2022). This problem is now being investigated 
by comparing the GCM hindcasts against the land and the 
ocean temperature observations.

Figure  7a–f show the areal distribution of warming 
from 1980–1990 to 2011–2021 produced by the CMIP6 
GCM ensemble average and by HadCRUT5, ERA5-T2m, 
GISTEMP v4, NOAAGlobTemp v5 and UAH-MSU-lt 

Table 3  Probability PΔT<GCMs
 

and PΔT>GCMs
 that the 

2011–2021 warming hindcast 
from 1980–1990 to 2011–2021 
for each ECS GCM ensemble is 
warmer or colder, respectively, 
than HadCRUT5 (infilled 
data), ERA5-T2m, GISTEMP 
v4, NOAAGlobTemp v5 and 
UAH-MSU-lt v6, respectively: 
see Fig. 6

ECS group High precision Medium precision Low precision
( �

H
= 0.05 ◦ C) (%) ( �

M
= 0.10 ◦C)(%) ( �

L
= 0.15 ◦

C)(%)

High ECS
 HadCRUT < Model 99 95 92
 ERA5T2m < Model 99 95 92
 GISTEMP < Model 99 96 93
 NOAAGT < Model 100 98 95
 UAHMSU < Model 100 100 99
 HadCRUT > Model 1 5 8
 ERA5T2m > Model 1 5 8
 GISTEMP > Model 1 4 7
 NOAAGT > Model 0 2 5
 UAHMSU > Model 0 0 1

Medium ECS
 HadCRUT < Model 98 93 88
 ERA5T2m < Model 98 93 88
 GISTEMP < Model 99 94 88
 NOAAGT < Model 100 97 93
 UAHMSU < Model 100 100 99
 HadCRUT > Model 2 7 12
 ERA5T2m > Model 2 7 12
 GISTEMP > Model 1 6 12
 NOAAGT > Model 0 3 7
 UAHMSU > Model 0 0 1

Low ECS
 HadCRUT < Model 55 54 53
 ERA5T2m < Model 56 55 53
 GISTEMP < Model 59 57 55
 NOAAGT < Model 74 69 65
 UAHMSU < Model 95 91 85
 HadCRUT > Model 45 46 47
 ERA5T2m > Model 44 45 47
 GISTEMP > Model 41 43 45
 NOAAGT > Model 26 31 35
 UAHMSU > Model 5 9 15
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v6. Equivalent maps for each GCM are found in Scafetta 
(2021b).

Figure 7b shows that the UAH-MSU-LT v6 temperature 
record covers the latitude range 80◦ S–80◦ N. Figure 7c, d 
show that ERA5-T2m and HadCRUT5 (infilled data) are 
global because they adopt interpolations of meteorological 
models to extend coverage also in data-scattered regions of 
the globe such as the poles and other inhabited areas (large 
deserts and forests). Figure 7e, f show that the GISTEMP 
and NOAAGlobTemp records do not cover large areas, in 
particular, the polar regions are poorly represented.

Figure 7b is characterized by lighter colors than the other 
temperature panels, which means that the UAH-MSU-lt tem-
perature record shows less warming than the surface-based 
temperature records almost everywhere. All six temperature 
panels in Fig. 7 also show that the land area has warmed 
more than the ocean region. In any case, Fig. 7c–f show 
that the surface temperature records present a greater tem-
perature difference between the land and the ocean regions. 
The visual comparison with the CMIP6 ensemble average 
simulation (Fig. 7a) suggests the same general pattern but, 
furthermore, the oceanic area appears slightly warmer than 
all five temperature records. The temperature records also 
show extensive ocean areas where significant cooling is 
observed such as around Antarctica, the eastern equatorial 
Pacific, the North Atlantic and a few other regions. These 

cooling regions reveal interesting dynamic patterns that are 
not captured by the average simulation of the CMIP6 ensem-
ble. These patterns are best emphasized in the areal t-test 
proposed in Scafetta (2022).

Table  4 reports the warming over 80◦ S:80◦ N, 60◦ 
S:80◦ N, 0 ◦ N:80◦ N and 60◦ S:0◦ S latitudinal ranges from 
1980–1990 to 2011–2021 over land+ocean (total), land, and 
ocean. Table 4 also reports the ratios between the land and 
the ocean warming levels.

The area 0 ◦ N:80◦ N shows that from 1980–1990 to 
2011–2021 the surface temperature records warmed on aver-
age by about 0.32 ± 0.05 ◦ C more than the satellite-based 
UAH-MSU-lt record, while the area 80◦ S:80◦ N the surface-
based records warmed on average by about 0.15 ± 0.02 ◦ C 
more than the satellite record. A similar warming bias on 
land also appears in the Southern Hemisphere (60◦ S:0◦ S) 
because the surface-based temperate records show ocean 
warming averaging 0.05 ± 0.03 ◦ C less than the satellite 
record while their land area warmed by 0.08 ± 0.03 ◦ C more.

Figure 8 shows the results for each GCM model (using 
the 143 GCM average simulations available for each SSP) 
for the latitudinal interval 60◦ S:80◦ N, which is optimally 
covered from all temperatures records and includes all con-
tinents except Antarctica. The results are also reported in 
Tables 5, 6 and 7 and could be used to evaluate possible 
anomalous temperature trends on the continents.

Fig. 6  a–c GCM probability density functions relative to three model 
precision requirements: � = 0.05 ◦ C, � = 0.10 ◦ C and � = 0.15 ◦ C, 
which approximately correspond to �95% = 0.10 ◦ C, �95% = 0.20 ◦ C 
and �95% = 0.30 ◦ C. The green vertical lines represent the global 
surface warming from 1980–1990 to 2011–2021 reported by Had-

CRUT5 (infilled data), ERA5-T2m, GISTEMP v4, NOAAGlobTemp 
v5 and UAH-MSU-lt v6 temperature records. d–f Boxplots of the the 
probability density functions depicted in panels a–c, respectively, 
using double whiskers and boxes indicating the following probability 
ranges: 2.5%, 16%, 25%, 50%, 75%, 84% and 97.5%
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Figure 8a compares the synthetic and observed global 
warming levels from 1980–1990 and 2011–2021. Figure 8b, 
c show the land and the ocean average warming levels, 
respectively. These figures show that the performance of 
the models is similar to what we have obtained in the previ-
ous sections, i.e. the GCM group with low ECS performs 
significantly better than the medium and high GCM groups, 
which show warming bias for most of their GCMs.

Figure 8d shows the relationships between average warm-
ing on the land and the ocean areas. The mean land/ocean 
ratio for the vast majority of the models is 1.75 ± 0.20 , which 
is a value placed between the results obtained for the surface 
temperature records (ranging from 1.95 to 2.32 ) and that of 
the satellite temperature record, which gives 1.51.

The results shown in Fig. 8 can be interpreted as follows. 

1. Figure  8b shows that the land surface temperature 
records are on average 0.4 ◦ C warmer than the satel-
lite-based one. On the contrary, Fig. 8c shows that the 
surface-based ocean temperatures are on average up to 
a maximum of 0.1 ◦ C warmer than the satellite ones.

2. Therefore, it can be assumed that on the ocean, the satel-
lite-based temperature record is sufficiently compatible 
with the surface-based ones. If so, the large divergence 
observed on land between surface and satellite record-
ings could suggest that the land measurements are sig-
nificantly contaminated by non-climatic warming biaes, 
including those related to urbanization (cf.: Connolly 
et al. 2021; D’Aleo 2016; Scafetta 2021a; Watts 2022).

