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Abstract
In this study we present a methodological framework to obtain statistically downscaled high resolution climate projections 
over the Attica region in Greece. The framework relies on the construction of a local daily gridded dataset for temperature 
variables (maximum, minimum and mean daily temperatures) and daily precipitation sums. To this aim, a mosaic of data that 
includes observations derived from ground stations and a high resolution simulation, performed by the Weather Research 
and Forecasting (WRF) model, for 1 year (1995) are blended using various gridding techniques to produce a 1 km 1 km 
high resolution daily gridded dataset for the period 1981–2000. The comparison of the gridded dataset against the observa-
tions reveals that the produced dataset maintains the observed long term statistical properties over the period 1981–2000 
for both temperature and precipitation variables. Consequently, the produced dataset is used to statistically downscale 
Regional Climate Model simulations from the EURO-CORDEX initiative for the present (1981–2000) and the future cli-
mate (2081–2100) under the Representative Concentration Pathway (RCP) 8.5 climate scenario using two different bias 
adjustment techniques. The results indicate that the selection of the bias adjustment method is important and can affect the 
simulated climate change signals in a different way. Thus bias adjustment should be performed with caution and examined 
thoroughly before any such downscaled climate change projection dataset reach decision and policy makers in order to plan 
climate change related adaptation strategies.
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1 Introduction

Local climate risk information is an essential component 
of an urban’s agglomeration comprehensive framework for 
responding to the risks of climate change and to its imple-
mentation of adaptation strategies (Bader et al. 2018). How-
ever, the available state-of-the-art climate change modeling 
experiments have a horizontal resolution of about 12 km 
(i.e. EURO-CORDEX) which can provide the climatological 
information needed to enable climate change impact studies 

and develop adaptation strategies on a national or regional 
level (Jacob et al. 2020a, b), but is still coarse to provide the 
adequate information at the local scale.

To overcome this drawback, while the latest “convection-
permitting” kilometer-scale regional climate model (RCM) 
scenario simulations are in progress (Coppola et al. 2020; 
Pichelli et al. 2021), two different downscaling approaches 
are reported in the literature in order to generate high‐reso-
lution regional climate models based on the large‐scale 
information (i) dynamical downscaling and (ii) statistical 
downscaling.

Dynamical downscaling usually refers to the use of 
RCMs, driven by General Circulation Models output or rea-
nalysis data to produce regionalized climate information. 
Examples of dynamical downscaling in European cities can 
be found in the studies of Lauwaet et al. (2015; 2016). In 
particular, Lauwaet et al. (2015) used an urban boundary 
layer climate model (UrbClim) coupled to 11 global climate 
models contained in the Coupled Model Intercomparison 
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Project 5 archive. The authors conducted 20-year simula-
tions for the present (1986–2005) and future (2081–2100) 
climate conditions, considering the Representative Concen-
tration Pathway (RCP) 8.5 climate scenario to examine the 
evolution of the urban heat island (UHI) in six European 
cities with a horizontal resolution lower than 1 km. UrbClim 

was also used to assess the climate change impact on UHI in 
Brussels between 2000–2009 and 2060–2069 under RCP4.5 
and RCP8.5 climate scenarios at a resolution of 250 m (Lau-
waet et al. 2016).

On the contrary, statistical downscaling is based on the 
use of empirical relationships that link local observations of 

Fig. 1  Locations of the stations 
with their altitude in parenthe-
sis. In the background the eleva-
tion of the  3rd nested domain, as 
provided by the WRF simula-
tion

Fig. 2  Flowchart of the methodology used for the construction of the 
high-resolution daily mean, maximum, and minimum temperature 
datasets over Attica (GAA.HRES). M.o indicates the observed mean 
monthly annual cycles over period 1981–2000, M.w the monthly 

means for the closest WRF grid point to the station locations, M.w* 
the perturbed WRF output, OK indicates Ordinary Kriging, KED 
indicates Kriging with External Drift while BA indicates Bias Adjust-
ment
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a target variable (predictands) to a set of suitable large-scale 
variables representing the state of the atmosphere (predic-
tors). The term statistical downscaling includes different 
methodologies such as analogue methods, weather types 
techniques, multiple linear regression, perfect prognosis 
and model output statistics (Smid and Costa 2018; Gutierrez 
et al. 2019). Recently, Manzanas et al. (2020) identified bias 
adjustment techniques as a good alternative for statistical 
downscaling techniques for climate change impact studies. 
Bias adjustment is the process of scaling raw climate model 
outputs to account for their systematic errors, in order to 
improve their fitting to observations. The aforementioned 
process can be achieved with various methods ranging from 
simple scaling of the mean and/or variance to more complex 
methods that scale the whole distribution (e.g. Casanuneva 
et al. 2020; Lazoglou et al. 2020, 2021). Furthermore, bias 
adjustment techniques can be categorized as univariate 

and multivariate. In univariate techniques, each variable is 
adjusted independently thus, intervariable dependence struc-
ture is ignored. In multivariate techniques on the other hand, 
two or more variables are jointly adjusted and the aforemen-
tioned structure is preserved (Cannon 2016; 2018).

Each approach has its strengths and limitations. In par-
ticular dynamical downscaling is based on climate models 
information with physical principles implemented in their 
code to reproduce local climates, but is computationally 
intensive. Statistical downscaling and bias adjustment are 
less computationally intensive and can be easily applied 
but they rely on the availability of high-quality long term 
observational records for a number of variables, both from 
station data and/or gridded observational datasets to estab-
lish robust predictor-predictant relationships and to adjust 
the raw model output, respectively (Casanuneva et al. 2020; 
Manzanas et al. 2020; Varotsos et al. 2021).

