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Abstract
Recent assessments of climate sensitivity per doubling of atmospheric CO2 concentration have combined likelihoods derived 
from multiple lines of evidence. These assessments were very influential in the Intergovernmental Panel on Climate Change 
Sixth Assessment Report (AR6) assessment of equilibrium climate sensitivity, the likely range lower limit of which was raised 
to 2.5 °C (from 1.5 °C previously). This study evaluates the methodology of and results from a particularly influential assess-
ment of climate sensitivity that combined multiple lines of evidence, Sherwood et al. (Rev Geophys 58(4):e2019RG000678, 
2020). That assessment used a subjective Bayesian statistical method, with an investigator-selected prior distribution. This 
study estimates climate sensitivity using an Objective Bayesian method with computed, mathematical priors, since subjective 
Bayesian methods may produce uncertainty ranges that poorly match confidence intervals. Identical model equations and, ini-
tially, identical input values to those in Sherwood et al. are used. This study corrects Sherwood et al.'s likelihood estimation, 
producing estimates from three methods that agree closely with each other, but differ from those that they derived. Finally, 
the selection of input values is revisited, where appropriate adopting values based on more recent evidence or that otherwise 
appear better justified. The resulting estimates of long-term climate sensitivity are much lower and better constrained (median 
2.16 °C, 17–83% range 1.75–2.7 °C, 5–95% range 1.55–3.2 °C) than in Sherwood et al. and in AR6 (central value 3 °C, very 
likely range 2.0–5.0 °C). This sensitivity to the assumptions employed implies that climate sensitivity remains difficult to 
ascertain, and that values between 1.5 °C and 2 °C are quite plausible.

1  Introduction

The Earth's climate sensitivity is a key measure of the 
longer-term climate response to external forcing. It is per-
haps the most important ill-quantified climate system param-
eter. In principle, climate sensitivity represents the equilib-
rium change in mean surface temperature to a doubling of 
atmospheric CO2 concentration from preindustrial levels, 
once the deep ocean has reached a stable state. In practice 
it is normally estimated using some approximate measure, 
often derived from disequilibrium changes. Climate sensi-
tivity has been estimated from various types of evidence, 
but none of these has narrowly constrained its value. The 
first five Assessment Reports by the Intergovernmental Panel 
on Climate Change (IPCC) relied heavily on estimates of 
climate sensitivity from global climate model (GCM) sim-
ulations. The 1.5–4.5 K likely range for climate sensitiv-
ity in the 2013 IPCC Fifth Assessment Report (AR5) was 

identical to the range presented in the landmark Charney 
(1979) report, with the great increase in GCM sophistication 
since 1979 not having led to any narrowing of the climate 
sensitivity range.

GCMs use semi-empirical approximations (parameteri-
zations) to represent subgrid-scale cloud and convection 
processes that are known to be critical to determining the 
model's climate sensitivity, which varies by up to a factor 
of three among GCMs. In one well regarded GCM, a sim-
ple change to how convective precipitation was parameter-
ized1 varied its climate sensitivity by a factor of two, with 
no obvious change in how well the model otherwise per-
formed (Zhao et al. 2016). Changing the order in which the 
various parameterized atmospheric modules were updated 
in each time step was found to vary another GCM's climate 
sensitivity by a factor of up to two, with ambiguity existing 
regarding the optimum ordering (Donahue and Caldwell 
2018). Moreover, the universal use in GCMs of deterministic 
parameterizations may bias their climate sensitivity upwards 
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1  Changing between a threshold convective scheme in which all con-
vective condensate exceeding a threshold value is converted to pre-
cipitation, and a fractional removal scheme, in which only a fraction 
of such condensate is removed as precipitation.
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(Strommen et al. 2019). Such issues make the reliability of 
GCM-derived estimates of climate sensitivity questionable.

In the light of such issues, and the further widening of 
the range of GCM climate sensitivities in the latest (CMIP6) 
generation of GCMs (Zelinka et al. 2020), the IPCC Sixth 
Assessment Report (AR6) abandoned the previous reliance 
on GCM climate sensitivities. Instead, evaluation of climate 
sensitivity was approached by combining estimates based on 
different lines of evidence, such as process understanding 
(feedback analysis), the historical instrumental record, and 
paleoclimate data.

Combining different lines of evidence should, to the 
extent that they are independent, enable climate sensitivity 
to be estimated more precisely than from any single line of 
evidence (Stevens et al. 2016). A comprehensive attempt to 
do so was made by Sherwood et al. (2020, henceforth S20), 
a 92-page study. S20 was conducted under the auspices of 
the World Climate Research Programme's Grand Science 
Challenge on Clouds, Circulation and Climate Sensitivity 
and provides a very detailed investigation of climate sen-
sitivity. As the most influential recent assessment, S20 was 
cited over twenty times in the relevant AR6 chapter, which 
approached climate sensitivity estimation on very similar 
lines to S20, albeit not using its formal probabilistic meth-
ods. There are in principle considerable strengths in S20's 
scientific approach. Its main results were derived by combin-
ing understanding from feedback analysis (Process evidence) 
with evidence from changes since circa 1850 (Historical evi-
dence), and from cold and warm past periods (Paleoclimate 
evidence)—three lines of evidence that S20 judged to be 
largely independent.

The contribution the present study makes to estimation 
of climate sensitivity is three-fold. First, it identifies statisti-
cal problems in S20. The main methodological argument is 
that, when Bayesian methods are used, an Objective rather 
than a Subjective Bayesian approach should be taken. This 
means that rather than the investigator choosing the prior 
distribution, the prior distribution should be mathematically 
computed, based on the assumed statistical model relating to 
all the evidence to be analyzed (Bernardo 2009). S20 used a 
Subjective Bayesian statistical method, with an investigator-
selected prior distribution, that has been shown may pro-
duce unrealistic climate sensitivity estimation when used to 
combine differing types of evidence (Lewis 2018), and S20 
provided no evidence that it did not do so in this case. More-
over, for all except Process evidence, S20 used a method of 
estimating likelihoods that turns out to be unsound. This 
study validates its likelihood estimates by using multiple 
methods and cross-checking their results. S20's method is 
shown to often result in serious likelihood underestimation 
at higher climate sensitivity levels.

The second contribution of this study is that it develops 
and applies an Objective Bayesian approach to combining 

differing climate sensitivity evidence, using a mathemati-
cally computed prior distribution. The results using the 
methodology developed and the same input assumptions as 
S20 are then used to assess what effect the statistical prob-
lems identified in S20 have on its results. It is found that 
they bias S20's estimation of climate sensitivity downwards, 
although only to a minor extent even at the upper uncertainty 
bound when all three lines of evidence are combined.

This study's third contribution is to review and where 
appropriate revise the input assumptions used by S20, pay-
ing particular regard to more recent evidence, and to investi-
gate the effect of the revised input assumptions on estimates 
of climate sensitivity using the developed Objective Bayes-
ian methodology. Some of the revisions to input assumptions 
relate to the treatment in certain cases of CO2 forcing and/or 
the warming it causes. This study differs from S20 regarding 
the appropriate scaling of CO2 forcing, and comparison of 
warming, where different changes in CO2 atmospheric con-
centrations are involved, and regarding scaling CO2 forcing 
where its use requires a different estimation basis from that 
on which the forcing estimate was derived. The combined 
effects of the revisions to S20's CO2 related estimates and 
to other input assumptions result in a major reduction in 
estimated climate sensitivity.

The paper is structured as follows. Climate sensitivity 
measures are discussed in Sect. 2. Section 3 deals with sta-
tistical methods, while Sect. 4 reviews S20's input assump-
tions and proposes certain revisions to them. Section 5 sets 
out results based on S20's original input assumptions but 
using the corrected likelihood estimates, using alternatively 
S20's chosen Subjective Bayesian prior distribution or the 
Objective Bayesian (mathematically computed) prior dis-
tributions. Section 6 presents results using the revised input 
assumptions and Objective Bayesian prior distributions. Sec-
tion 7 discusses the statistical issues and both their effects 
and the effects of using different input assumptions.