3. A similar conclusion would also be indirectly supported 
by the GCM hindcasts which show that the CMIP6 

Fig. 7  Areal distribution of the warming from 1980–1990 to 2011–2021 for the CMIP6 ensemble average simulation and for the Had-
CRUT5 (infilled data), ERA5-T2m, GISTEMP v4, NOAAGlobTemp v5, and UAH-MSU-lt v6 temperature records
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models are usually unable to correctly reconstruct the 
large land/ocean temperature ratio observed in the sur-
face temperature records. In fact, the models give a 
land/ocean ratio equal to 1.75 ± 0.20 , while the surface 
records give ratios between 1.95 and 2.32.

4. However, as the GCMs attempt to reconstruct the global 
surface warming of the surface temperature records 

even though they cannot adequately explain their large 
land/ocean warming ratio, the models could have cali-
brated internal parameters to obtain a compromise that 
attempts to approximate the global surface warming 
by simulating a warmer ocean and a cooler land than 
observed.

Table 4  Left columns: observed and hindcasted warming over 80◦ S:80◦ N, 60◦ S:80◦ N, 0 ◦ N:80◦ N, and 60◦ S:0◦ S latitude ranges from 1980–
1990 to 2011–2021 over land+ocean (total), land, and ocean, and land/ocean ratio

The model estimates use the average GCM simulations. Right columns: global and land warming calculated assuming correct the ocean warm-
ing reported by the temperature records and the average land/ocean warming ratios hindcasted by the GCMs

Observations and GCM hindcasts Modeled Global and Land Warmings

Total ( ◦C) Land ( ◦C) Ocean ( ◦C) Ratio Total ( ◦C) Land ( ◦C) Ocean ( ◦C) Average 
ratio

(80◦S:80◦N)
HadCRUT5 0.57 0.86 0.45 1.92 0.54 0.76 0.45 1.69
ERA5-T2m 0.57 0.92 0.43 2.14 0.51 0.73 0.43 1.69
GISTEMP 0.54 0.93 0.41 2.26 0.48 0.69 0.41 1.69
NOAAGT 0.53 0.91 0.38 2.38 0.45 0.64 0.38 1.69
MSU-UAH 0.40 0.53 0.34 1.54 0.41 0.57 0.34 1.69
Low ECS GCMs 0.58 ± 0.10 0.84 ± 0.18 0.48 ± 0.08 1.73 ± 0.21
Medium ECS GCMs 0.77 ± 0.10 1.07 ± 0.15 0.66 ± 0.08 1.63 ± 0.13
High ECS GCMs 0.92 ± 0.21 1.31 ± 0.28 0.78 ± 0.19 1.71 ± 0.22
(60◦ S:80◦ N)
HadCRUT5 0.59 0.91 0.47 1.95 0.56 0.82 0.47 1.74
ERA5-T2m 0.61 0.97 0.47 2.08 0.57 0.82 0.47 1.74
GISTEMP 0.55 0.94 0.42 2.24 0.50 0.73 0.42 1.74
NOAAGT 0.54 0.91 0.39 2.32 0.47 0.68 0.39 1.74
MSU-UAH 0.42 0.55 0.37 1.51 0.42 0.54 0.37 1.74
Low ECS GCMs 0.59 ± 0.11 0.86 ± 0.19 0.49 ± 0.08 1.75 ± 0.20
Medium ECS GCMs 0.77 ± 0.11 1.10 ± 0.16 0.65 ± 0.09 1.69 ± 0.14
High ECS GCMs 0.92 ± 0.21 1.34 ± 0.29 0.76 ± 0.19 1.79 ± 0.24
(0◦ N:80◦ N)
HadCRUT5 0.81 1.03 0.68 1.52 0.79 0.99 0.68 1.45
ERA5-T2m 0.85 1.09 0.69 1.57 0.82 1.00 0.69 1.45
GISTEMP 0.78 1.04 0.63 1.66 0.73 0.91 0.63 1.45
NOAAGT 0.75 1.00 0.59 1.72 0.69 0.86 0.59 1.45
MSU-UAH 0.48 0.56 0.42 1.32 0.50 0.61 0.42 1.45
Low ECS GCMs 0.77 ± 0.18 0.95 ± 0.23 0.66 ± 0.16 1.45 ± 0.12
Medium ECS GCMs 1.00 ± 0.17 1.21 ± 0.19 0.87 ± 0.16 1.40 ± 0.09
High ECS GCMs 1.20 ± 0.32 1.47 ± 0.35 1.02 ± 0.31 1.49 ± 0.28
(60◦ S:0◦ S) Total ( ◦C) Land ( ◦C) Ocean ( ◦C) ratio Total ( ◦C) Land ( ◦C) Ocean ( ◦C) average ratio
HadCRUT5 0.34 0.58 0.29 1.97 0.33 0.50 0.29 1.72
ERA5-T2m 0.34 0.64 0.29 2.25 0.32 0.50 0.29 1.72
GISTEMP 0.30 0.61 0.26 2.40 0.28 0.45 0.26 1.72
NOAAGT 0.31 0.65 0.24 2.68 0.27 0.41 0.24 1.72
MSU-UAH 0.35 0.54 0.32 1.67 0.34 0.46 0.32 1.72
Low ECS GCMs 0.39 ± 0.08 0.60 ± 0.13 0.35 ± 0.08 1.75 ± 0.41
Medium ECS GCMs 0.51 ± 0.08 0.76 ± 0.12 0.47 ± 0.08 1.64 ± 0.29
High ECS GCMs 0.61 ± 0.13 0.96 ± 0.33 0.55 ± 0.11 1.77 ± 0.54
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If point 4 above is correct, the reliability of the low-ECS 
GCMs should also be questioned. In fact, Fig. 8d shows 
contradictory results regarding the low-ECS GCMs because 
some models agree better with the surface-based tempera-
ture records, few others agree better with the satellite tem-
perature record, while the rest report land/ocean ratios 
between the two levels, as the vast majority of the medium 
and high ECS models does.

We now assume that the GCM’s predicted land/ocean 
temperature ratio (average ratio = 1.75 ± 0.20 ) corresponds 
to the actual physical characteristics of the climate sys-
tem and that the ocean temperature warming of the sur-
face records (on average, 0.43 ± 0.03 ◦ C, see Table 4) is 
sufficiently accurate. If so, from 1980-1990 to 2011-2021 
the earth’s surface within the latitude interval 60◦ S:80◦ N 
should have warmed by 0.75 ± 0.1 ◦ C instead of the observed 

0.93 ± 0.03 ◦ C. If the hypothesis is correct, the spurious 
warming of the land surface due to uncorrected non-cli-
matic warming biases could be quantified as approximately 
+0.2 ◦ C. The proposed correction implies that global surface 
warming from 1980–1990 to 2011–2021 could be at least 
about 0.05 ◦ C ( ∼ 10%) lower than what the surface-based 
records report, which increases further the warming bias of 
the medium and high-ECS GCMs observed in Figs. 1, 2, 3, 
4, 5 and 6.