Fig. 3  Average annual TX a of the WRF simulation (1995), b of the 
WRF simulation after step 2 of the methodology for temperatures, c 
of the daily gridded dataset based only on observations and d of the 
final GAA.HRES for TX. In each panel, M denotes the spatial aver-

age over all grid points while in panels b, c, and Mo denotes the sta-
tion mean values while Mc the mean values for the closest grid points 
to the stations locations
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Regarding gridded observational datasets, E-OBS is con-
sidered the state-of-the art dataset for the European domain 
with a resolution of 0.1° (Cornes et al. 2018). In addition, 
regional/national gridded datasets with similar or higher 
resolutions have been compiled recently in Europe such as 
SAFRAN covering France, Spain and the Valearic islands 
(hourly dataset at 8 km grid spacing, Quintana-Seguí et al. 
2017); Iberia01 for the Iberian Penisnula (daily datatest at 
0.1°, Herrera et al. 2019a, b); PTHBV for Sweden (4 km 
daily dataset, Johansson, 2000); HYRAS (Frick et al. 2014; 
Razafimaharo et al. 2020) and Krähenmann et al. (2018) 
for Germany (daily dataset at 5 km grid spacing and hourly 
dataset at 1 km, respectively); seNorge2 for Norway (daily 
dataset with a 1 km resolution, Lussana et al. 2018); TabsD 
(MeteoSwiss, 2013a) and RhiresD (MeteoSwiss, 2013b) at 

2 km for Switzerland; CY-OBS, a 1 km grid for Cyprus 
(Camera et al. 2014); CARPATCLIM, a 0.1° grid cover-
ing parts of nine countries along the Carpathian Mountains 
(Lakatos et al. 2013); a 0.11° grid for Poland (Herrera et al. 
2019b); a ~ 1 km grid for Portugal (Fonseca and Santos, 
2018) and a 1 km grid for Serbia (Sekulić et al. 2021). The 
vast majority of the aforementioned datasets are produced 
using dense networks of stations over the areas of interest 
whereas other studies have used a combination of station 
data with satellite and/or reanalysis data in areas with low 
density of stations (Doblas-Reyes et al. 2021 and references 
therein).

In this study, we present a framework in order to provide 
high resolution climate change projections, in the order of 
1 km, in the Greater Athens Area (GAA) by constructing a 

Fig. 4  Average annual TN a of the WRF simulation (1995), b of the 
WRF simulation after step 2 of the methodology for temperatures, c 
of the daily gridded dataset based only on observations and d of the 
final GAA.HRES for TN. In each panel, M denotes the spatial aver-

age over all grid points while in panels b, c, and Mo denotes the sta-
tion mean values while Mc the mean values for the closest grid points 
to the stations locations
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gridded daily observational dataset for the period 1981–2000 
which is then used as a reference dataset to statistically 
downscale RCM simulation data from the EURO-COR-
DEX initiative. To our knowledge this is the first study 
that presents both a gridded daily dataset for temperature 
and precipitation, as well climate change projections in the 
GAA under such a high horizontal resolution. Regarding 
the former, Mamara et al. (2017) and Gofa et al. (2019) pre-
sented a high resolution gridded dataset (about 1 km) for 
temperatures and precipitation, respectively for the period 
1971–2000 based on mean monthly observational data 
from a number of stations within Greece while for the lat-
ter Georgoulias et al. (2022) used RCMs with a horizontal 
resolution of about 12 km with the future period simulations 
driven by RCP2.6, RCP4.5 and RCP8.5.

2  Data

2.1  Observational data

In the present work, we use available daily maximum (TX), 
daily mean (TG) and daily minimum (TN) temperatures 
as well as daily accumulated precipitation (RR) from 11 
stations located within the GAA (Fig. 1) for the period 
1981–2000. The observational data for the 10 meteorologi-
cal stations (Fig. 1), namely: Tanagra (TAN, north of Attika 
in Viotia prefecture), Tatoi (TAT, northern Attika), Eleu-
sis (ELE, western Attika), Nea Filadelfeia (NFIL, central 
Attika), Marathonas (MAR, northeastern Attika), Paiania 
(PAIA, eastern Attika), El. Venizelos airport (AIRP, east-
ern Attika), Helliniko (HEL, southern Attika), Piraeus 

Fig. 5  Average annual TG a of the WRF simulation (1995), b of the 
WRF simulation after step 2 of the methodology for temperatures, c 
of the daily gridded dataset based only on observations and d of the 
final GAA.HRES for TG. In each panel, M denotes the spatial aver-

age over all grid points while in panels b, c and Mo denotes the sta-
tion mean values while Mc the mean values for the closest grid points 
to the stations locations
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(PIR, southwestern Attika), Aegina island (AEG, Saronic 
Gulf, southwestern Attika) are provided from the study of 
Soulis et al. (2018), from a dataset of daily observations of 
140 stations in Greece, originally obtained from the Hel-
lenic National Meteorological Service (HNMS) for the 
period 1971–2000. Regarding the last station, NOA (city 
of Athens) the daily observational data are provided, for the 
same period, by the Historical meteorological station of the 
National Observatory of Athens in Thissio (NOA,https:// 
data. climp act. gr/ en/ datas et/ 1ce5d 2ce- 23df- 412e- 849e- ef249 
3319d a9).

2.2  WRF simulation

Moreover we apply the non-hydrostatic Advanced 
Research WRF (ARW) meso-scale meteorological model 
(Skamarock et al. 2008) version v3.9.1 for the high resolu-
tion (1 km 1 km) numerical simulation of the year 1995, 
using a two-way nesting approach. The Noah-Multiparam-
eterization Land Surface Model (Noah-MP LSM) (Niu 
et al. 2011), coupled with the single-layer urban canopy 
model UCM (Tewari et al. 2007 and references therein) is 
used. The modified two-stream radiation transfer scheme 
(Yang and Friedl, 2003; Niu and Yang, 2004) is opted in 
the Noah-MP LSM. The Yonsei University (YSU) scheme 
(Hong et al. 2006) is applied for the planetary boundary 
layer parameterization and the Rapid Radiative Transfer 
Model for General Circulation Models (RRTM-GCM) 
(Iacono et al. 2008) is used for both long and short wave 
radiation parameterization. The revised MM5 similarity 
theory (Jiménez et al. 2012) is applied for the surface layer 
parameterization and the single-moment microphysics 

scheme (WSM) 3-class (Hong et al. 2004) for microphys-
ics parameterization.

Regarding land use and soil types, we use the predefined 
datasets of Moderate Resolution Imaging Spectroradiom-
eter (MODIS) with 21 land use classes and 16 soil catego-
ries. The numerical simulation is supplemented by high-
resolution data on vegetation and urban land use derived 
from satellite image analysis. In particular, the land use of 
the inner and finer domain, covering the GAA, is remapped 
by extracting vegetation and urban-land use data from a 
30-m resolution satellite image (Landsat Thematic Map-
per) following the methodology described by Papangelis 
et al. (2012). Furthermore, a categorization of seven dif-
ferent urban land use categories is applied primarily based 
on building height and built-up density. Both codes of the 
Noah-MP and the single-layer UCM are adapted to account 
for the aggregated land-use information of the study area.