2 � Climate sensitivity measures

The traditional measure of climate sensitivity is the equilib-
rium change in global mean surface temperature (GMST) 
following a doubling of the atmospheric CO2 concentration 
(equilibrium climate sensitivity, henceforth ECS). While the 
equilibrium involved allows for the deep ocean to reach a 
steady state, it excludes changes in slow components (e.g., 
ice sheets). Such an equilibrium is achievable in a GCM but 
not in the real climate system. The corresponding equilib-
rium change over timescales that allow for feedbacks from 
changes in the slow components to occur is called Earth 
system sensitivity (ESS).
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Under the standard linear forcing-feedback framework, 
the excess of a change ΔF in effective radiative forcing 
(ERF) over the change in top-of-atmosphere (TOA) plan-
etary radiative imbalance, ΔN, is equal and opposite to the 
climate system's radiative response ΔR, measuring all radia-
tion downwards. ERF is a measure of the increase in TOA 
radiative imbalance resulting from a change in atmospheric 
composition, such as an increase in CO2 concentration, 
with surface temperature held constant but the atmosphere 
allowed to adjust to the change. ΔR is taken to be the product 
of the change ΔT in global mean near-surface air tempera-
ture (GMAT), or in GMST, and a fixed climate feedback 
parameter �fixed . Accordingly:

Under this framework, it follows that for ΔN = 0 , repre-
senting equilibrium:

and hence for the ERF from a doubling of CO2 concentra-
tion, F2⤬CO2:

However, in GCMs (and the real climate system) the cli-
mate feedback parameter may not in fact be fixed, in which 
case a linear projection to ΔN = 0 will not provide an accu-
rate estimate of ECS.

Rather than seeking to estimate ECS, S20 instead esti-
mate an effective climate sensitivity S, that corresponds to 
the effective sensitivity in GCMs derived from feedbacks 
occurring during the first 150 simulation years after an 
abrupt quadrupling of CO2 concentration from its prein-
dustrial level (abrupt4xCO2), treating climate feedbacks as 
being fixed.

For GCMs, S is normally derived by linearly regress-
ing, usually using annual average values, changes (ΔN) in 
TOA radiative imbalance on changes (ΔT) in GMAT over 
abrupt4xCO2 simulations, with changes being measured rel-
ative to values during an unforced preindustrial control sim-
ulation by the GCM. The ΔT and ΔN values are rescaled to 
reflect the ratio of F2⤬CO2 to the ERF from a quadrupling of 
CO2, F4⤬CO2. The slope of the regression line, λ, is a meas-
ure of the effective climate feedback parameter operating 
over the regression period. The regression line is continued 
forwards to ΔN = 0 , indicating radiative equilibrium, with 
S being defined as the ΔT value at that point, and backwards 
to ΔT = 0 , the rescaled ΔN value at that point providing an 
estimate, Fregress

2×CO2
 , of F2⤬CO2. Hence:

(1)(ΔF − ΔN) = −ΔR = −�fixedΔT

(2)ΔT = −ΔF∕�fixed

(3)ECS = −F2×CO2∕�
fixed

(4)S = −F
regress

2×CO2
∕�

If the climate feedback parameter is not fixed, in general 
λ differs from −F2×CO2∕ECS , S differs from ECS, and Fregress

2×CO2
 

differs from F2⤬CO2.
In the vast majority of GCMs, the local slope of the rela-

tionship between ΔN and ΔT weakens over the course of 
150-year abrupt4xCO2 simulations, strongly suggesting that 
the model ECS exceeds S. Since feedbacks activated only 
on a long timescale affect the climate extremely slowly, S is 
more relevant than ECS (or ESS) to climate change over the 
next few centuries. However, deriving S from paleoclimate 
evidence, which reflects equilibrium changes, requires an 
estimate of the ECS to S ratio, with its excess over one being 
defined as � = ECS∕S − 1.

To obtain a valid estimate for climate sensitivity to dou-
bled CO2 concentration from data involving a different 
change in CO2 concentration, it is necessary to scale the 
temperature change involved by the ratio of ΔF2xCO2 to the 
ERF associated with the particular change in CO2 concentra-
tion, even assuming that climate sensitivity is unaffected by 
the effect of the difference in CO2 concentration change on 
the climate state. S20 define their S in GCMs as the linearly 
regressed warming over years 1–150 after a quadrupling of 
CO2 concentration, extrapolated to zero ΔN and then divided 
by two. This scaling factor, while popular, is difficult to 
justify when the actual ratio of the ERF change involved 
(F4⤬CO2) to F2⤬CO2 has been estimated with reasonable pre-
cision to be 2.10, 5% greater than twice that from doubled 
CO2 concentration (Byrne and Goldblatt 2014; Etminan 
et al. 2016; Meinshausen et al. 2020).

S20 defend their division of abrupt4xCO2 temperature 
changes by 2 (rather than 2.10) on the basis that it brings 
S estimated on their basis closer to estimated ECS in mod-
els with very long abrupt2xCO2 simulations, which they 
estimate as 6% higher than S derived by halving tempera-
ture changes in those models' abrupt4 × CO2 simulations, 
implying � = 0.06. However, that argument conflicts with 
their valid desire for a measure that is as closely related as 
possible to scenarios of practical relevance. Moreover, the 
increase in S that S20 introduce by basing it on a biased scal-
ing of F4⤬CO2 to F2⤬CO2 results in inconsistent estimation of 
S between their three lines of evidence, a serious flaw. The 
biased scaling only affects (via the resulting ζ estimate) their 
estimation of S from Paleoclimate evidence, since its esti-
mation from both Process and Historical evidence is based 
on directly estimated F2⤬CO2, and is independent of scaled 
F4⤬CO2.

Here, S20's one-half scaling factor and the resulting 0.06 
central ζ estimate for ECS∕S − 1 is retained when investigat-
ing the effect of the objective Bayesian statistical method on 
their results. However, in Sect. 4 it is revised to 0.135, the 
mean ζ estimate in both abrupt2xCO2 and abrupt4xCO2 
long-run simulations (16 in all) by eleven GCMs (Rugen-
stein et al. 2020). No scaling from F4⤬CO2 to F2⤬CO2 is 
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required for these calculations, since temperature changes 
are only compared within abrupt4xCO2 and abrupt2xCO2 
simulations, not between them.

3 � Methods

Scientific knowledge regarding the properties of any real-
world system, or of a simplified conceptual model used to 
represent it, emanates from observing aspects of the system 
behavior. The results of such observations or assessments 
based thereon ('data-variables') are typically numerical and 
somewhat uncertain, and are regarded as subject to random 
errors. Conceptual models of the system usually relate the 
data-variables used as input assumptions to system prop-
erties of interest that are regarded as fixed but unknown 
('parameters'), assumed here to be represented by continu-
ously-valued variables. A key role of statistical inference is 
then to draw valid conclusions from data-variables regard-
ing such parameters, as regards their values and associated 
uncertainty.

It is essential for scientific inference that the statistical 
methods used are calibrated, in the sense that the uncer-
tainty ranges they generate closely approximate confidence 
intervals. That is, over the long run (over many applica-
tions of the method to different data sets) the true parameter 
value will lie below a properly derived (x%–y%) confidence 
interval in about x% of cases, and above it in about (1—y)% 
of cases.

The data likelihood, a joint function of data and parameter 
values, plays a central role in statistical parameter inference. 
It represents the joint probability density of the observed 
data as a function of the parameter value(s). Provided errors 
in the observed data are independent, their joint probability 
density is the product of that for each data-variable. Usu-
ally, only the ratio of the data likelihood to its highest value 
matters.

An important property of likelihood functions is that, 
where two likelihood functions concerning the same system 
and parameters but derived from independent data exist, the 
information they jointly contain about the parameter is rep-
resentable by their product (Birnbaum 1962; Pawitan 2001 
Sects. 2.3 and 7.2). This property is used when combining 
the three different lines of evidence.