The results depicted in Fig. 8 also help to better evaluate 
the individual GCMs. For example, Fig. 5 suggests that three 
high-ECS models (CNRM-CM6-1-f2, CNRM-ESM2-1-f2 
and CIESM) produce relatively close warming to what is 
reported by the surface-based temperature records. How-
ever, Fig. 8d indicates that the same models fail to produce 
the land/ocean temperature ratio of the same temperature 

Fig. 8  2011–2021 warming relative to 1980–1990 of the models over 
a land+ocean, b land, c ocean areas within the 60◦ S:80◦ N latitude 
range for the 143 average model simulations (colored dots) and the 

five temperature records (colored lines). d Ratio between the land and 
the ocean warming. See Tables 5, 6 and 7
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Table 5  Low-ECS GCMs: 
hindcasted warming from 1980–
1990 to 2011–2021 within the 
60◦ S:80◦ N latitude range from 
1980–1990 to 2011–2021 over 
land+ocean (total), land, ocean, 
and land/ocean ratio

See Fig. 8

Model ECS ( ◦C) Hist + SSP Land + Ocean ( ◦C) Land ( ◦C) Ocean ( ◦C) Land/ocean

INM-CM4-8 1.83 SSP1-2.6 0.55 0.78 0.46 1.69
INM-CM4-8 1.83 SSP2-4.5 0.54 0.72 0.47 1.54
INM-CM4-8 1.83 SSP3-7.0 0.52 0.72 0.45 1.62
INM-CM4-8 1.83 SSP5-8.5 0.58 0.82 0.49 1.68
INM-CM5-0 1.92 SSP1-2.6 0.59 0.83 0.50 1.66
INM-CM5-0 1.92 SSP2-4.5 0.56 0.82 0.46 1.76
INM-CM5-0 1.92 SSP3-7.0 0.64 0.92 0.53 1.74
INM-CM5-0 1.92 SSP5-8.5 0.59 0.84 0.49 1.73
CAMS-CSM1-0 2.29 SSP1-2.6 0.43 0.57 0.38 1.50
CAMS-CSM1-0 2.29 SSP2-4.5 0.42 0.56 0.37 1.50
CAMS-CSM1-0 2.29 SSP3-7.0 0.39 0.49 0.35 1.39
CAMS-CSM1-0 2.29 SSP5-8.5 0.42 0.55 0.37 1.49
NorESM2-MM 2.5 SSP1-2.6 0.77 1.16 0.62 1.86
NorESM2-MM 2.5 SSP2-4.5 0.80 1.20 0.64 1.87
NorESM2-MM 2.5 SSP3-7.0 0.71 1.11 0.55 2.03
NorESM2-MM 2.5 SSP5-8.5 0.74 1.18 0.57 2.06
NorESM2-LM 2.54 SSP1-2.6 0.74 1.21 0.56 2.17
NorESM2-LM 2.54 SSP2-4.5 0.64 1.04 0.48 2.15
NorESM2-LM 2.54 SSP3-7.0 0.79 1.31 0.59 2.23
NorESM2-LM 2.54 SSP5-8.5 0.74 1.23 0.55 2.24
MIROC6 2.61 SSP1-2.6 0.51 0.78 0.41 1.91
MIROC6 2.61 SSP2-4.5 0.50 0.77 0.40 1.92
MIROC6 2.61 SSP3-7.0 0.49 0.75 0.39 1.92
MIROC6 2.61 SSP5-8.5 0.53 0.83 0.41 2.00
MIROC-ES2L-f2 2.68 SSP1-2.6 0.65 1.00 0.51 1.98
MIROC-ES2L-f2 2.68 SSP2-4.5 0.61 0.92 0.49 1.87
MIROC-ES2L-f2 2.68 SSP3-7.0 0.58 0.84 0.48 1.76
MIROC-ES2L-f2 2.68 SSP5-8.5 0.58 0.87 0.48 1.82
GISS-E2-1-G-p1 2.72 SSP3-7.0 0.70 0.98 0.60 1.63
GISS-E2-1-G-p3 2.72 SSP1-2.6 0.45 0.66 0.37 1.79
GISS-E2-1-G-p3 2.72 SSP2-4.5 0.60 0.86 0.50 1.72
GISS-E2-1-G-p3 2.72 SSP3-7.0 0.40 0.58 0.33 1.74
GISS-E2-1-G-p3 2.72 SSP5-8.5 0.46 0.67 0.37 1.80
FGOALS-g3 2.88 SSP1-2.6 0.75 1.04 0.64 1.62
FGOALS-g3 2.88 SSP2-4.5 0.59 0.84 0.50 1.67
FGOALS-g3 2.88 SSP3-7.0 0.58 0.84 0.47 1.77
FGOALS-g3 2.88 SSP5-8.5 0.59 0.84 0.50 1.67
MPI-ESM1-2-HR 2.98 SSP1-2.6 0.53 0.71 0.46 1.55
MPI-ESM1-2-HR 2.98 SSP2-4.5 0.56 0.75 0.49 1.52
MPI-ESM1-2-HR 2.98 SSP3-7.0 0.60 0.83 0.51 1.64
MPI-ESM1-2-HR 2.98 SSP5-8.5 0.56 0.71 0.50 1.41
FGOALS-f3-L 3 SSP1-2.6 0.75 1.08 0.62 1.75
FGOALS-f3-L 3 SSP2-4.5 0.67 0.92 0.57 1.60
FGOALS-f3-L 3 SSP3-7.0 0.71 1.02 0.59 1.72
FGOALS-f3-L 3 SSP5-8.5 0.69 0.95 0.59 1.61
MPI-ESM1-2-LR 3 SSP1-2.6 0.58 0.81 0.49 1.65
MPI-ESM1-2-LR 3 SSP2-4.5 0.58 0.81 0.50 1.63
MPI-ESM1-2-LR 3 SSP3-7.0 0.58 0.81 0.49 1.66
MPI-ESM1-2-LR 3 SSP5-8.5 0.56 0.78 0.47 1.64
Mean 0.59 ± 0.11 0.86 ± 0.19 0.49 ± 0.08 1.75 ± 0.20
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Table 6  Medium-ECS GCMs: hindcasted warming from 1980–1990 to 2011–2021 within the 60◦ S:80◦ N latitude range from 1980–1990 to 
2011–2021 over land+ocean (total), land, ocean, and land/ocean ratio