The initial, lateral and boundary conditions for the simu-
lation of the year 1995 are obtained from the ERA-INTERIM 

Fig. 6  Total annual RR average over the period 1981–2000 of a step 
1 of the spatiotemporal model for precipitation and b the final GAA.
HRTES for precipitation. In each panel, M denotes the spatial average 

over all grid points while in panels b, c and Mo denotes the station 
mean values while Mc the mean values for the closest grid points to 
the stations locations. KED indicates Kriging with External Drift

Fig. 7  Temperature average annual values and total annual precipita-
tion for both the observational data (yellow color) and the data from 
the closest grid point to the station locations from the GAA.HRES 
(blue color)-from left to right TX, TG, TN and RR- and for all station 
location over the period 1981–2000. In each panel M indicates the 
average annual value of TX, TN and TG (in °C/year) and total annual 
precipitation (in mm/year), S is the annual trend as derived by the 
Sen's method (°C/year and mm/year for the temperature variables and 
precipitation respectively), MAE the mean absolute error between the 
the two datasets (in units similar to the y-axis of each panel). In addi-
tion the results for selected indices for each variable are shown. SU 
(number of days with daily TX > 25 °C) and SU35 (number of days 
with daily TX > 35 °C) for TX in days/year, TR (number of days with 
daily TN > 20 °C) for TN in days/year, RR1 (number of wet days) and 
RX1day (monthly maximum 1 day precipitation) for RR in days/year 
and mm/day, respectively

https://data.climpact.gr/en/dataset/1ce5d2ce-23df-412e-849e-ef2493319da9
https://data.climpact.gr/en/dataset/1ce5d2ce-23df-412e-849e-ef2493319da9
https://data.climpact.gr/en/dataset/1ce5d2ce-23df-412e-849e-ef2493319da9
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Project (ds627.0), with spatial resolution ranging from 
1.125° × 1.125° up to 0.703° 0.703° and are updated every 
6 h. The WRF numerical simulation is performed by apply-
ing a triple nesting, leading to a high-resolution grid of 1 km 
x 1 km, which covers the GAA (Fig. S1 in Supplementary 
material). In the vertical axis, 38 full sigma levels resolve 
the atmosphere (model top at 50 hPa), with a finer resolution 
near the surface and above the urban-canopy layer.

As far as the year selected for the WRF simulation is 
concerned, the following criteria were examined: (a) the 
mean monthly annual cycle of the selected year should 
exhibit lowest deviations compared to the long term mean 
monthly annual cycle over the period 1981–2000 (mean 
absolute deviation from the climatological values calcu-
lated in a way similar to the Mean Absolute Error) for all 
variables examined and (b) the year should preferably be 

Fig. 7  (continued)
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after the year 1990 since we wanted to implant in the WRF 
simulation the majority of the land use changes occurred in 
the area under study during the second half of the period 
1981–2000. Regarding the first criteria, in Table S1 (Sup-
plementary Material) the deviations, averaged for all avail-
able station data, between the mean (total for precipitation) 
monthly annual cycle for each individual year and the aver-
age mean (total for precipitation) monthly annual cycle over 
the period 1981–2000 are shown. The results indicate that 
the year 1995 exhibits for all temperature variables devia-
tions lower than 1 °C and the second lowest deviation for 
precipitation (14 mm) among the years after the year 1990.

2.3  Regional climate models simulations

We employ daily maximum, minimum and mean tempera-
tures as well as daily precipitation data from a transient reali-
sation of the Regional Climate Model (RCM) RCA4 of the 
Swedish Meteorological and Hydrological Institute (SMHI; 
Strandberg et al. 2014 and references therein) driven by the 
Max Planck Institute for Meteorology model MPI-ESM-LR 
(Popke et al. 2013) with the simulations carried out in the 
framework of the EURO-CORDEX modeling experiment 
(http:// www. euro- cordex. net). The horizontal resolution of 
the model is 0.11° (~ 12 km), while the simulated data in this 
study cover two periods: the 1981–2000 which is used as the 
reference period and the period 2081–2100 under RCP8.5 
(Riahi et al. 2011). It should be mentioned that the specific 
climate change modelling system has been evaluated and 
used in previous studies examining climate change impacts 
in the area under study (Founda et al. 2019; van der Schriek 
et al. 2020).

3  Methods

3.1  Construction of the GAA high resolution 
gridded data set (GAA.HRES)

A crucial part in this study is the construction of a high reso-
lution 1 km 1 km daily gridded data set for temperature and 
precipitation, hereafter named GAA.HRES, for the period 
1981–2000 which is used as a reference dataset to bias-
adjust the regional climate model simulations. To this aim, 
regarding the temperature variables, we blend the available 
observations with the WRF output through gridding tech-
niques that have been used in previous state-of-the art daily 
gridded datasets in Europe. As it is shown in the forthcom-
ing sections, this blending enhances the spatial variabilty 
of the gridded product in the complex orography of Attica 
and it was selected instead of using only the observational 
data, due to the low density of stations located in relatively 
low altitudes.

3.1.1  Spatiotemporal model for temperature variables

The steps to obtain the daily gridded values for temperatures 
are as follows:

Step 1: The mean monthly annual cycles over period 
1981–2000 are calculated from the observations for each 
one of the temperature variables (M.o in Fig. 2). Conse-
quently, the monthly means for the closest WRF grid point 
to the station location are calculated for the year 1995 (M.w 
in Fig. 2).

Step 2: The biases between the observed monthly means 
and the WRF ones (M.o – M.w) are interpolated on the 1 km 
WRF grid using Ordinary Kriging (OK) and then added to 
the WRF monthly means output. This local perturbation is 
performed in order to obtain a WRF product with long term 
climate temporal characteristics (M.w*) which will still 
maintain the spatial variability of WRF (Cornes et al., 2018; 
Fonseca and Santos 2018) since previous studies have shown 
that WRF exhibits a very good skill in capturing the spatial 
variability of temperature variables over the complex terrain 
of GAA (Papangelis et al. 2012; Giannaros et al. 2013; Politi 
et al. 2020; Dandou et al. 2017; 2021).