3.1 � Bayesian parameter inference

There are two main statistical paradigms, Frequentist and 
Bayesian (Bernardo and Smith 1994). In both, parameter 
inference revolves around likelihood functions. However, 
Bayesians treat fixed but uncertain parameters as having 
distributions representing degrees of belief, in effect as 
if random variables with a probability distribution, while 

Frequentists do not, notwithstanding Frequentist confidence 
distributions (Schweder and Hjort 2002, 2016).

Both Stevens et al. (2016) and S20 employ Bayesian 
methods for combining climate sensitivity evidence; Fre-
quentist methods appear less suitable for this task. Bayesian 
methods provide a means of coherently updating personal 
beliefs about an unknown parameter with external evidence 
as to its value. However, for continuously-valued param-
eters they do not in general provide calibrated estimates that 
properly reflect such evidence. By contrast, Frequentist con-
fidence measures are derived from randomness in the data 
values and are intrinsically calibrated.

In the continuous case, from Bayes' theorem (Bayes 1763) 
the posterior probability density function (PDF), p

�(�|y) , for 
a parameter (vector) θ on which observed data y depend, is 
proportional to the data likelihood p

y
(y|�) (the probability 

density of the data treated as a function of θ, for fixed y) 
multiplied by the density of a 'prior distribution' (prior) for 
θ, p

�(�):

(the subscripts indicating the variable each density is for). 
The constant c is such that p

�(�|y) integrates to unit prob-
ability; it is the reciprocal of ∫ p

y
(y|�)p

�
(�)d� . If the param-

eter being estimated were a random variable with actual 
probability distribution p

�(�) then (5) would follow from 
the conditional probability lemma. However, this is not the 
case here (Fraser and Reid 2011).

The Bayesian equivalent of a confidence interval, a cred-
ible interval, reflects probability implied by the posterior 
PDF. Whether a credible interval is calibrated or not will 
among other things depend on the choice of prior, which the 
investigator is free to select. S20 select a prior that is uni-
form in λ-space, and therefore proportional to F2×CO2∕S

2 in 
S-space. In the common 'Subjective Bayesian' view adopted 
by S20, the prior is a probability distribution representing 
the investigator's degrees of belief about parameter values 
before incorporating information from the current data. 
There is no requirement that the posterior PDF be calibrated, 
and the resulting credible intervals may be far from actual 
confidence intervals (Fraser 2011). However, to avoid Bayes-
ian inference providing misleading results, it is necessary 
to use a prior that provides correct calibration of posterior 
probabilities to frequencies and hence confidence intervals 
(Fraser et al. 2010; Lewis and Grünwald 2018).

In the alternative 'Objective Bayesian' view, in the 
absence of existing evidence regarding parameter values the 
prior should consist of a mathematical weighting function 
intended to have minimal influence on inference relative to 
the data, so that it is as noninformative as possible.

Under this approach, any existing probabilistic evidence 
concerning the parameter being estimated may appropriately 

(5)p
�
(�|y) = c p

y
(y|�)p

�
(�)
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be represented by a likelihood function for a notional obser-
vation, from which a posterior density has been calculated 
using a noninformative prior (Hartigan 1965), rather than 
by a posterior density.

Noninformative priors are mathematical priors that are 
generally intended to result in probability matching pos-
terior PDFs, which produce credible intervals that are (at 
least approximately) true confidence intervals, and they are 
often judged on that basis (Berger and Bernardo 1992, p. 
36; Kass and Wasserman 1996). Typically, a noninforma-
tive prior primarily reflects how the expected informative-
ness of the data about the parameter value(s) varies with the 
parameter value(s). How informative data are expected to be 
about the parameter value(s) is represented by the (expected) 
Fisher information,2 which has a key role in likelihood-based 
inference.

The gold-standard method for producing noninforma-
tive priors is reference analysis (Bernardo 1979; Berger and 
Bernardo 1992), which results in Bayesian inference that is 
objective in the sense that it only depends on observed data 
and model assumptions, as is the case for Frequentist infer-
ence (Bernardo 2011). In Objective Bayesianism as well as 
Subjective Bayesianism, however, subjective choices will 
still be made by the investigator in relation to the data and 
model used.

Under Subjective Bayesianism, independent new evi-
dence about a parameter is incorporated by updating an 
existing posterior PDF (treated as the prior) by multiplying 
it by the data likelihood function for the new evidence and 
renormalizing to unit total probability, as S20 does. Such 
updating would be valid mathematically were the parameter 
a random variable, but it is not. Bayesian updating satisfies 
Subjective Bayesian axioms (Bernardo and Smith 1994) and 
results in coherent personal beliefs, but that does not imply 
that the resulting inference will exhibit satisfactory prob-
ability matching even if the existing posterior PDF was well 
calibrated.

Bayesian updating is in any event unsupportable for 
Objective Bayesianism, since the noninformative prior for 
the original likelihood will in general differ from that for the 
new likelihood. Bayesian updating would therefore produce 
inference that varied with the order in which different evi-
dence was incorporated (Kass and Wasserman 1996). It can 
also result in quite poor frequentist calibration (Lewis 2018).

The order-dependence problem does not arise if Bayes 
theorem is applied once only, to the joint likelihood func-
tion for the combined evidence, with a single noninforma-
tive prior being computed that reflects the nature of the 
combined evidence Lewis (2013a, b). This is the method 
employed in the present study. As shown in Lewis (2018) 
and Lewis and Grunwald (2018), using such a single-step 
method when combining climate sensitivity evidence results 
in more realistic inference than using Bayesian updating, 
even when a noninformative prior is used to incorporate 
the first line of evidence, although the magnitude of the 
improvement will vary.

Where a univariate parameter, such as climate sensitivity, 
is the only parameter being estimated, a Jeffreys' prior (Jef-
freys 1946), which in that case is normally also the reference 
prior, gives credible intervals that match confidence intervals 
more closely than any other prior (Welch and Peers 1963; 
Hartigan 1965), and is therefore the most appropriate prior 
to use for weighting the combined evidence-providing data 
likelihood functions. A Jeffreys' prior is proportional (with 
arbitrary scaling) to the square root of the Fisher information 
(of its determinant for a multivariate parameter).

Fisher information for different likelihood functions 
combines additively, provided the likelihood functions are 
derived from independent data (Pawitan 2001, Sect. 8.4). 
Therefore, Jeffreys' prior for inference from the combined 
likelihood function is obtainable by adding in quadrature the 
Jeffreys' priors for the separate likelihood functions, after 
scaling each to equal the square root of the Fisher informa-
tion. The probability matching of posterior PDFs derived by 
this method has been tested and found to be accurate in cases 
involving various probability distributions (Lewis 2013a, b), 
including in the context of combining evidence regarding 
climate sensitivity (Lewis 2018).

3.2 � Statistical models

I use the same statistical models as S20. These derive from 
simple forcing-feedback physical models, for the various 
lines of evidence, as follows. Terms on the right-hand sides 
of (6) to (13) each represent the 'true' value of each vari-
able, the best observational estimate of which is taken to 
include an additive error (ε) term, which has been omitted 
for clarity. These variables are termed "data-variables", as 
generally their estimated values are ultimately derived from 
observational data. Their estimated error characteristics are 
inputs to the statistical models.

For Process evidence, total climate feedback λ is taken as 
the sum of component feedbacks:

(6)
� = �Planck+�WV + LR+�sfcAlbedo+�clouds+�stratospheric+�atmosComp

2  Fisher information (I), in the case of a univariate parameter θ and 
assuming regularity conditions, is the expected value of minus the 
second derivative with respect to θ of the log-likelihood function (log 
p(x | θ)) for the data (x), at a given value of θ: 
I(�) = ∫ p(x|�)

(
−

�2 log p(x|�)
��2

)
dx ; in the multivariate parameter case it 

is a matrix, sometimes just called the (expected) information matrix: 
(I(�))ij = ∫ p(x|�)

(
−

�2 log p(x|�)
��i��j

)
dx (Bernardo and Smith, p. 288).
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where λPlanck is feedback from extra emission to space 
from vertically uniform warming, the anti-correlated water 
vapor (WV) and lapse rate (LR) feedbacks are combined 
into λWV+LR, λsfcAlbedo is surface albedo feedback, λclouds 
is cloud feedback, λstratospheric is feedback from changes in 
stratospheric water vapor and temperature, and λatmosComp 
is feedback from changes in atmospheric composition. The 
error/uncertainty term (ελ) for total feedback λ represents 
the sum of independent error terms for its components, with 
λclouds being likewise the sum of components, each subject 
to independent errors. Since errors are independent and are 
assumed to be normally distributed, ελ is also normally dis-
tributed, with variance equal to the sum of the variances of 
its components.