See Fig. 8

Model ECS ( ◦C) Hist + SSP Land + Ocean ( ◦C) Land ( ◦C) Ocean ( ◦C) Land/ocean

BCC-CSM2-MR 3.04 SSP1-2.6 0.60 0.86 0.50 1.73
BCC-CSM2-MR 3.04 SSP2-4.5 0.61 0.89 0.50 1.79
BCC-CSM2-MR 3.04 SSP3-7.0 0.63 0.91 0.52 1.75
BCC-CSM2-MR 3.04 SSP5-8.5 0.64 0.93 0.53 1.76
MRI-ESM2-0 3.15 SSP1-2.6 0.72 1.05 0.59 1.77
MRI-ESM2-0 3.15 SSP2-4.5 0.68 1.00 0.56 1.77
MRI-ESM2-0 3.15 SSP3-7.0 0.63 0.94 0.51 1.83
MRI-ESM2-0 3.15 SSP5-8.5 0.79 1.12 0.66 1.69
AWI-CM-1-1-MR 3.16 SSP1-2.6 0.77 1.09 0.65 1.69
AWI-CM-1-1-MR 3.16 SSP2-4.5 0.79 1.15 0.65 1.78
AWI-CM-1-1-MR 3.16 SSP3-7.0 0.76 1.05 0.65 1.62
AWI-CM-1-1-MR 3.16 SSP5-8.5 0.77 1.11 0.64 1.73
CMCC-CM2-SR5 3.52 SSP2-4.5 0.58 0.79 0.50 1.60
CMCC-CM2-SR5 3.52 SSP3-7.0 0.66 0.85 0.58 1.47
CMCC-CM2-SR5 3.52 SSP5-8.5 0.66 0.90 0.57 1.59
MCM-UA-1-0 3.65 SSP1-2.6 0.86 1.07 0.78 1.36
MCM-UA-1-0 3.65 SSP2-4.5 0.82 1.03 0.74 1.40
MCM-UA-1-0 3.65 SSP3-7.0 0.78 0.92 0.73 1.27
MCM-UA-1-0 3.65 SSP5-8.5 0.90 1.07 0.83 1.29
ACCESS-ESM1-5 3.87 SSP1-2.6 0.84 1.20 0.69 1.74
ACCESS-ESM1-5 3.87 SSP2-4.5 0.85 1.24 0.70 1.78
ACCESS-ESM1-5 3.87 SSP3-7.0 0.86 1.27 0.70 1.82
ACCESS-ESM1-5 3.87 SSP5-8.5 0.83 1.22 0.68 1.80
GFDL-ESM4 3.9 SSP1-2.6 0.71 1.01 0.59 1.72
GFDL-ESM4 3.9 SSP2-4.5 0.73 1.06 0.60 1.77
GFDL-ESM4 3.9 SSP3-7.0 0.70 1.02 0.57 1.78
GFDL-ESM4 3.9 SSP5-8.5 0.69 1.00 0.57 1.76
CNRM-CM6-1-HR-f2 4.28 SSP1-2.6 0.68 0.97 0.57 1.71
CNRM-CM6-1-HR-f2 4.28 SSP2-4.5 0.67 1.00 0.54 1.85
CNRM-CM6-1-HR-f2 4.28 SSP3-7.0 0.66 0.95 0.55 1.73
CNRM-CM6-1-HR-f2 4.28 SSP5-8.5 0.68 0.98 0.57 1.73
EC-Earth3 4.3 SSP1-2.6 0.87 1.27 0.72 1.76
EC-Earth3 4.3 SSP2-4.5 0.76 1.08 0.64 1.69
EC-Earth3 4.3 SSP3-7.0 0.90 1.29 0.75 1.71
EC-Earth3 4.3 SSP5-8.5 0.90 1.29 0.75 1.73
EC-Earth3-Veg 4.31 SSP1-2.6 0.87 1.27 0.72 1.76
EC-Earth3-Veg 4.31 SSP2-4.5 0.88 1.28 0.72 1.76
EC-Earth3-Veg 4.31 SSP3-7.0 0.85 1.22 0.71 1.73
EC-Earth3-Veg 4.31 SSP5-8.5 0.88 1.28 0.73 1.75
KACE-1-0-G 4.48 SSP1-2.6 0.95 1.37 0.79 1.73
KACE-1-0-G 4.48 SSP2-4.5 0.96 1.36 0.80 1.69
KACE-1-0-G 4.48 SSP3-7.0 0.93 1.34 0.77 1.73
KACE-1-0-G 4.48 SSP5-8.5 0.96 1.37 0.80 1.72
Mean 0.77 ± 0.11 1.10 ± 0.16 0.65 ± 0.10 1.69 ± 0.14
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Table 7  High-ECS GCMs: hindcasted warming from 1980–1990 to 2011–2021 within the 60◦ S:80◦ N latitude range from 1980-1990 to 2011–
2021 over land + ocean (total), land, ocean, and land/ocean ratio

Model ECS ( ◦C) Hist + SSP Land + Ocean ( ◦C) Land ( ◦C) Ocean ( ◦C) Land/ocean

IPSL-CM6A-LR 4.56 SSP1-2.6 0.75 1.07 0.63 1.71
IPSL-CM6A-LR 4.56 SSP2-4.5 0.75 1.07 0.63 1.70
IPSL-CM6A-LR 4.56 SSP3-7.0 0.75 1.06 0.63 1.68
IPSL-CM6A-LR 4.56 SSP5-8.5 0.75 1.08 0.63 1.72
ACCESS-CM2 4.72 SSP1-2.6 0.84 1.21 0.69 1.75
ACCESS-CM2 4.72 SSP2-4.5 0.83 1.20 0.69 1.74
ACCESS-CM2 4.72 SSP3-7.0 0.88 1.28 0.73 1.76
ACCESS-CM2 4.72 SSP5-8.5 0.79 1.14 0.65 1.74
NESM3 4.72 SSP1-2.6 0.99 1.44 0.82 1.76
NESM3 4.72 SSP2-4.5 0.97 1.37 0.81 1.69
NESM3 4.72 SSP5-8.5 1.04 1.48 0.87 1.70
CESM2-WACCM 4.75 SSP1-2.6 0.98 1.40 0.81 1.72
CESM2-WACCM 4.75 SSP2-4.5 0.90 1.32 0.74 1.78
CESM2-WACCM 4.75 SSP3-7.0 0.87 1.28 0.71 1.80
CESM2-WACCM 4.75 SSP5-8.5 0.92 1.34 0.76 1.77
CNRM-ESM2-1-f2 4.76 SSP1-2.6 0.63 0.93 0.51 1.82
CNRM-ESM2-1-f2 4.76 SSP2-4.5 0.60 0.88 0.50 1.77
CNRM-ESM2-1-f2 4.76 SSP3-7.0 0.61 0.90 0.50 1.81
CNRM-ESM2-1-f2 4.76 SSP5-8.5 0.64 0.94 0.52 1.81
CNRM-CM6-1-f2 4.83 SSP1-2.6 0.66 0.92 0.55 1.67
CNRM-CM6-1-f2 4.83 SSP2-4.5 0.63 0.88 0.54 1.62
CNRM-CM6-1-f2 4.83 SSP3-7.0 0.65 0.91 0.54 1.68
CNRM-CM6-1-f2 4.83 SSP5-8.5 0.66 0.93 0.56 1.66
CESM2 5.16 SSP1-2.6 0.78 1.15 0.64 1.82
CESM2 5.16 SSP2-4.5 0.74 1.11 0.60 1.87
CESM2 5.16 SSP3-7.0 0.75 1.13 0.61 1.86
CESM2 5.16 SSP5-8.5 0.79 1.17 0.65 1.79
UKESM1-0-LL-f2 5.34 SSP1-2.6 1.12 1.56 0.94 1.66
UKESM1-0-LL-f2 5.34 SSP2-4.5 1.10 1.53 0.93 1.65
UKESM1-0-LL-f2 5.34 SSP3-7.0 1.06 1.48 0.90 1.64
UKESM1-0-LL-f2 5.34 SSP5-8.5 1.10 1.55 0.93 1.67
HadGEM3-GC31-MM-f3 5.42 SSP1-2.6 0.81 1.23 0.64 1.91
HadGEM3-GC31-MM-f3 5.42 SSP5-8.5 0.86 1.25 0.71 1.76
HadGEM3-GC31-LL-f3 5.55 SSP1-2.6 1.21 1.71 1.01 1.70
HadGEM3-GC31-LL-f3 5.55 SSP2-4.5 1.20 1.69 1.01 1.68
HadGEM3-GC31-LL-f3 5.55 SSP5-8.5 1.07 1.53 0.89 1.72
CanESM5-CanOE-p2 5.62 SSP1-2.6 1.20 1.72 1.00 1.72
CanESM5-CanOE-p2 5.62 SSP2-4.5 1.19 1.72 0.99 1.73
CanESM5-CanOE-p2 5.62 SSP3-7.0 1.20 1.73 1.00 1.74
CanESM5-CanOE-p2 5.62 SSP5-8.5 1.22 1.76 1.01 1.74
CanESM5-p1 5.62 SSP1-2.6 1.20 1.72 1.00 1.72
CanESM5-p1 5.62 SSP2-4.5 1.21 1.74 1.01 1.71
CanESM5-p1 5.62 SSP3-7.0 1.22 1.74 1.01 1.72
CanESM5-p1 5.62 SSP5-8.5 1.22 1.76 1.01 1.74
CanESM5-p2 5.62 SSP1-2.6 1.12 1.58 0.95 1.67
CanESM5-p2 5.62 SSP2-4.5 1.14 1.63 0.96 1.70
CanESM5-p2 5.62 SSP3-7.0 1.15 1.64 0.96 1.70
CanESM5-p2 5.62 SSP5-8.5 1.14 1.62 0.95 1.69
CIESM 5.67 SSP1-2.6 0.67 1.25 0.44 2.81
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records showing significantly lower (CNRM) or higher 
(CIESM) results than reported. Therefore, it appears that in 
these GCMs  the biases that occur in some regions are offset 
by opposite biases that occur in other regions.