Step 3: The third step involves the interpolation of the 
observed temperatures to the WRF grid following a two-step 
process: (a) Kriging with External Drift (KED) is applied to 
the monthly values (12 values/year × 20 years) considering 
the elevation as a covariate to account for elevation depend-
encies (station’s elevation for modeling and WRF elevation 
for interpolation) and (b) the daily anomalies (from the 
monthly mean values, 365 values/year × 20 years) of only 
the observational data are interpolated by applying OK. The 
two interpolated products are superimposed by addition to 
obtain the interpolated daily values for all temperature vari-
ables, that is for each daily anomaly the corresponding mean 
monthly value is added. The aforementioned interpolation 
technique is similar to the ones used in other gridded daily 
datasets in Europe such as the early versions of E-OBS (ver-
sion 16 and prior versions, Haylock et al. 2008) and Iberia01 
(Herrera et al. 2019a, b).

Step 4: The final step to obtain the GAA.HRES daily tem-
peratures is to transfer WRF spatial variability to the gridded 
daily datasets produced in the previous step based solely on 
the observations. This is achieved by using the unbiasing 
bias adjustment method (Déqué, 2007, BA Fig. 2). In par-
ticular, the mean monthly differences between the perturbed 
WRF simulation (M.w*) and the mean monthly observed 
values for the 20-year period (1981–2000) for each grid 
point are calculated. Consequently, to obtain the final daily 
gridded temperature data, the mean monthly differences are 
added to the daily gridded values. This method maintains 
the absolute trend as well as the temporal variability of the 
gridded data produced in Step 3 at all timescales (Hempel 
et al. 2013).

http://www.euro-cordex.net
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3.1.2  Spatiotemporal model for precipitation

For the daily precipitation dataset the method is based 
solely on the station data since the WRF simulation exhib-
ited considerable biases when compared to the station data 
(not shown).The steps to obtain the daily gridded values for 
precipitation are as follows:

Step 1: The first step involves the interpolation of the 
observe monthly sums to the WRF grid using (KED), which 
is applied to the monthly values (12 values/year × 20 years) 
considering the elevation as a covariate (station’s elevation 
for modeling and WRF elevation for interpolation).

Step 2: For the daily precipitation the gridding tech-
nique is based on Generalized Additive Models (GAM; 
Wood, 2017). GAMs are a semi-parametric extension of 
Generalized Linear Models assuming that the underlying 
functions are additive and that the components are smooth, 
with the strength of GAMs being their ability to deal 
with highly non-linear and non-monotonic relationships 
between the response and the set of explanatory variables 
(Guisan et al. 2002). It should be mentioned that GAMs 
have been used in recently produced daily gridded datasets 
e.g. in Oregon USA (Parmentier et al. 2014) and in Europe 
(E-OBSv17 and later versions Cornes et al. 2018).

In particular, for the wet days daily accumulated pre-
cipitation amounts (RR), model fitting using GAM has the 
following form:

where daily precipitation is modelled as smooth functions of 
(i) longitude (lon) and latitude (lat) and (ii) monthly back-
ground precipitation totals (bg) which are produced by Krig-
ing with External Drift (KED) in Step 1. It should be noted 
that other variables such as elevation and distance from the 
coast were also examined however, no significant depend-
ence between these variables and precipitation was found in 
our experiments on the daily timescale.

Step 3: The daily occurrence of rainfall (0 or 1 depend-
ing on whether RR > 0.1 mm) is also interpolated applying 
Indicator Kriging (IK) considering a threshold of 0.5 for 
assigning a wet day to a grid point (Herrera et al., 2019a, 
b). To obtain the final daily gridded dataset for precipi-
tation, the two interpolated daily precipitation products 
obtained from Step 2 and Step 3 are superimposed by 
multiplication.

y = f1(lon, lat) + f2(bg) + e

3.2  Statistical downscaling of regional climate 
model simulations

To downscale the RCM daily model variables to the GAA.
HRES, grid a two-step post processing procedure is fol-
lowed. Initially the RCM daily data are remapped on the 
GAA.HRES grid using bilinear interpolation and conse-
quently the models’ output is bias adjusted using GAA.
HRES as the reference dataset. This two-step approach is 
the reversed order of the bias correction and spatial disag-
gregation framework, which has been previously used to 
statistically downscale both regional and global models for 
climate change and seasonal forecast studies,respectively 
(Nilsen et al. 2022; Lorenz et al. 2021). In order to examine 
if the selection of bias adjustment method is important, we 
use two different bias adjustment techniques namely empiri-
cal quantile mapping (EQM) and quantile delta mapping 
(QDM). EQM works by constructing a transfer function cali-
brated over the reference period to map quantiles from the 
empirical cumulative distribution function of the model out-
put onto the corresponding observed distribution (Iturbide 
et al. 2019; Casanueva et al. 2020). QDM works initially 
by detrending the quantiles of the RCM projections, after-
wards quantile mapping is applied to the detrended series 
with the transfer function constructed in the reference period 
and finally the projected trends, absolute (for temperature) 
or relative (for precipitation), are added or multiplied to the 
bias adjusted quantiles (Cannon et al. 2015).

In the current study, average annual and seasonal means 
are examined for all temperature variables (sums for pre-
cipitation) as well as selected indices from the Expert 
Team on Climate Change Detection and Indices (ETCCDI) 
(Zhang et al. 2011). These are the number of days with daily 
TX > 25 °C (SU) and TX > 35 °C (SU35) for TX, the number 
of days with daily TN > 20 °C (TR) for TN and the number 
of days with RR > 1 mm (RR1) as well as the maximum 
monthly one day precipitation amount (RX1day) for RR. 
These indices are selected taking into account the main cli-
matic characteristics of the examined area which exhibits 
Mediterranean-type conditions, with mild winters and warm 
to hot summers. In addition, the confidence ranges of the 
seasonal means (sums for precipitation) and the aforemen-
tioned indices calculated by the 95th percentiles confidence 
intervals as derived by bootstrap are calculated. More spe-
cifically, the confidence range (CR) is used as a measure of 
uncertainty where for the average value obtained for each 
grid box a ±a value can be added or subtracted in order to 
get the upper and lower limits, respectively. To obtain α at 
the grid point scale, the parameter samples (20 values except 
for winter where the number of values is 19) are bootstapped 
1,000 times with replacement. In each resample, the mean of 
each sample is calculated and the 95th percentile confidence 

Fig. 8  GAA.HRES average seasonal TX (winter (DJF), spring 
(MAM), summer (JJA) and autumn (SON)) for the period 1981–
2000. In the right column the corresponding confidence ranges (CR) 
are shown. M denotes the spatial average over the grid points cover-
ing the area whereas Mo denotes the station mean values while Mc 
the mean values for the closest grid points to the stations locations. 
Units are the same as in the colourbar

◂
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intervals are then computed from the resulting series with α 
being the difference between the upper and the lower confi-
dence intervals divided by two (Giannakopoulos et al. 2009, 
2011, 2016).