Provided that the estimates of the climate feedback compo-
nents are of the values they take over 150 year abrupt4xCO2 
GCM simulations, which they all are, the resulting climate 
feedback estimate will be on a basis consistent with its deriva-
tion over such simulations, and hence be of λ. As a result, S 
can be derived from this feedback estimate, using (4), without 
any adjustment being made to it. S20 do so by dividing the 
feedback estimate into (unadjusted) F2×CO2, but (4) requires 
use of Fregress

2×CO2
 . F2×CO2 should accordingly be multiplied by 

a scaling factor, γ, to convert it to Fregress

2×CO2
 (Sect. 4.1), so that:

For Historical evidence, differences in sea surface temper-
ature (SST) change patterns may cause feedback estimated 
using (1), denoted �hist = −[ΔFHist − ΔNHist]∕ΔTHist , to differ 
from that over 150-year GCM abrupt4xCO2 simulations, λ. 
An estimate of the effect, denoted Δ� = � − �hist , of such dif-
ferences in SST change patterns (the historical pattern effect) 
is allowed for when computing S, but not when calculating an 
alternative measure, Shist. Since the appropriate λ is thereby 
being used to estimate S, F2×CO2 should be scaled by γ, as for 
Process evidence. Using (7):

whereas

ΔFHist is the sum of forcing component ERFs, which (apart 
from F2×CO2) have uncertainties that are independent of each 
other and of the likewise independent uncertainties in the other 
right hand side terms in (8) and (9):

(7)S = −�F2×CO2∕�

(8)
S = −�F2×CO2∕(�hist + Δ�)
= �F2×CO2∕{[ΔFHist − ΔNHist]∕ΔTHist − Δ�}

(9)
Shist = −F

2×CO2
∕�hist = F

2×CO2
∕{[ΔFHist − ΔNHist]∕ΔTHist}

(10)

ΔFHist = ΔFCO2/2×

Hist
F2×CO2 + ΔFothGHG

Hist
+ ΔFO3

Hist
+ ΔFaerosol

Hist
+ ΔFLandUse

Hist

+ΔF
vapor

Hist
+ ΔFBCsnow

Hist
+ ΔFcontrails

Hist
+ ΔFsolar

Hist
+ ΔFvolcanic

Hist

where ΔFothGHG

Hist
 includes well-mixed non-CO2 greenhouse 

gases, ΔFO3

Hist
 includes tropospheric and stratospheric ozone, 

ΔF
vapor

Hist
 represents stratospheric water vapor and ΔFBCsnow

Hist
 rep-

resents black carbon on snow and ice.
When S is inferred from Process or Historical evidence 

using S20's assumptions, γ is set to one, as no adjustment to 
F2×CO2 was made in S20.

For Paleoclimate evidence, there are separate models 
for changes related to the Last Glacial Maximum (LGM), 
mid-Pliocene Warm Period (mPWP) and Paleocene-Eocene 
Thermal Maximum (PETM), all of which involve a division 
by (1 + ζ) to convert an estimate for ECS into one for S.

3.2.1 � For the LGM

 

where ΔFCO2∕2×

LGM
 represents the LGM − preindustrial CO2 

forcing change as a fraction of that from CO2 doubling; 
ΔFexCO2

LGM
 represents the corresponding change in non-CO2 

forcing; and α is a coefficient for state dependence in climate 
feedback.

3.2.2 � For the mPWP

where (1 + f ESS
mPWP

) represents the ratio of ESS to ECS for 
the mid-Pliocene, f CH4

mPWP
 the forcing from methane relative 

to that from CO2, and ΔCO2mPWP the fractional increase in 
mid-Pliocene CO2 concentration over an assumed 284-ppm 
equivalent preindustrial well-mixed greenhouse gases state. 
A logarithmic CO2 forcing–concentration relationship holds 
over this range.

3.2.3 � For the PETM

where βPETM allows for possible state-dependence of climate 
feedback and any slow feedbacks affecting ESS but not ECS, 
and f CO2nonLog

PETM
 scales CO2 forcing from a logarithmic rela-

tionship with concentration, to correct for deviations there-
from at high concentration. S20 omits f CO2nonLog

PETM
 , so it is set 

to zero when S is inferred using S20's assumptions. Uncer-
tainty in f CO2nonLog

PETM
 is minute relative to that in ΔCO2PETM 

and is therefore ignored.

(11)
S = ΔT

LGM
∕{(1 + �)[ΔF

CO2∕2×

LGM
+ (ΔFexCO2

LGM
+ 0.5�ΔT2

LGM
)∕F

2×CO2]}

(12)
S = ΔTmPWP∕{[log(1 + ΔCO2mPWP)∕ log (2)]

(1 + f CH4mPWP)(1 + � )(1 + f ESSmPWP)}

(13)

S = [1∕(1 + � )]∕{[(1 + f CO2nonLogPETM )log(1 + ΔCO2PETM)∕
log (2)](1 + f CH4PETM)∕ΔTPETM − �PETM∕F2×CO2}
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Significant correlation is assumed to exist between errors 
in ΔTPETM and ΔTmPWP and between errors in ΔCO2PETM 
and ΔCO2mPWP, with errors in all other variables being 
independent.

The foregoing equations are rearrangements of S20 
Eqs. (4), (18), (20), (21), (22), (23) and (24), with the addi-
tional γ and 

(
1 + f

CO2nonLog

PETM

)
 terms.

S20 also considered, but neither created a statistical 
model for nor used in their main results, 'emergent con-
straints' on climate sensitivity. These depend on relation-
ships between selected observationally-constrainable vari-
ables and climate sensitivity in GCMs. In almost all cases, 
strong relationships found in one generation of GCMs have 
been statistically insignificant and/or substantially different 
in another GCM generation (Caldwell et al. 2014, 2018; 
Schlund et al. 2020), casting substantial doubt on their reli-
ability. Biases common to all or most models are another 
concern.

3.3 � Likelihood estimation for S

Likelihood estimation for a parameter is not straightforward 
when its value depends on multiple data-variables, even 
apart from the question of how to combine different lines 
of evidence. For each line of evidence separately, each set 
of data-variable value realizations corresponds to a unique 
value of the parameter and data-variable errors are inde-
pendent, so the joint probability density for any set of data-
variable values can be derived as the product of their PDFs 
at the values concerned, and assigned to the parameter value 
that they imply.

However, each value of the parameter, S, will correspond 
to an infinite set of combinations of differing data-variable 
values. Accordingly, producing a single likelihood corre-
sponding to each S value requires some method of weight-
ing probability densities for the different data-variable value 
combinations.

S20's likelihood estimation method involves sampling S 
uniformly and F2×CO2 pro rata to its PDF, the sample ratios 
providing λ samples, and for each line of evidence except 
Process (where the likelihood is analytically calculable) also 
sampling pro rata to its PDF each remaining data-variable 
involved other than ΔT. They take the likelihood of each 
resulting multivariate sample set as equal to the PDF of ΔT 
at the value implied by the sample set's λ and data-variable 
values. They bin the multivariate sample sets by their S val-
ues, and compute the S likelihood for each bin as the average 
of the likelihoods of the sample sets it contains.