The last four columns of Table  4 report the global 
(land+ocean) and land warming calculated assuming that 
the ocean warming of the temperature records is correct 
and that the land/ocean warming ratios hindcasted by the 
models is correct as well. The global estimate was calcu-
lated from the ocean and the land ones weighted with their 
relative area percentages within each latitudinal range. In 
particular, we found that for the Northern Hemisphere (0◦ 
N:80◦ N), the land could have warmed about 0.087 ◦ C less 
than what reported on average by HadCRUT5, ERA-T2m, 
and GISTEMP. This bias roughly corresponds to the dif-
ferent warming estimated in Connolly et al. (2021) for the 
northern hemisphere land area by comparing the tempera-
ture records reconstructed by using both urban+rural sta-
tions and rural-only stations that should present significantly 
mitigated non-climatic warming biases.

In conclusion, the proposed land-ocean comparison sug-
gests that the surface-based temperature records most likely 
exhibit non-climatic warming biases and that the actual 
global surface warming from 1980–1990 to 2011–2021 
may have been approximately between 0.50 and 0.55 ◦ C, 
which is approximately 10% lower than what is reported 
in Sect.  2. This means that the medium and high-ECS 
GCM groups are further confirmed to run too hot and that 
the low ECS GCM group performs slightly worse than 
concluded in Sect. 3 because the average warming of its 
hindcasts from 1980–1990 to 2011–2021 is approximately 
0.6 ◦ C (Table 1). However, if UAH-MSU-lt reproduces 
the global surface warming more accurately, the surface-
based temperature records would exhibit warming bias 
of up to 30% of the reported values, which would indi-
cate that even the low ECS GCMs run significantly too 
hot and need to be scaled down by 33% to reduce their 
mean warming from 0.6 to 0.4 ◦ C, which is the warm-
ing reported by the satellite-based measurements. Indeed, 
another indirect evidence that the land surface temperature 
records could be affected by a significant warming bias is 
also given by the divergence observed between instrumen-
tal and dendroclimatological proxy temperature records 
over the past 50 years, where the former show a warming 

trend significantly higher than the latter  (Büntgen et al. 
2021; Esper et al. 2018; Scafetta 2021a).

5  Climate change expectations for the 21st 
century

Climate impacts several areas of economic and environmen-
tal importance and its changes may require the implementa-
tion of various adaptation policies. However, climate change 
could also adversely affect some of the Earth’s climate sys-
tems such as in areas of water scarcity, coastal communities, 
natural ecosystems and others IPCC (2022). It is reasonable 
to assume that if climate change is too rapid and too sig-
nificant, different areas could reach a point of vulnerability 
where adaptation will no longer be sufficient to avoid serious 
adverse effects. However, adaptation policies are much more 
affordable than mitigation ones, so the risks associated with 
possible future climate change should not be overestimated.

The IPCC (2021) used the GCM CMIP6 and various sce-
narios of global socioeconomic change predicted up to 2100 
to produce hypothetical future stories on climate change for 
the 21st century. Four SSP scenarios were studied here: the 
SSP1-2.6 (low GHG emissions in which  CO2 emissions are 
reduced to zero around 2075); SSP2-4.5 (intermediate GHG 
emissions in which  CO2 emissions increase around the cur-
rent rate until 2050, and then decrease but not reach net 
zero by 2100); SSP3-7.0 (high GHG emissions where  CO2 
emissions double by 2100); and SSP5-8.5 (very high GHG 
emissions where  CO2 emissions triple by 2075).

The IPCC (2022) states that if the global surface 
temperature rises significantly above 2 ◦ C over the 
next few decades compared to the pre-industrial period 
(1850–1900), adaptation policies may not be sufficient to 
reduce high risks related to climate change at least in some 
areas. Aggressive climate mitigation policies should there-
fore be implemented because the CMIP6 GCMs predict 
that the temperature will likely increase between 2 and 3 
◦ C (compared to 1850–1900) by 2050 if anthropogenic 
greenhouse gas emissions are not significantly reduced as 
soon as possible.

However, in the previous sections we found that only 
the GCM group with low ECS, which is also the one pre-
dicting less warming, optimally reproduces the observed 

Table 7  (continued)

Model ECS ( ◦C) Hist + SSP Land + Ocean ( ◦C) Land ( ◦C) Ocean ( ◦C) Land/ocean

CIESM 5.67 SSP2-4.5 0.73 1.33 0.51 2.62
CIESM 5.67 SSP5-8.5 0.71 1.29 0.48 2.66
Mean 0.92 ± 0.21 1.34 ± 0.29 0.76 ± 0.19 1.79 ± 0.24

See Fig. 8
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warming from 1980–1990 to 2011–2021 reported by the 
surface-based global temperature records. Therefore, its 
scenario forecasts for the 21st century should be preferred 
for policy. Furthermore, we also found that global warm-
ing from 1980–1990 to 2011–2021 reported by the surface 

temperature records may need to be reduced on average 
by about 10% assuming that the ocean warming is cor-
rect and that the correct land/ocean temperature ratio is 
the one predicted by the models. Finally, if UAH-MSU-lt 
better reproduces the actual warming from 1980–1990 to 

Fig. 9  Low-ECS GCM simulations from 1980 to 2100 using his-
torical + SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios: 
(a1–a8) original GCM simulations versus HadCRUT5 (infilled data); 
(b1–b8) GCM simulations reduced by 10% versus NOAAGlobal-
Temp v5; (c1–c8) GCM simulations reduced by 33% versus UAH-

MSU-lt v6. The ordinates represent the temperature anomaly relative 
to the 1850–1900 average of the correspondent model set. The tem-
perature records are baselined with the GCM simulations in 1980–
1990
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2011–2021, even the simulations of the low ECS GCMs 
would be running too hot and the warming they produce 
would need to be reduced by 33% to optimally accommo-
date the observations. Here, we show and discuss how the 
climate could change in the 21st century under the above 
assumptions.