4  Results and discussion

4.1  GAA.HRES average annual patterns 
and evaluation against observations 
over the period 1981–2000

In Figs. 3d, 4d and 5d the results of the average annual GAA.
HRES patterns for daily TX, daily TN and daily TG are 
shown over the period 1981–2000, respectively as well as 
the results for the intermediate Steps 2 (Figs. 3b, 4b, 5b) and 
3 (Figs. 3c, 4c, 5c) described in Sect. 3.1.1 In Figs. 3a, 4a 
and 5a the average annual WRF for daily TX, daily TN and 
daily TG are shown for the year 1995. In Fig. 6b the GAA.
HRES average annual total precipitation is shown while in 
Fig. 6a the results for the intermediate Step 1.

From these Figures the following can be extracted: (a) 
The use of the WRF simulation in the construction of the 
daily gridded temperature datasets enhance the spatial rep-
resentation of these fields in the area under study, while the 
use of only, observational data that were available for this 
study, leads to a smoother temperature representation. This 
is more evident for TX (Fig. 3c) where the spatial correla-
tion coefficients between the mean monthly maximum tem-
peratures and the stations elevation is not found statistically 
significant or exhibit low positive values for the April-Sep-
tember period (the warming is uniform) leading to relatively 
low range of temperature values within the domain under 
study. (b) If the purpose of the study is not to produce a daily 
dataset but only to statistically downscale climate change 
projections, the output of step 2 for temperatures where 
the perturbed WRF simulation is obtained for the period 
1981–2000 and the output of step 1 for precipitation could 
be sufficient, since methods that only use mean monthly val-
ues (total for precipitation) to bias adjust the climate change 
projections exist in the literature (e.g., the unbiasing method 
Deque 2007).

Regarding the results of the GAA.HRES temperatures, 
the average annual TX (Fig. 3d) over the period 1981–2000 
and over the whole domain under study reaches about 20 °C 
ranging from about 12 °C at the highest mountain peaks to 

about 24 °C in the low elevation areas such as the Athens 
urban area as well as the industrial area in Elefsina (areas 
around NOA and ELE stations, respectively—Fig. 1). For 
the average annual TN (Fig. 4d) the results indicate higher 
spatial variability than TX (stable conditions occur under 
lower temperatures with less mixing and less uniform tem-
peratures) with the highest (lowest) values shown for the 
areas with the highest (lowest) average annual TX, while 
intermediate values are shown for the rest of the domain. 
The average annual TN is about 10 °C (range 4–16 °C). 
Intermediate values are shown for the average annual TG 
(Fig. 5d), about 15.5 °C over the whole domain under study, 
with temperatures ranging from about 8 °C at the highest 
mountain peaks to about 20 °C in the low elevation areas. 
As far as the total annual RR is concerned (Fig. 6b), aver-
aged over the twenty-year period, the spatial average over 
the whole domain is about 450 mm ranging from about 
300 mm/year to about 1000 mm/year in the lower and higher 
altitudes, respectively.

In Fig. 7 the comparison between the observational data 
and the data from the closest grid point to the stations loca-
tion from the GAA.HRES is shown for the average annual 
TX, average annual TN, average annual TG and the total 
annual RR as well as for selected indices. From the figure 
it is evident that GAA.HRES exhibits a very good perfor-
mance when compared to the observations. In particular 
for the average annual TX the highest Mean Absolute Error 
(MAE) does not exceed 0.2 °C/year, with GAA.HREs exhib-
iting similar to the observed trends at all locations. Regard-
ing the number of days with daily TX > 25 °C (SU) the 
maximum absolute difference 6 days/year is found only in 
one station (PIR) while for the rest of the stations the differ-
ences are about 3 days/year and less. Finally for the number 
of days with daily TX > 35 °C (SU35), similar results are 
shown for all station locations. Similar results are shown 
for average annual TN (and the number of days with daily 
TN > 20 °C (TR)) and TG. Regarding the annual total RR 
the highest MAE is about 35 mm/year in only one station 
location (NFIL) while for the rest of the locations is less 
than about 15 mm/year. In addition GAA.HRES captures the 
trends in each location as well as the average number of wet 
days (RR1) and the monthly maximum 1-day precipitation 
(RX1day). On the daily timescale the comparison between 
the observations and the data from the closest grid point to 
the stations location from the GAA.HRES indicates a per-
fectly linear positive correlation for all temperature varia-
bles, while for precipitation the lowest correlation coefficient 
is not lower than 0.98 (Figs. S3–S6 Supplementary Mate-
rial). In addition the observed seasonal trends are maintained 
by GAA.HRES for all variables and at all locations.

Moreover, a leave-one-out cross validation was performed 
for the daily TX, daily TN and daily TG as well as the daily 

Fig. 9  GAA.HRES average seasonal TΝ (winter (DJF), spring 
(MAM), summer (JJA) and autumn (SON)) for the period 1981–
2000. In the right column the corresponding confidence ranges (CR) 
are shown. M denotes the spatial average over the grid points cover-
ing the area whereas Mo denotes the station mean values while Mc 
the mean values for the closest grid points to the stations locations. 
Units are the same as in the colourbar

◂
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precipitation sums for the period 1981–2000 (Table S2 Sup-
plementary Material). In leave-one-out cross-validation each 
observed data point is removed and the observed value is 
recalculated separately from the remaining data by means of 
interpolation (Krähenmann et al. 2018). The results indicate 
that the average MAE over all months is about 0.7 °C, 1.2 °C 
and 0.8 °C for TX, TN and TG respectively while for RR is 
about 3 mm. Highest (lowest) MAEs for temperature vari-
ables are shown for the warmer (colder) months of the year 
while the opposite behavior is shown for RR.