While S20's likelihood estimation method may satisfac-
torily estimate the actual likelihood for S in simple cases, 
it is not clear why it would provide a realistic estimate 
of the likelihood where, for example, a data-variable has 

substantial asymmetrical uncertainty or S is related to it 
non-linearly. Such circumstances arise with Historical evi-
dence, due to the asymmetrical PDF for aerosol ERF, and 
with PETM (and to a lesser extent mPWP) evidence, due 
to the logarithmic relationship between CO2 concentration 
ratio and ERF. Investigation confirms that S20's method of 
likelihood estimation is indeed unsound (supplemental mate-
rial S2). Their method causes substantial misestimation of 
Historical and (worsened by a coding error resulting in the 
ΔCO2PETM standard deviation used being one tenth of its 
correct value—supplemental material S2) of PETM like-
lihood, and non-negligible misestimation of mPWP likeli-
hood. Therefore, I do not use S20's likelihood estimation 
method in this study.

Rather than relying on a single likelihood estimation 
method, I employ three alternative methods, with the result-
ing likelihoods cross-checked. Each method involves setting 
up S value bins on a fine (0.01 K) grid spanning 0−20 K.

The first and third likelihood estimation methods involve 
first randomly sampling all the data-variables involved in 
estimating S from the line of evidence concerned that are 
not treated as fixed, weighting the sampling pro rata to their 
PDFs. The S value that each resulting multivariate sample 
set's data-variable values implies is computed, and each 
sample set is allocated to the appropriate S bin. The num-
ber of sample sets in each bin then provides an estimated 
(posterior) PDF for S. Between 107 and 108 sample sets are 
drawn, depending on the case. Since this procedure requires 
a unique S value for each sample-set, these likelihood esti-
mation methods can only be used for single lines of evidence 
(for a single period in the case of paleoclimate evidence). 
This sampling method of deriving a posterior PDF for S has 
been widely used (Gregory et al. 2002; Otto et al. 2013; 
Lewis and Curry 2015, 2018). The method is prior-free, in 
the sense that no explicit prior selection is required, however 
it is equivalent to Bayesian estimation using a noninforma-
tive prior.

The first likelihood estimation method effectively involves 
estimating, at each S-bin value, the probability-weighted 
likelihood integrated over data-variable space; it gives the 
highest weight to those combinations of data-variable values 
most likely to arise. This 'integrated likelihood' method is 
implemented by taking the sample sets generated and used 
to derive a PDF for S as set out in the preceding paragraph, 
and computing the likelihood for each sample set (as the 
product of the data-variable PDFs at their sampled values). 
The likelihood for the S value at each bin center is then 
derived as the simple average of the likelihoods of all sample 
sets in the bin.

The second method uses the profile likelihood (Pawitan 
2001), a widely used measure that typically provides a close 
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approximation to likelihood derived using more sophisti-
cated methods. This method applies the entire weight to that 
combination of data-variable values which, at the S value 
concerned, maximizes the likelihood. The profile likelihood 
is derived by using an optimization algorithm to find, for 
each fine-grid value of S, the data values combination that 
maximizes the product of the data-variable PDFs for the line 
or lines of evidence concerned, allowing for any uncertain-
ties that are common or correlated between data-variables.

Finally, a likelihood is calculated using the data-doubling 
method (Efron 1993; Lewis 2018). This involves the sup-
position that the evidence involved represented an obser-
vational data set, and that an identical but independent data 
set had also been observed. A posterior PDF for S based on 
emulating the stronger evidence provided by such doubled 
data is computed. This can often be effected by halving the 
actual variance of each data-variable and sampling pro rata 
to the reduced variance data-variable PDFs. An implied 
likelihood is then computed by dividing that PDF by the 
posterior PDF corresponding to the actual data set, derived 
by sampling pro rata to the actual data-variable PDFs. The 
validity of this 'doubled data likelihood' method follows 
directly from (5) if a noninformative prior is involved, since 
the same prior is noninformative for repeated observations 
from the same experiment, and the doubled data likelihood 
will equal the product of the original data likelihood with 
itself:

However, this method will not work satisfactorily where 
evidence is represented by a distribution for which emulating 
a doubled data version is problematic. That is the case for 
S20's Historical evidence, where the aerosol ERF distribu-
tion is highly asymmetrical and has no analytical form.

Before each derived PDF and likelihood is used it is gen-
erally smoothed with a spline-based method, retaining suf-
ficient degrees of freedom to very closely match the shape 
of the unsmoothed original.

3.4 � Noninformative prior and posterior PDF 
estimation

When either an integrated or doubled-data likelihood is 
used, a prior for S is derived by dividing the associated sam-
pling-derived PDF by the estimated likelihood. This is an 
exact probability-matching prior by construction, and, since 
a Jeffreys' prior provides the closest probability matching, 

(14)

p�(�|yy)∕p�(�|y)
= [c1 py(y|�)py(y|�)p�(�)]
∕[c2py(y|�)p�(�)]

= c3py(y|�)

the derived prior is necessarily a noninformative Jeffreys' 
prior (provided the likelihood is valid).

The profile likelihood method only produces a likelihood, 
so it is necessary to separately derive a Jeffreys' prior, �JP(S) , 
to use therewith. The 'data-space movement' method used 
is based on a direct measure of the local informativeness 
of the data about the parameter. Details of this method, and 
of the calibration of all the Jeffreys' priors, are given in the 
supplemental material (S3).

A PDF for S can then be derived as the product of the 
profile likelihood and the related data-space movement prior. 
This PDF cannot account for probability outside the range of 
S values used, so it is normalized to unit probability over that 
range. References to profile likelihood method PDFs are to 
such PDFs derived directly, or after combining likelihoods 
and priors from different lines of evidence.

3.5 � Applying the Objective Bayesian statistical 
methods to combining S20's evidence

The statistical models employed in S20 to link S to data-
based evidence necessitate a more general approach to com-
bining lines of evidence using a single combination-based 
noninformative prior than was employed in Lewis (2018) 
and Lewis and Grunwald (2018). The mechanics involved 
are detailed in the supplemental material (S4).

A key motivation for using several different likelihood 
and noninformative prior estimation methods is that compar-
ison of their performance when combining lines of evidence 
can provide confidence that both those methods, and the 
combination methods used, are valid. For S20's Historical 
evidence, to which the doubled data method cannot success-
fully be applied, likelihoods from the integrated likelihood 
and profile likelihood methods are almost identical. How-
ever, the profile likelihood data-space movement prior from 
Historical evidence is poor, due to imperfect optimization 
and difficulty representing the informativeness of the aero-
sol forcing distribution used by S20, and profile likelihood 
based estimates of S from all lines of evidence combined 
cannot reliably be derived by a single optimization. I there-
fore examine the combined-evidence likelihoods, priors and 
posterior PDFs for S that the three methods produce when 
combining S20's Process evidence with LGM and mPWP 
Paleoclimate evidence. For the two sampling-based meth-
ods, doing so involves combining separate estimates from 
Process, LGM and mPWP evidence. For the profile likeli-
hood method, these are one-step estimates from simultane-
ous inference using data from all three individual lines of 
evidence. For all methods, the combined-evidence posterior 
PDF for S is normalized to unit probability over 0–20 K.

Figure 1a compares the combined Process, LGM and 
mPWP evidence likelihood estimates from the afore-
mentioned three methods. They are indistinguishable. 
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Figure 1b compares the three related Jeffreys' priors from 
S = 1.5 K up. Below that level the integrated likelihood 
and doubled data sampling-derived priors are artefacted, 
due to the paucity of samples for Process evidence, and 
behave erratically. However, the likelihood is almost zero 
below S = 1.5 K , and the total probability in that region is 
only 0.05%, so the effect on inference for S is negligible. 
The resulting posterior PDFs for S using the three meth-
ods (Fig. 1c) are indistinguishable. Their medians are all 
within 0.01 K of each other, their 5th percentiles are all 
2.07 K and their 95% percentiles are all within ± 0.03 K.

The very close agreement among combined-evidence 
inference for S using three different methods of deriving 
and combining likelihoods, noninformative Jeffreys' priors 
and PDFs provides strong support for the general validity 
of all the methods for this application.