Figure 9 shows the simulations produced by the low ECS 
GCMs from 1980 to 2100 using the historical + SSP1-2.6, 
SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios in three con-
ditions: panels a1–a8 show the original GCM simulations 
versus HadCRUT5 (infilled data); panels b1–b8 show the 
GCM simulations reduced by 10% compared to NOAA-
GlobalTemp v5; and panels c1–c8 show the GCM simula-
tions reduced by 33% compared to UAH-MSU-lt v6. The 
ordinates represent the temperature anomaly relative to the 
1850–1900 average of the corresponding GCM set. The tem-
perature records are baselined with the model simulations 
in 1980–1990. Table 8 reports the global surface warming 
forecasts produced by the low ECS GCMs in the periods 
1980–1990, 2011–2021, 2040–2060 and 2080–2100 in the 
same three conditions.

The analysis shows that the expected warming of the low-
ECS GCMs by 2040–2060 is close to 2 ◦ C also for the SSP3-
7.0 and SSP5-8.5 scenarios, which Hausfather and Peters 
(2020) described as “unlikely” and as “highly unlikely”, 
respectively. However, if the surface temperature records 

contain a warming bias and, therefore, the GCM simulations 
need to be scaled down to better agree with the actual warm-
ing, the projected warming for 2040–2060 could be lower (or 
even significantly lower if UAH -MSU-lt v6 is correct) than 
2 ◦ C also for the SSP3-7.0 and SSP5-8.5 scenarios.

There is indirect evidence that the surface-based tem-
perature reconstructions could be affected by non-climatic 
warming biases. In fact, compared to the 1850–1900 
mean, the 1980-1990 average warming is 0.54 ◦ C for Had-
CRUT5 (infilled data), 0.48 ◦ C for GISTEMP v4 (using 
the period 1880–1900) and 0.47 ◦ C for NOAAGlobalTemp 
v5 (using the period 1880–1900). However, the low ECS 
GCMs give a slightly lower 1980–1990 warming, which is 
0.41 ± 0.20 ◦ C by averaging all GCM simulations although 
they better hindcast the 1980-2021 warming. In contrast, 
the medium and high ECS GCMs give 0.48 ± 0.27 ◦ C 
and 0.47 ± 0.23 ◦ C, respectively, which better fit the cli-
mate records; but then these same GCMs fail to hindcast 
the observed warming from 1980 to 2021.

Furthermore, the warming hindcasted by the the low-ECS 
models from 1850–1900 to 1980–1990 would be lower than 
0.41 ± 0.20 ◦ C if the climate simulations produced by them 
were to be scaled down. This evidence would suggest that 
the more recently applied homogenization adjustments to 
climate data to attempt to remove their non-climatic biases 
may have been inadequate and may have added or left spu-
rious warming. For example, the continuous homogeniza-
tion adjustments made to the surface-based temperature 
records during the last 10 years may have improperly cooled 
the raw temperature data of the past for many land stations 
(D’Aleo 2016) and, simultaneously, may have improperly 
increased the warming trend from the 1970s to the present, 
and, in particular, that of the period 2000–2021 (Connolly 
et al. 2021; Scafetta 2021a; Watts 2022). In fact, the sci-
entific literature has indicated the period 2000–2014 as a 
“hiatus” or “pause” in global warming (IPCC 2013) because 
all surface and satellite climate records available before 
2014 (e.g. HadCRUT3, which was discontinued in 2014, 
Brohan et al. 2006) showed more than a decade of relatively 
little change. Later, however, new versions of the surface 
temperature records were published (e.g. HadCRUT4 and 
later HadCRUT5 non-infilled and  infilled data) and  the 
2000–2014 “pause” has gradually disappeared because, from 
one climate version to the following one,  it has been 
replaced by an increasingly strong warming trend; e.g. the 
2000–2014 trend was 0.03 °C/decade for HadCRUT3, 0.08 
°C/decade for HadCRUT4, 0.10 °C/decade for HadCRUT5 
non-infilled data, and 0.14 °C/decade  for HadCRUT5 
infilled data. Yet, the 2000–2014 global warming “hiatus” 
is still visible in the UAH-MSU-lt v6 record, which shows a 
2000–2014 warming trend of 0.012 °C/decade (Fig. 2).

The above findings and considerations suggest that the 
actual ECS should be relatively low, which implies that, over 

Table 8  Low-ECS GCMs: global surface warming in the peri-
ods 1980–1990, 2011–2021, 2040–2060, and 2080–2100 using the 
simulations depicted in Fig.  9. Original GCM simulations; (RF = 
0.90) GCM simulations reduced by 10%; (RF = 0.67) GCM simu-
lations reduced by 33%. The temperature anomaly is relative to the 
1850–1900 average of the correspondent model set. The temperature 
records are baselined with the models simulations in 1980–1990

Hist + 
SSP1-2.6

Hist + 
SSP2-4.5

Hist + 
SSP3-7.0

Hist + 
SSP5-8.5

(◦C) (◦C) (◦C) (◦C)

Original
 1980–1990 0.43 ± 0.19 0.43 ± 0.21 0.45 ± 0.20 0.37 ± 0.19
 2011–2021 1.01 ± 0.20 1.01 ± 0.22 1.05 ± 0.19 0.90 ± 0.21
 2040–2060 1.52 ± 0.21 1.75 ± 0.25 1.97 ± 0.21 1.98 ± 0.21
 2080–2100 1.52 ± 0.21 2.32 ± 0.25 3.28 ± 0.24 3.78 ± 0.24

RF = 0.90
 1980-1990 0.39 ± 0.17 0.39 ± 0.19 0.41 ± 0.18 0.33 ± 0.17
 2011–2021 0.91 ± 0.18 0.91 ± 0.20 0.95 ± 0.17 0.81 ± 0.19
 2040–2060 1.37 ± 0.19 1.58 ± 0.23 1.77 ± 0.19 1.78 ± 0.19
 2080–2100 1.37 ± 0.19 2.09 ± 0.23 2.95 ± 0.22 3.40 ± 0.22

RF = 0.67
 1980-1990 0.29 ± 0.13 0.29 ± 0.14 0.30 ± 0.13 0.25 ± 0.13
 2011–2021 0.68 ± 0.13 0.68 ± 0.15 0.70 ± 0.13 0.60 ± 0.14
 2040–2060 1.02 ± 0.14 1.17 ± 0.17 1.32 ± 0.14 1.33 ± 0.14
 2080–2100 1.02 ± 0.14 1.55 ± 0.17 2.20 ± 0.16 2.53 ± 0.16
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the next few decades,  climate change will likely be moder-
ate and that adaptation policies should be sufficient to man-
age any adverse effects that may occur.

6  Conclusion

Here I tested how well the CMIP6 GCMs—grouped into 
low, medium and high ECS subgroups—hindcast the global 
surface temperature warming from 1980–1990 to 2011–2021 
reported by four surface temperature records (ERA5-T2m, 
HadCRUT5, GISTEMP v4, and NOAAGlobTemp v5) and 
by the satellite-based UAH-MSU-lt v6 temperature record. 
The latter was used as the lowest possible estimate for 
the global surface temperature warming during the ana-
lyzed period. The rationale for adding a comparison with 
the lower troposphere temperature record is that surface 
temperatures could be affected by significant non-climatic 
warming bias due, for example, to poorly corrected urban 
heats and many other factors (Connolly et al. 2021; D’Aleo 
2016; Scafetta 2021a; Watts 2022). For example, indirect 
evidence for a significant warming bias, especially over 
land, may be also provided by the so-called “Divergence 
Problem” that is the apparent decoupling between three ring 
width chronologies and the rising temperature measurements 
starting from the 1970s (Büntgen et al. 2021; Esper et al. 
2018; Scafetta 2021a).