4.2  GAA.HRES average seasonal patterns 
over the period 1981–2000

In Figs. 8, 9 and 10 (left columns) the average seasonal 
patterns for daily TX, daily TN as well as for total RR are 
shown, respectively. In addition, the confidence ranges of the 
above-mentioned variables calculated by the 95th percentiles 
confidence intervals as derived by bootstrap are provided 
(right columns). Moreover, in each figure apart from the 
average mean over all grid points in the area under study, the 
observed values as well as the values for the closest GAA.
HRES grid point to the stations locations averaged over all 
locations is shown for each variable.

In winter (DJF, Fig. 8), average TX is about 11.4 °C with 
the values ranging from about 3 °C at the highest mountain 
peaks to 15 °C at the low elevation areas such as the Athens 
urban area as well as the industrial area in Elefsina (areas 
around NOA and ELE stations, respectively—Fig. 1). CR 
indicates an average value over the whole domain of about 
0.6 °C with values increasing with increased altitude. On the 
other hand, summer temperatures (JJA) depict mean values, 
over the whole domain, of about 30 °C with temperatures 
varying from approximately 22 °C up to 34 °C. Tempera-
tures lower than about 27 °C are confined in areas with alti-
tude higher than 500 m a.s.l. whereas the maximum overall 
temperatures are shown for the urban and industrialized 
areas (areas close to NOA and ELE stations), respectively 
where the UHI effect is developed. Another feature is the 
cooler temperatures (lower than about 30 °C) in the eastern 
coastal areas of the domain due to the impact of etesian 
winds and the stable sea surface temperatures prevailing at 
coastal sites (Koletsis et al. 2009; Founda et al., 2019). Aver-
age CR is about 0.4 °C with the highest values shown in 
the high altitude areas similar to the winter season. For the 
intermediate seasons, average TX vary from 10 to 21 °C in 

spring (MAM) and from 13 to 25 °C in autumn (SON), the 
latter thus being warmer on average.

For TN (Fig. 9) the DJF and JJA averages are about 4 °C 
(range from − 5 to − 9 °C) and 18 °C (range 9–25 °C), 
respectively. For the intermediate seasons, averaged tem-
peratures are about 8 °C (range 0–14 °C) in MAM and about 
12 °C (range 2–18 °C) in SON. CRs averaged over the whole 
domain do not exceed 0.6 °C for all seasons with the highest 
values mostly found high altitude areas.

Regarding precipitation sums (Fig. 10), the highest 
amounts of precipitation occur during DJF (about 190 mm/
year) followed by MAM and SON (about 120 mm/year for 
both seasons) whereas for the dry season (JJA) precipita-
tion does not exceed 27 mm/year on average. In all cases 
the highest uncertainty is found in the high altitude areas.

Concerning the spatial variability shown by the CRs, 
the highest CR values, for both TX and TN, are found 
in high altitude areas while the lowest values are found 
in metropolitan areas because of the stronger mixing that 
results in more stagnant conditions there. For similar rea-
sons, the lower temporal variability, within the seasons, 
is found for TX in JJA where the warming becomes more 
uniform in the area. In addition in JJA the impact of the 
sea breeze and the etesian winds contribute to slightly 
higher variability in the southern and eastern coastal areas 
of the domain, compared to the inland areas. In contrast, 
higher values occur in MAM due to the more unstable 
meteorological conditions than in SON. For TN the high-
est CR values occur in JJA with the highest values shown 
in the higher altitude areas followed by the areas in the 
eastern coast of the domain due to the more effective cool-
ing, under permitting conditions (windy days) in these 
areas during the night compared to the urban areas of the 
domain. Similar behavior is found in SON. Regarding RR, 
the orographic effect is clearly shown in the spatial dis-
tribution for the CRs in all seasons. The lowest averaged 
temporal variation is found in JJA when drying conditions 
prevail in the domain, while the highest ones are shown 
in DJF and MAM when most of the rain falls in the area.

It should be mentioned that the results presented in this 
study regarding the annual and seasonal temperature means 
as well as the corresponding precipitation sums are compa-
rable to the results of previous gridded data sets produced 
for Greece (Mamara et al. 2017; Gofa et al. 2019) with the 
annual and mean monthly values for temperature and precip-
itation produced in the online tool developed by the Hellenic 
National Meteorological Service (http:// clima tlas. hnms. gr/).

4.3  Temperature and precipitation indicators

Besides the analysis of mean temperatures and precipitation 
sums on the annual and seasonal timescales, the examina-
tion of temperature and precipitation indicators is of high 

Fig. 10  GAA.HRES total seasonal RR (winter (DJF), spring (MAM), 
summer (JJA) and autumn (SON)) for the period 1981–2000. In the 
right column the corresponding confidence ranges (CR) are shown. 
M denotes the spatial average over the grid points covering the area 
whereas Mo denotes the station mean values while Mc the mean val-
ues for the closest grid points to the stations locations. Units are the 
same as in the colourbar

◂
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Fig. 11  GAA.HRES average annual a number of days TX > 25  °C 
(SU), b number of days TX > 35  °C (SU35), c number of days 
TN > 20  °C (TR), d maximum 1  day percipiation (RX1day) and e 
number of days RR > 1 mm (RR1) for the period 1981–2000. In each 

panel M denotes the spatial average over the grid points covering the 
area whereas Mo denotes the station mean values while Mc the mean 
values for the closest grid points to the stations locations. Units are 
the same as in the colourbar

relevance, owing to the resulting impacts on many environ-
mental and socioeconomic sectors (i.e. heat stress, floods, 
agriculture and tourism). The number of summer days (SU, 
Fig. 11a) is about 130 days/year (averaged over the whole 
domain) with the higher values (> than about 140–150 days/

year) shown for the central, northern and eastern parts of 
Attica while lower values (< than about 80 days/year) are 
shown for the higher altitude areas. For the number of very 
hot days n (SU35, Fig. 11b) the values range from about 
0–30 days/year (average about 8 days/year) with regional 
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maximums (> than about 20 days/year) found in the indus-
trialized area of Elefsina, the urban area of Athens as well 
as the northern coastal areas of the domain. The latter is 
attributed to the dry air descending from the mountain of 
Parnitha under southern direction winds. Similar regional 
maximums are also shown for TR with the highest values 
reaching about 120 days/year in the industrialized area of 
Elefsina (Fig. 11c).