The main results presented in Sects. 5 and 6 use the robust 
sampling-based integrated likelihood method—which in all 
cases produces a satisfactory likelihood and prior—for all 
lines of evidence.

4 � Review and revision of S20 data‑variable 
assumptions

I now make some revisions to S20's data-variable assump-
tions for various lines of evidence, which are justified on 
the basis of more recent evidence, by a preferable alterna-
tive interpretation of the same evidence, or because they 
remedy an error or omission. The scaling factor γ for F2×CO2 
is included in these revisions. The original and revised esti-
mates for all data-variables are set out in Tables 1, 2 and 3, 
with the reasons for changes. The evidence justifying each 
revision is reviewed in detail in the supplemental mate-
rial (S5); evidence relating to a number of the unrevised 
data-variable estimates is also reviewed there. Results from 
applying the Objective Bayesian approach to inference using 
S20's assumptions and the revised assumptions are given in 
Sects. 5 and 6 respectively.

The units of all stated feedback values are Wm−2 K−1. 
Uncertainties indicated by ± represent one standard devia-
tion, with a Normal distribution, denoted N(mean, standard 
deviation), assumed.

4.1 � F2×CO2 and its scaling when using Eq. (4)

S20 use the estimate of stratospherically-adjusted forcing 
from doubled CO2 of 3.80 Wm−2 per the simplified formula 
in Etminan et al. (2016), and add 5% for tropospheric adjust-
ments, arriving at an ERF estimate for F2×CO2 = 4.0 ± 0.3 
Wm−2. Meinshausen et al. (2020) fitted Etminan et al.'s 
results more precisely, obtaining a F2×CO2 value 1.5% 
lower. Based on their more accurate formula, and using 
the same 5% tropospheric adjustment, F2×CO2 ERF was 
assessed at 3.93 ± 0.3 Wm−2 in AR6 (Forster et al. 2021: 
7.3.2.1). The ratio of F4×CO2 to F2×CO2 per the Meinshausen 
et al. (2020) formula is 2.10 × , 5.0% higher than under a 
log(concentration) relationship. I adopt these numbers in 
Sect. 6 when estimating S.

Care must be taken to use the appropriate F2×CO2 value 
when applying (4). S20 use their estimate of the actual ERF 
from a doubling of CO2 concentration. However, as stated in 
Sect. 3.2, when feedback is estimated using a linear model 
on a basis consistent with behavior during years 1–150 

Fig. 1   Results from combining S20's Process evidence with LGM 
and mPWP Paleoclimate evidence using the integrated likelihood, 
doubled data and profile likelihood based methods. a Combined 
evidence likelihoods; b Combined evidence priors; c Combined 
evidence posterior probability density functions. In each case the 
solid black line is from the integrated likelihood method, the dashed 
magenta line is from the doubled data method and the dotted cyan 
line is from the profile likelihood method and/or the related data-
space movement prior
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of abrupt4xCO2 simulations, normally by ordinary least 
squares regression, then F2×CO2 should be converted into an 
estimate of Fregress

2×CO2
 , the ERF implied by the y-axis regression 

line intercept, by multiplying it by � = F
regress

2×CO2
∕F

2×CO2
 . That 

is because S is defined in terms of the climate feedback λ 
arising from system behavior over years 1–150 after a (hypo-
thetical or actual) quadrupling of CO2 concentration, and as 
per (4) equals −Fregress

2×CO2
∕� (Sect. 2). When climate feedback 

weakens during the course of 150-year abrupt CO2 forcing 
simulations, as it does in the vast majority of GCMs, Fregress

2×CO2
 

will underestimate the GCM's actual F2×CO2. Therefore, 
dividing the actual F2×CO2 by climate feedback estimated 
over the whole simulation period is bound to overestimate S 
(supplemental material S1; compare red and black lines in 
Figure S1.1). For an ensemble of CMIP5 and CMIP6 GCMs, 
the Fregress

2×CO2
∕F

2×CO2
 ratio is 0.86 ± 0.09 (supplemental mate-

rial Table S1, rounding up the standard deviation, S5.1.5). 
I adopt this estimate.

S20 recognize this issue, conceding a similar overesti-
mation of S, but neglect it, asserting incorrectly that it only 
affects feedback estimates from GCMs. This misconcep-
tion results in S20's estimates of S from Process and His-
torical evidence being biased high. The issue is intrinsic 
to the use of (4) and the S20 definitions of S and λ, which 

involve a single λ value, estimated on a basis consistent with 
that obtained by regressing over 150-year abrupt4xCO2 
simulations.

For Process evidence, the bias is self-evident, since 
almost all λ components are estimated by or on a basis con-
sistent with regressing changes over abrupt4xCO2 simula-
tions. In particular, low cloud feedback, the dominant cause 
of weakening feedback over abrupt4xCO2 simulations, 
and hence of 𝛾 < 1 , is so estimated (supplemental material 
S5.1.1, S5.1.3).

For Historical evidence, S20 estimate λhist as 
−(ΔFHist − ΔNHist)∕ΔTHist and divide it into–F2×CO2 to 
estimate Shist (supplemental material Figure S1.1, blue 
line). They then adjust λhist by their estimate of the dif-
ference between λ in abrupt4xCO2 simulations and 
λhist, and estimate S by dividing the resulting λ estimate 
into–F2×CO2, rather than (as should be done) into −Fregress

2×CO2
 , 

thereby overestimating S (supplemental material Figure 
S1.1, red line).

Accordingly, in the statistical models S20 uses to estimate 
S from both Process and Historical evidence, F2×CO2 needs 
to be scaled by Fregress

2×CO2
∕F

2×CO2
 . I do so in Sect. 6. Paleocli-

mate estimation of S is unaffected, since that in effect esti-
mates climate feedback from equilibrium changes, derives 

Table 1   Parameters of the data-variable distributions used to estimate S from Process evidence

a Myers et al. (2021), Cessana and Del Genio (2021), Mülmenstädt et al. (2021); supplemental material S5.1.3
b Zelinka et al. (2020); supplemental material S5.1.2
c Meinshausen et al. (2020); Sect. 4.1
d Section 4.1; supplemental material S5.1.5

Description Symbol Sherwood et al As revised Reason for any change

Normal distribution parameters Median Std Dev Median Std Dev

Feedback components:
    Tropical marine low cloud 0.25 0.16
    Mid-latitude marine low cloud amount 0.12 0.12
 Tropical & mid-latitude marine low cloud 0.37 0.20 0.19 0.20 Newer evidencea

 High-latitude low cloud 0.00 0.10 0.00 0.10
 High cloud altitude 0.20 0.10 0.20 0.10
 Tropical anvil cloud area −0.20 0.20 −0.20 0.20
 Land clouds 0.08 0.08 0.08 0.08

Total cloud λclouds 0.45 0.33 0.27 0.33
Planck λPlanck −3.20 0.10 −3.25 0.10 Later datab

Water vapor + Lapse rate λWV+LR 1.15 0.15 1.15 0.15
Surface albedo λsfcAlbedo 0.30 0.15 0.30 0.15
Stratospheric λstratospheric 0.00 0.10 0.00 0.10
Atmospheric composition λatmosComp 0.00 0.15 0.00 0.15
Total feedback λ −1.30 0.44 −1.53 0.44
ERF from doubled CO2 (Wm−2) F2×CO2 4.00 0.30 3.93 0.30 AR6 value/ Later datac

F2×scaling factor ( Fregress

2×CO2
∕F

2×CO2
) γ 1.00 – 0.86 0.09 Omissiond

S at data-variable median values (K) S 3.08 2.21
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ECS by dividing it into–F2×CO2, and then converts ECS into 
S (see (11), (12) and (13)).