Using the 143 GCM mean simulations available for four 
different SSPs, all medium and high ECS models turn out to 
be warmer than observations. Using the 688 CMIP6 ensem-
ble member simulations available, 94–100% of the simula-
tions produced by GCMs with medium and high ECS hind-
casted greater warming than the five temperature records. 
In contrast, the low-ECS models are statistically distributed 
around the observed warming values obtained from the four 
surface-based temperature records. However, if the UAH-
MSU-LT record better represents the actual 2011–2021 
warming, even the low-ECS GCM group would produce on 
average too hot hindcasts.

I also tested whether the internal variability of the models 
could produce results distributed around the observations. 
Its effect was modeled using three fixed precision options. 
Assuming high ( �H ≈ 0.05 ◦ C) and medium ( �M ≈ 0.10 ◦ C) 
precision, it was found that 98–100% and 92–98%, respec-
tively, of all possible outputs from the medium and high 
ECS GCMs would be warmer than observations. Only the 
theoretical results produced by the low-ECS GCM group 
optimally agree with the surface-based temperature records. 
If the required model accuracy is quite low ( �L ≈ 0.15 ◦C), 
the middle and high GCM simulation groups would agree 
better with the data, but this agreement could still be quite 
unsatisfactory because 87–93% (which is still well outside 
the ±1 � or 68% confidence interval) of their hindcasts would 

still be too hot. In any case, the low precision option should 
be considered very unsatisfactory because it would allow the 
GCMs to deviate too much from the observations. Moreo-
ver, such poor precision would not seem consistent with the 
natural variability of the data as argued in Appendix 2. Fig-
ure 5 suggests that such a low precision could only occur for 
EC-Earth3 GCM.

Figures 5 and 6 also show that very few GCMs with 
medium and high ECS could produce some simulations con-
sistent with the actual temperature values. In particular, the 
two high-ECS CNRM models (Séférian et al. 2019; Voldoire 
et al. 2019) appear to perform better than the other models of 
the same group. However, as a group, the high-ECS models 
are physically incompatible with the low-ECS ones. Indeed, 
the internal parameters of the GCMs are carefully tuned to 
obtain results as acceptable as possible (Hourdin et al. 2017; 
Mauritsen et al. 2019). Therefore, the good performance of 
some isolated cases could hardly be used to validate the 
corresponding model since the tuning operations also risk 
masking fundamental physical problems and, therefore, the 
need for model and/or forcing improvements.

It was found that only the low-ECS GCM group agrees 
optimally with the surface-based temperature records 
because their full hindcast range well encompasses the actual 
temperature warming values from 1980–1990 to 2011–2021. 
Therefore, since the three ECS chosen ranges should be con-
sidered large enough to be incompatible with each other, the 
GCM group with low ECS should be preferred to the other 
two, implying that the most likely ECS should be equal to 
or lower than 3 ◦ C. This result confirms (Scafetta 2022). In 
fact, the performance of the models seems to increase as the 
ECS decreases (Scafetta 2021b).

However, the actual ECS could also be significantly lower 
than 3 ◦ C if the UAH-MSU-lt record better represents the 
2011–2021 surface warming. In fact, the satellite record 
shows that from 1980–1990 and 2011–2021 the global 
surface temperature may have warmed by about 0.40 ◦ C, 
which is about 30% less than 0.58 ◦ C as reported by ERA5-
T2m, HadCRUT5 (infilled data), and GISTEMP v4. In this 
case, even the GCM group with low ECS would show poor 
accuracy in reproducing the temperature data because their 
average hindcast is about 0.60 ◦ C. This means that the actual 
ECS could also be 33% lower than that which character-
izes the low ECS GCM group: that is, it could need to be 
reduces from 1.8–3.0 ◦ C to 1.2–2.0 ◦ C. This conclusion can-
not be ruled out because: (1) the surface temperature records 
appear to be severely affected by non-climatic warming bias 
(Connolly et al. 2021; D’Aleo 2016; Scafetta 2021a; Watts 
2022), as the direct comparison between land and ocean 
warming proposed here also seeems to confirm (Fig. 8); (2) 
because a number of independent studies have concluded 
that the ECS could be within such a low range (e.g.: Lewis 
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and Curry 2018; Lindzen and Choi 2011; Scafetta 2013; 
Stefani 2021; Wijngaarden and Happer 2020).

There is a third possibility which would also imply 
that the actual ECS should be relatively low. The climate 
system, in fact, appears to be also modulated by multide-
cennial and millennial natural oscillations such as those 
related to solar forcings and other astronomical ones, 
which are not reproduced by the GCMs (cf.: Scafetta 2013, 
2021c; Wyatt and Curry 2014). Their presence implies 

that the ECS of GCMs should be at least halved (cf.: Loe-
hle and Scafetta 2011; Scafetta 2012a, 2021c) and could 
vary approximately between 1.0 and 2.5 ◦ C, as found by 
several independent studies (cf.: Lewis and Curry 2018; 
Lindzen and Choi 2011; Scafetta 2013; Stefani 2021; 
Wijngaarden and Happer 2020). If so, future climate 
warming and changes will be moderate and naturally oscil-
lating (Scafetta 2013, 2021c) and the rate of global surface 
warming should likely remain quite low until 2030–2040, 

Fig. 10  Possible decomposition of the ERA5-T2m global surface temperature record (blue) into a signal (orange, made of 13 and 5 month mov-
ing averages) and a residual-noise (red) record that could be used to evaluate the error of the mean
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when solar activity is expected to increase again due to 
its natural multi-decadal oscillations (Scafetta 2012b; 
Scafetta and Bianchini 2022; and several others).

In any case, even remaining within the theoretical frame-
work of the CMIP6 GCMs, it should be concluded that only 
the low ECS GCM group can be considered sufficiently 
validated by the global surface warming observed from 
1980–1990 to 2011–2021. Therefore, only the 21st century 
climate projections produced by the low ECS GCMs should 
be used for policy. For decades to come, these models pre-
dict more moderate warming than the GCM groups with 
medium and high ECS do for similar greenhouse gas emis-
sion scenarios. By 2050, projected warming is expected to 
be around 2 ◦ C or less even for the worst greenhouse gas 
emission scenarios. This moderate warming should not be 
considered particularly alarming because the impact and risk 
assessments related to it are considered “moderate” assum-
ing even low to no adaptation (IPCC 2022). Furthermore, 
as surface-based temperature records are likely affected by 
warming biases and are characterized by natural oscillations 
that are not reproduced by the CMIP6 models, the global 
warming expected for the next few decades may be even 
more moderate than predicted by the low-ECS GCMs and 
could easily fall within a safe temperature range where cli-
mate adaptation policies will suffice. Therefore, aggressive 
mitigation policies aimed at rapidly and drastically reduc-
ing GHG emissions in order to avoid a too rapid rise in 

temperature do not seem justified, also because their costs 
seem to outweigh any realistic  benefits (cf. Bezdek et al. 
2019).