Regarding precipitation indicators, monthly maximum 
1 day precipitation amount (RX1day) as well as the num-
ber of wet days (RR > 1 mm) are shown in Fig. 11d, e, 
respectively. Regarding RX1day, the values averaged over 

the whole domain are about 18 mm/day with the highest 
values shown for the mountainous areas in the domain 
(maximum values reach 40 mm/day). In the lower altitude 
areas the values are in the range 10–16 mm/day In con-
trast to RX1day, the highest number of wet day/year are 
shown for the northern coastal part of the domain reaching 
40–50 day/year while for the rest of the areas the values do 
not exceed about 35–40 days/year. This feature is expected 
due to the region’s coastal location and the influence of 
the weather fronts originating from the north east, passing 
over the Aegean Sea.

Fig. 12  From left to right the results for the raw model output (left 
column) and the statistically downscaled simulation from EQM (mid-
dle column) and QDM (right column). Top row the average annual 
TX over the period 1981–2000 is shown, middle row the average 
annual TX over the period 2081–2100 and under RCP8.5 is shown 

while in the bottom row the absolute differences between the future 
and control simulations are shown. In each panel M denotes the spa-
tial average over the grid points covering the area. Units are the same 
as in the colourbar
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Fig. 13  Top two rows: results for the spatially averaged seasonal 
(winter, DJF, spring MAM, summer JJA and autumn, SON) TX 
for all simulations. Bottom row: the average annual number of days 
TX > 25 °C (SU, left panel) and the average annual number of days 
with TX > 35°c (SU35, rights) are shown. In each panel RAW.c, 
EQM.c and QDM.c indicate the raw, EQM and QDM results for the 
1981–2000 period while RAW.f, EQM.f and QDM.f ndicate the raw, 

EQM and QDM results for the 2081–2100 period under RCP8.5. M 
indicates the spatiotemporal average of each simulation while Δ indi-
cates the absolute differences between the future and historical period 
of each simulation. CR ratio is the spatially averaged observed to raw 
model output confidence range (CR) ratios over the period 1981–
2000
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Fig. 14  Top two rows: results for the spatially averaged seasonal 
(winter, DJF, spring MAM, summer JJA and autumn, SON) TN 
for all simulations. Bottom row: the average annual number of days 
TN > 20 °C (TR, left panel) is shown. In each panel RAW.c, EQM.c 
and QDM.c indicate the raw, EQM and QDM results for the 1981–
2000 period while RAW.f, EQM.f and QDM.f ndicate the raw, EQM 

and QDM results for the 2081–2100 period under RCP8.5. M indi-
cates the spatiotemporal average of each simulation while Δ indicates 
the absolute differences between the future and historical period of 
each simulation. CR ratio is the spatially averaged observed to raw 
model output confidence range (CR) ratios over the period 1981–
2000
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4.4  Raw and statistically downscaled climate 
projections

4.4.1  Temperature results

In Fig. 12 the results of climate projections are shown for 
both the raw model output (historical, future) as well the 
statically downscaled RCM model data under the EQM and 
QDM for the average annual TX (TN in the Supplementary 
Material, Fig. S7). Comparing the statistically downscaled 
climate projection for the historical period (top row, middle 
and right columns in both figures) with Fig. 3d it is evident 

that both methods adjust the model values towards the cor-
responding GAA.HRES ones for both variables. The statisti-
cally downscaled climate projections indicate higher spatial 
variability than the regridded raw model output following 
the spatial variability of the GAA observed gridded dataset. 
QDM maintains the raw climate change signal between the 
future and the reference period (increase of about 4.6 °C) 
while EQM indicates a higher climate change signal (about 
4.9 °C). This alteration of the trend by EQM, with respect 
to the raw RCM signal has been reported in previous stud-
ies and it is, a by construction feature, related to the non-
linear transformation of trends obtained by quantile mapping 

Fig. 15  From left to right the results for the raw model output (left 
column) and the statistically downscaled simulation from EQM (mid-
dle column) and QDM (right column). Top row the total annual RR 
over the period 1981–2000 is shown, middle row the total annual RR 
over the period 2081–2100 and under RCP8.5 is shown while in the 

bottom row the relative differences between the future and control 
simulations are shown. In each panel M denotes the spatial average 
over the grid points covering the area. Units are the same as in the 
colourbar
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Fig. 16  Top two rows: results for the spatially averaged seasonal 
(winter, DJF, spring MAM,summer JJA and autumn, SON) RR for all 
simulations. Bottom row: the average annual number of days wet days 
(RR1, left panel) and the average annual monthly maximum 1  day 
precipitation (RX1day, right panel) are shown. In each panel RAW.c, 
EQM.c and QDM.c indicate the raw, EQM and QDM results for the 
1981–2000 period while RAW.f, EQM.f and QDM.f ndicate the raw, 

EQM and QDM results for the 2081–2100 period under RCP8.5. 
M indicates the spatiotemporal average of each simulation while Δ 
indicates the relative differences between the future and the histori-
cal period of each simulation except indicated otherwise. CR ratio is 
the spatially averaged observed to raw model output confidence range 
(CR) ratios over the period 1981–2000
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(Canon et al. 2015; Tong et al. 2021). Moreover, Maurer 
and Pierce (2014) demonstrated that underestimation of the 
observed variance by the raw model in the historical period 
leads to an amplified climate change signal by EQM while 
overestimation of the variance yields a dampened climate 
change signal. From the spatially averaged (over the whole 
domain) seasonal TX results presented in Fig. 13 (maps are 
shown in the Supplementary Material, Figs. S8 and S9), it 
is shown that for observed to raw model output CR ratios 
higher than 1 (averaged over the whole domain), EQM 
tends to amplify the climate change signal. This is clearly 
shown for DJF, MAM and SON (amplification of 0.3–0.6 °C 
depending on the season), while in JJA (CR ratio < 1) the 
climate change signal with respect to the raw model output 
is contracted by 0.2 °C. On the contrary QDM maintains the 
raw climate change signal in all seasons. In addition, for the 
absolute threshold based TX indices, SU and SU35 (Fig. 13 
bottom row) EQM indicates a lower climate change signal 
compared to the raw model output, 53 days/year for EQM 
versus 56 days/year for raw model output and 45 days/year 
for EQM versus 47 days/year for raw model output, for SU 
and SU35, respectively. It should be mentioned that for SU 
the relationship between the CR ratio and the EQM climate 
change signal compared to the raw one is not consistent to 
the rest of results for TX, since it is not a robust estimator 
regarding the prediction of the effect of bias correction on 
trends as discussed in Maurer and Pierce (2014). Neverthe-
less, EQM performs better than QDM with respect to the 
raw climate change signal for both indicators. The latter can 
also be supported from the spatial distribution of SU35 (Fig. 
S10 Supplementary Material) where a very high number of 
days exceeding the 35 °C threshold are found in the indus-
trialized area of Elefsina, the urban area of Athens as well 
as the northern coastal areas of the domain for the future 
period and under RCP8.5.