4.2 � Process evidence

The data-variable distributions adopted by S20, and as 
revised here, for estimating S from Process evidence are 
summarised in Table 1. The main changes made are to low 
cloud feedback, reflecting strong recent evidence that it is 

weaker than S20's assessment, and scaling F2×CO2 to Fregress

2×CO2
 

(Sect. 4.1).
The significant revision in estimated tropical and mid-lat-

itude (60°S–60°N) marine low cloud feedback is discussed 
in detail in the supplemental material (S5.1.3). In brief, both 
the S20 and the revised estimates depend primarily on obser-
vational estimates of low cloud response to cloud-controlling 
factors (CCF). S20's assessment of tropical marine low cloud 
feedback was based primarily on, and equals, an estimate 

Table 2   Parameters of the data-variable distributions used to estimate S from Historical evidence. All changes are in global and time means 
between the 1861–1880 and 2006–2018 periods

a Gulev et al. (2021); supplemental material S5.2.1. GMST is derived as a blend of land near-surface air temperature and ocean sea surface tem-
perature
b Smith et al. (2021); supplemental material S5.2.3
c The AR6 ERF has been multiplied by a 1.5 efficacy factor; supplemental material S5.2.3
d Using the AR6 aerosol ERF best estimate time series to scale the adopted − 0.95 ± 0.55 Wm−2 estimated 1850 to 2005–2015 ERF to a 1861–80 
to 2006–18 change
e Multiple studies, e.g. Hamilton et al. (2018); Gryspeerdt et al. (2019); Paulot et al. (2020); Possner et al. (2020); Glassmeier et al. (2021); Lee 
et al. (2021); Liu et al. (2021); supplemental material S5.2.3
f Lewis and Mauritsen (2021); Zhou et al. (2021); Fueglistaler and Silvers (2021); supplemental material S5.2.4
g Meinshausen et al. (2020); Sect. 4.1
h Sect. 4.1; supplemental material S5.2.5

Description Symbol Sherwood et al As revised Reason for any change

Normal distribution parameters Median Std Dev Median Std Dev

Change in (blended) GMST (K) 0.94 0.07 0.94 0.075
Adjustment from GMST to GMAT (K) 0.08 0.04 0.00 0.057 AR6 valuea

Change in GMAT (K) ΔT 1.03 0.085 0.94 0.095
Changes in forcing, as ERF (Wm–2)
Carbon dioxide ΔFCO2 1.731  ∝ F2×CO2 1.724  ∝ F2×CO2 AR6 valueb

CO2 ERF as fraction of F2×CO2 ΔFCO2/2× 0.433 Zero 0.439 Zero Arithmetic
  Other well-mixed greenhouse gases ΔFothGHG 0.969 1.015 AR6 valueb

  Ozone (tropospheric + stratospheric) ΔFO3 0.298 0.400 AR6 valueb

  Land use ΔFLandUse −0.106 –0.150 AR6 valueb

  Stratospheric water vapor ΔFvapor 0.064 0.041 AR6 valueb

  Black carbon on snow and ice ΔFBCsnow 0.020 0.109c AR6 valueb

  Contrails and induced cirrus ΔFcontrails 0.048 0.048 AR6 valueb

  Solar ΔFsolar 0.017 0.019 AR6 valueb

  Volcanic ΔFvolcanic −0.113 0.044 AR6 valueb

  Forcing excluding that from CO2 and 
aerosol

ΔFother 1.196 0.184 1.526 0.173

  Aerosol ΔFaerosol −1.104 Non-normal –0.860d 0.498d Other/new evidencee

Forcing excluding that from CO2 ΔFexCO2 0.093 n/a 0.666 0.527
Change in radiative imbalance (Wm–2) ΔN 0.600 0.183 0.600 0.183
Radiative response at median values (Wm–2) ΔR 1.224 1.800
Feedback for Shist at median values λhist –1.188 –1.915
Historical pattern effect feedback adjustment Δλ 0.500 0.305 0.350 0.305 Newer evidencef

Feedback for S at data-variable medians λ –0.687 –1.565
ERF from doubled CO2 (Wm−2) F2×CO2 4.00 0.30 3.93 0.30 AR6 value/ Later datag

F2×scaling factor ( Fregress

2×CO2
∕F

2×CO2
) γ 1.00 Zero 0.86 0.09 Omissionh

S at data-variable median values (K) S 5.82 2.16
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from the Klein et al. (2017) review, which only took two 
CCF into consideration. For the 30–60° mid-latitude bands 
S20 also used GCM-derived evidence. The revised median 
estimate is the observationally-constrained 60°S–60°N value 
from Myers et al. (2021). They use a more comprehensive 
set of CCF and argue that their feedback estimate is more 
realistic than Klein et al.'s. Cessana and Del Genio (2021) 
likewise find the Klein et al. feedback estimate to be too 
high.

The revisions to the S20 median data-variable val-
ues change the central λ estimate from Process evidence 
alone from −1.30 ± 0.44 in S20 to −1.53 ± 0.44, while the 

maximum likelihood estimate of S changes from 3.08 K to 
2.21 K.

4.3 � Historical evidence

The data-variable distributions adopted by S20, and as 
revised here, for estimating S from Historical evidence are 
summarised in Table 2. The changes made to S20's data-
variable estimates are discussed in detail in the supplemental 
material (S5.2). The main changes made are to aerosol forc-
ing, reflecting the most quantitative of the recent evidence 
that it is weaker than S20 assumed, to other forcings and the 
ΔGMAT–ΔGMST difference, reflecting AR6 assessments, 

Table 3   Parameters of the data-variable distributions used to estimate S from Paleoclimate evidence

a Meinshausen et al. (2020); Sect. 4.1
b Consistency with estimation from Process and Historical evidence. Rugenstein et al. (2020); Sect. 2; supplemental material S5.3.1
c Same studies as cited by S20; supplemental material S5.3.2
d Kohler et al. (2010); Zhu and Poulsen (2021); supplemental material S5.3.2
e Tierney et al. (2019); McClymont et al. (2020); Haywood et al. (2020); supplemental material S5.3.3
f Meinshausen et al. (2020); supplemental material S5.3.4

Description Symbol Sherwood et al As revised Reason for any change

Normal distribution parameters Median Std Dev Median Std Dev

ERF from doubled CO2 (Wm−2) F2×CO2 4.00 0.30 3.93 0.30 AR6 value/ Later dataa

ECS/S–1 ζ 0.06 0.20 0.135 0.10 Consistencyb

LGM
Change in GMAT (K) ΔT –5.0 1.0 –4.5 1.25 S20 sourcesc

Changes in forcing, as ERF (Wm–2)
CO2 ERF as fraction of F2×CO2 ΔFCO2/2× –0.57 Zero –0.57 Zero
Methane (CH4) –0.57 –0.57
Nitrous oxide (N2O) –0.28 –0.28
Land ice and sea level –3.20 –3.72 Other evidenced

Vegetation –1.10 –1.10
Dust (aerosol) –1.00 –1.00
Forcing excluding that from CO2 ΔFexCO2 –6.15 2.00 –6.67 2.00
Dependence of feedback on ΔT (Wm−2 K−2) α 0.10 0.10 0.10 0.10
S at median values for all variables (K) S 2.63 1.97
mPWP
Change in GMAT (K) ΔT 3.00 1.00 2.48 1.25 Later datae

Fractional change in CO2 concentration ΔCO2 0.32 0.09 0.32 0.09
CH4 forcing as a fraction of that from CO2 fCH4 0.40 0.10 0.40 0.10
Earth system sensitivity / ECS–1 fESS 0.50 0.25 0.67 0.40 Later datae

S at median values for all variables (K) S 3.36 2.33
PETM
Change in GMAT (K) ΔT 5.00  2.00  5.00  2.00 
Fractional change in CO2 concentration ΔCO2 1.667 0.778 1.667 0.778
CO2 ERF relative to with log(concentration) fCO2nonLog 1 – 1.117  ~ Zero Omissionf

CH4 forcing as a fraction of that from CO2 fCH4 0.40 0.20 0.40 0.20
Different climate state: feedback adjustment β 0.00 0.50 0.00 0.50
S at median values for all variables (K) S 2.38 1.99
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to the historical pattern effect, reflecting evidence that most 
SST datasets indicate little unforced element, and scaling 
F2×CO2 to Fregress

2×CO2
.