Appendix 1: Evaluation of the error 
of the mean for temperature records

Computer simulations are made of pure numbers and their 
averages over a given period of time are error free. The 
uncertainty associated with their unforced internal variabil-
ity is a different matter and will be discussed in Appendix 2.

Conversely, the data points of the temperature records are 
affected by small statistical errors, which however are not 
always readily available as is the case with the ERA5-T2m 
record. Let’s address the issue.

A generic time series yt with t = 1,… ,N  could be 
affected by Gaussian distributed uncertainties �t with zero 
mean and standard deviation �� as

where xt is the physical signal of the record. Its mean is

(3)yt = xt + �t,

(4)ȳ =
1

N

N
�

t=1

yt ± 𝜎𝜉∕
√

N,

Fig. 11  Definition of accuracy 
and precision, and examples of 
high and low accuracy and pre-
cision cases where the red dots 
are ensembles of measurements
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Fig. 12  15-year high-pass filter of HadCRUT5 (infilled data), ERA5-T2m, GISTEMP v4, NOAAGlobTemp v5, and UAH-MSU-lt v6 tempera-
ture records
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where �̄� = 𝜎𝜉∕
√

N is the error of the mean.
It is important to note that �� is the standard error of the 

uncertainties �t , not that of the signal yt . For example, the 
ERA5-T2m 2011–2021 average (baselined to 1980–1990) 
is 0.578 ◦ C, which was obtained by integrating on the 
globe the temperature variations that occurred in each cell 
of the surface grid worldwide. The standard deviation of 
the same record is �y,month = 0.20 ◦ C using the monthly 
record and �y,year = 0.18 ◦ C using the annual record. For 
random variables, the error of the mean does not depend 
on the time resolution of the record, that is, the monthly 
and yearly resolved records should give �̄�year = �̄�month . 

However, if we apply the equation �̄� = 𝜎y∕
√

N  from 2011 
to 2021, for ERA5-T2m we get �̄�year = 0.054 ◦ C (using N 
= 11 points) and �̄�month = 0.017 ◦ C (using N = 132 points), 
respectively. This shows that from 2011 to 2021 the ERA-
T2m record is not composed of random variables floating 
around an average value, but contains a physical signal.

It can be assumed that the physical signal of ERA5-
T2m is represented by the moving averages of the data 
at 13 months, 5 months or 3 months while the residuals 
are the noise components that should be used to evaluate 
�� and �̄� = 𝜎𝜉∕

√

N  . The three choices give �̄� = 0.01 ◦ C, 
�̄� = 0.006 ◦ C, and �̄� = 0.005 ◦ C, respectively, which sug-
gest that the actual error of the 2011–2021 mean could be 
�̄� = 0.01 ◦ C or probably less. The first two examples of 
data decomposition are shown in Fig. 10.

Alternatively, the statistical uncertainty associated with 
ERA5-T2m could be considered compatible with those 
explicitly provided by the other available global surface 
temperature records. In the case of the GISTEMP record, 
Lenssen et al. (2019) calculated that the resulting 95% 
uncertainties are near �̄�95%,annual ≈ 0.05 ◦ C in the global 
annual mean for the last 50 years. HadCRUT5’s global sur-
face temperature record includes its 95% confidence inter-
val estimate and, from 2011 to 2021, the uncertainties for 
the monthly and annual averages are �̄�95%,monthly ≈ 0.05 ◦ C 
and �̄�95%,annual ≈ 0.03 ◦ C, respectively. Berkeley Earth land/
ocean temperature record estimates �̄�95%,monthly ≈ 0.042 ◦ C, 
�̄�95%,annual ≈ 0.028 ◦ C, and �̄�95%,decadal ≈ 0.022 ◦ C during the 
same period. Note that the error of the mean must decrease 
as the time scale increases.

Therefore, adopting the equation �̄�95% = 1.96 × 𝜎𝜉∕
√

N , 
the probable error for the 2011–2021 mean could be of about 
0.01 ◦ C or even smaller. In fact, using the above estimates, 
we obtain: 0.05∕

√

11 = 0.015 ◦ C, 0.05∕
√

132 = 0.0043 ◦ C, 
0.03∕

√

11 = 0.009 ◦  C ,  0.042∕
√

132 = 0.004 ◦  C ,  and 
0.028∕

√

11 = 0.008 ◦ C respectively, the mean of which is 
approximately 0.008 ◦ C. Alternatively, the 95% uncertainty 
over the period 2011–2021 cannot be greater than about ± 

0.02 ◦ C, as explicitly reported by the Berkeley Earth land/
ocean temperature record for the ten-year scale.

Therefore, various methodologies suggest that the uncer-
tainty of the temperature means in the 11-year period from 
2011 to 2021 is very small, around ±0.01 ◦ C at 95% con-
fidence and can be safely ignored as done for example in 
Scafetta (2022).

Appendix 2: Provisional assessment 
of an acceptable internal variability of the models

Climate models are unable to accurately simulate tempera-
ture records due to various uncertainties. For example, only 
by varying the initial conditions different climatic trajecto-
ries are obtained which evolve around an ideal average with 
a certain variance.

Each GCM is characterized by its own internal variability. 
However, in the main text, we argued that such uncertainty 
could not be arbitrarily large because the models must be 
both accurate and precise. Figure 11 explains the concepts 
of “accuracy”, which measures the proximity of the model 
hindcasts to the real value, and of “precision”, which indi-
cates the proximity of the same hindcasts to each other.

An acceptable range for the distribution of hindcasts 
related to the internal variability of the models could be 
assessed by observing that temperature fluctuations at time 
scales lower than, for example, 15 years, (which include the 
climatic oscillations of the ENSO and those of the 11-year 
solar cycle) may not be adequately predicted by the models. 
From the point of view of the models, the temperature fluc-
tuations at those time scales could be considered stochastic 
and their standard deviation from the mean could represent 
the acceptable range that can be associated with the unforced 
internal variability of the models (cf. Knight et al. 2009).

Figure 12 shows the 15-year high-pass filter curves of 
HadCRUT5, ERA5-T2m, GISTEMP v4, NOAAGlobTemp 
v5, and UAH-MSU-lt v6 temperature records from 1980 
to 2021. Using the standard deviation � for each record, 
the error of the mean on 11-year intervals (e.g. from 2011 
to 2021) at the 95% confidence is �̄�95% = 1.96 × 𝜎∕

√

11 , 
that is: �̄�95% = 0.080 ◦ C for HadCRUT5  (infilled data); 
�̄�95% = 0.094 ◦ C for ERA5-T2m; �̄�95% = 0.079 ◦ C for 
GISTEMP v4; �̄�95% = 0.075 ◦ C for GISTEMP v4; and 
�̄�95% = 0.104 ◦ C for UAH-MSU-lt v6.

Based on the above assumptions, over an 11-year period, 
the uncertainty of the 2011–2021 warming compared to 
1980–1990 could be estimated at approximately ±0.1 ◦ C at 
the 95% confidence, which corresponds to the high precision 
option ( �H = 0.05 ◦ C) discussed in Sect. 3.

The high precision option should not be interpreted as 
the actual dispersion produced by each GCM, which varies 
greatly from model to model, but only as the acceptable 
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uncertainty that a CGM should exhibit in reproducing the 
warming from 1980–1990 to 2011–2021. In our case, a 
±0.1 ◦ C error would imply a ±0.17% of the actual warming 
from 1980 to 2021, which can be considered a reasonable 
error.
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