Regarding TN, the seasonal results are consistent with the 
ones found for the TX ones. From Fig. 14 it is evident that 
EQM amplifies the climate change signal compared to raw 
model output (CR ratios higher than 1) while QDM main-
tains the climate change signal in levels identical to raw model 
output for all seasons (maps are shown in the Supplementary 
Material, Figs. S11–S12). For TR (Fig. 14, bottom left panel 
and in the Supplementary Material, Figs. S13) both methods 
deliver changes close to the raw model output with the highest 
absolute deviation between the raw model output and the bias 
adjusted ones being less than 5 days/year.

4.4.2  Precipitation results

As far as the annual total precipitation is concerned (Fig. 15), 
the raw RCM output overestimates (on average over the 
domain under study) the GAA.HRES in the historical period 

(Fig. 6d). The projected relative decreases in RR are found 
slightly lower after bias adjustment: an average 31% reduc-
tion for the raw RCM data versus 26% and 22% after bias 
adjustment using EQM and QDM, respectively. For EQM 
the findings are consistent to what is found for TX, that is 
for observed to raw model output CR ratios higher than 1 
(CR ratio 1.1) the climate change signal with respect to the 
raw model output is amplified. Nevertheless the net effect 
is relative small (about 5% on an annual basis) consistent 
to what is reported in Maurer and Pierce (2014). Moreover, 
QDM does not maintain the magnitude of the climate change 
signal as shown for the average annual TX and TN, which 
is a by construction feature since accounting for changes in 
all the quantiles does not guarantee the preservation in the 
mean value (Cannon et al. 2015).

On the seasonal scale (Fig. 14 and Figs S14 and S15 in the 
supplementary material) both methods indicate precipitation 
relative changes close to the raw model output for DJF and 
MAM (observed to raw model output CR ratios > 1) where 
most of the rain falls in the area with EQM performing better 
than QDM. Nevertheless in both seasons the highest devia-
tions for QDM do not exceed 7%. In JJA the highest relative 
decreases are shown: an average 71% decrease for the raw 
RCM data versus 65% and 52% after bias adjustment using 
EQM and QDM, respectively. In SON the average relative 
changes between the future and the reference period are not 
found statistically significant for the raw model output as well 
as for both the bias adjusted simulations. Regarding the pre-
cipitation indicators (Fig. 16 bottom row and Figs S16 in the 
Supplementary Material) for RR1 both methods underesti-
mate the decreases in the number of days/year with QDM 
performing better than EQM. Finally, for the RX1day indica-
tor both methods show absolute changes of similar magnitude 
to the raw model output (the relative decrease of − 13% is not 
relevant for QDM).

5  Conclusions

In this study a methodological framework to obtain statisti-
cally downscaled high resolution climate projections over 
the Attica region was developed. The framework relies on 
the construction of a local daily gridded dataset for tem-
perature variables (maximum, minimum and mean daily 
temperatures) and daily precipitation sums. To this aim, a 
mosaic of data that includes observations derived from sta-
tion data and a high resolution WRF simulation for the year 
1995 were blended using various gridding techniques to pro-
duce a 1 km 1 km high resolution daily gridded dataset for 
the period 1981–2000 and for the aforementioned variables.

The comparison of the gridded dataset against the obser-
vations revealed that the produced dataset maintains the 
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long term statistical properties over the period 1981–2000 
for both temperature and precipitation variables. Moreover, 
a leave-one-out cross-validation method was conducted to 
assess the methods performance, revealing an overall high 
skill of the datasets in reproducing the monthly average 
observed temperatures and precipitation sums. In addition, 
a qualitative comparison with an existing dataset of similar 
resolution showed relatively high coherency for the average 
annual temperatures and the annual total precipitation over 
the period 1981–2000.

The gridded dataset produced in this study, similarly to 
other gridded datasets produced in other areas, may be use-
ful for any kind of research studies requiring high resolution 
climatic data such as agronomy, hydrology, forestry which 
have been found that are under pressure in the area of study 
(e.g. Giannakopoulos et al. 2011). In addition, the methodol-
ogy proposed in this study may be useful in other areas with 
relatively low density of stations and/or complex orography.

To downscale the RCM daily model variables to the 
GAA.HRES grid the RCM daily data, for the 1981–2000 
and the 2081–2100 under RCP8.5 periods, were remapped 
on the GAA.HRES grid using bilinear interpolation and con-
sequently the models’ output was bias adjusted using GAA.
HRES as the reference dataset. In addition, two different 
bias adjustment techniques, namely the empirical quantile 
mapping (EQM) and the quantile delta mapping (QDM), 
were used to examine the impact of bias adjustment in the 
downscaled high resolution climate projections. The analysis 
revealed that the selection of the bias adjustment method is 
important. In particular, the results showed that different bias 
adjustment methods can affect the simulated change signal 
in a different way and the final choice of method may depend 
on the specific goals of a given application. In particular, in 
our study QDM maintained the raw climate change signal 
on both the annual and seasonal timescales for both TX and 
TN. For the absolute threshold based temperature indices 
(SU, SU35, TR) EQM performed better than QDM, although 
a small modification of the raw climate change signal was 
found by the method. Regarding precipitation, the results 
indicated that EQM performed better than QDM when com-
pared to the raw climate change signal for the annual and 
the seasonal timescales, with QDM performing better for 
RR1. Nevertheless, both methods performed quite well for 
the non fixed threshold precipitation indicator (RX1day). 
This is of great importance since statistically downscaled 
(through bias adjustment) datasets are produced widely for 
various sectors which in many occasions are then used by 
decision-makers in the public and private sectors to plan 
climate change related adaptation strategies.
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