The significant revision in estimated aerosol ERF is dis-
cussed in considerable detail in the supplemental material 
(S5.2.3). Briefly, S20 use the unconstrained aerosol forcing 
distribution from Bellouin et al. (2020; hereafter B20). That 
distribution is based on a complex theoretical formula that 
depends on a number of factors, all of which are estimated 
separately. There is considerable evidence suggesting that 
B20 overestimate aerosol forcing strength. The revised esti-
mate median uses recent evidence (Gryspeerdt et al. 2019; 
Possner et al. 2020; Glassmeier et al. 2021) regarding just 
one of the factors involved in B20's calculations: the cloud 
liquid water path sensitivity factor used when adjusting the 
radiative forcing from aerosol-cloud interactions to an ERF 
basis. The revised median aerosol ERF estimate is derived 
by carrying out the same computation as in B20 except for 
changing the estimate of that sensitivity factor. The revised 
ERF estimate adopts a Gaussian uncertainty distribution 
with the same 5% bound as assessed in AR6; B20's theo-
retically-derived distribution assigns significant probability 
to extremely negative aerosol ERF values, but these appear 
inconsistent with observational evidence that is independent 
of the global temperature record.

Another significant revision is that to the Historical pat-
tern effect feedback adjustment, discussed in detail in the 
supplemental material (S5.2.4). Briefly, S20's median esti-
mate is based on that reported by Andrews et al. (2018), 
which was derived by comparing, in six GCMs, estimated 
feedback in abrupt4 × CO2 simulations with that in fixed 
SST simulations with evolving observational historical SST 
patterns. S20 reduced the Andrews et al. (2018) estimate by 
0.1 Wm−2 K−1 to allow for the possibility that the pattern 
effect may be smaller than reported in that study. However, 
substantial evidence now exists that the observational SST 
dataset used for all the fixed SST simulations assessed by 
Andrews et al. (2018) is an outlier in terms of the magnitude 
of the pattern effect that it gives rise to (Lewis and Mauritsen 
2021; Zhou et al. 2021; Fueglistaler and Silvers 2021). The 
revised pattern effect adjustment reflects that evidence.

The revisions to the S20 data-variable median values 
reduce the estimates of S and Shist that they imply from 5.82 
to 2.16 K, and from 3.37 to 2.05 K, respectively.

4.4 � Paleoclimate evidence

Paleoclimate evidence has the advantage of being largely 
independent of, and sometimes involving a much larger sig-
nal than, the historical period, but suffers from relating to 
different states of the Earth. The evidence is also derived 
from imprecise, geographically limited, and potentially 

biased proxies that provide estimates for only some relevant 
variables.

S20 evaluate evidence from climate transitions during the 
LGM, mPWP and PETM, but their main results exclude 
PETM evidence. For all three periods, an estimate of ECS 
is converted into one for S by dividing it by (1 + ζ), the dis-
tribution of which is revised (Sect. 2; supplemental material 
S5.3.1), as is the median F2×CO2 estimate (Sect. 4.1).

4.4.1 � LGM

The best studied paleoclimate transition, and that most used 
for estimating climate sensitivity, is the change from the 
LGM, the coldest phase in the last ice age, some twenty 
thousand years ago to the preindustrial Holocene. A signifi-
cant advantage of the LGM transition is that, unlike more 
distant periods, there is proxy evidence not only of changes 
in temperature and CO2 concentration but also of non-CO2 
forcings, and that enables estimation of the effects on radia-
tive balance of slow (ice sheet, etc.) feedbacks, which need 
to be treated as forcings in order to estimate ECS (and hence 
S) rather than ESS. Moreover, the temperature proxy evi-
dence is sufficient to enable spatially-weighted global means 
to be estimated (Annan and Hargreaves 2013).

The two changes made to S20's data-variable estimates 
are discussed in detail in the supplemental material (S5.3.2). 
The revision to land ice and sea-level forcing adds an esti-
mate of the omitted albedo change caused by sea-level fall 
exposing more land. The revision to ΔT brings it closer to 
the average of estimates from S20's cited sources. The revi-
sions I make to S20's median LGM data-variable values, 
along with the revised ζ estimate, reduce the estimate of S 
that they imply from 2.63 K to 1.97 K.

4.4.2 � mPWP

The mid-Pliocene warm period, approximately 3 Ma ago, 
was moderately warmer than preindustrial times, and in 
that respect a closer analogue than the LGM of conditions 
expected during this century. However, the temperature 
change involved was smaller than for the LGM, there is more 
uncertainty about CO2 levels, temperature proxies are more 
limited, and usable proxy-based estimates of non-CO2 forc-
ing are unavailable.

The changes made to S20's data-variable estimates are 
discussed in detail in the supplemental material (S5.3.3).
They relate to ΔT and the ESS–ECS ratio, in both cases 
reflecting ratios per the more recent PlioMIP2 project (Hay-
wood et al. 2020). The revisions I make to S20's mPWP 
data-variable median values, along with the revised ζ esti-
mate, reduce the estimate of S that they imply from 3.36 
to 2.33 K, more in line with estimates from the LGM and 
PETM.
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4.4.3 � PETM

The PETM temperature excursion period some 56 Ma ago 
was much warmer than the present, and differed geographi-
cally and orographically. S20 state that the PETM is argu-
ably the best pre-Pliocene warm interval for estimating ECS; 
it has been fairly well studied and involves a large signal. 
Nevertheless, they excluded PETM evidence in their Base-
line estimates "due to the large uncertainties and the danger 
of over-constraining the likelihood should these be underes-
timated". While the PETM uncertainties are substantial, S20 
makes generous allowance for them, and any underestima-
tion of uncertainties appears much more likely to cause over-
estimation than underestimation of S (supplemental material 
S5.3.4). In view of that and of the large signal involved in 
the PETM, I use it, but as an alternative to the mPWP rather 
than combining their evidence, since doing so provides very 
little benefit when the estimated data-variable error correla-
tions between the two periods are allowed for (supplemental 
material S5.3.5).

The one revision I make to S20's PETM data-variable 
median values allows for the CO2 ERF–concentration not 

being exactly logarithmic, which in combination with the 
revised ζ estimate reduces the estimate of S that they imply 
from 2.38 K to 1.99 K. This change is discussed in detail in 
the supplemental material (S5.3.4), where the evidence relat-
ing to several of S20's other PETM data-variable estimates 
is also discussed.

The data-variable distributions adopted by S20, and as 
revised here, for estimating S from Paleoclimate evidence 
for each period are summarised in Table 3.

5 � Results using S20 data‑variable 
assumptions: comparison using different 
methods

I now compare S20's results with those derived here using 
the same input assumptions and either a computed nonin-
formative Jeffreys' prior or the same prior as used in S20. I 
start by comparing likelihoods, as these are the foundation of 
parameter inference and are unaffected by the prior used, and 
then discuss the computed Jeffreys' priors. Finally, the pos-
terior PDFs and numerical percentile values for S produced 
in this study are presented and compared with those in S20.

Fig. 2   Likelihoods for S based on S20's data-variable assumptions as 
derived in this study (solid lines) and, for comparison, those shown in 
S20 (dotted lines). a Likelihoods from evidence for the three paleocli-
mate periods. b Likelihoods from Process evidence and from combin-
ing Paleoclimate evidence for the LGM and mPWP; S20 did not use 
evidence for the PETM for their estimation of S. c Likelihoods from 
Historical evidence for both S and Shist. d Likelihoods from com-

bined Process, Paleoclimate (LGM and mPWP combined), and His-
torical evidence, computed as the product of the likelihoods from the 
three lines of evidence. The likelihoods used in this study have been 
derived using the integrated likelihood method and normalized to a 
maximum of one. The S20 likelihoods were accurately digitized over 
the full S ranges of the relevant figures in S20
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5.1 � Likelihoods

The likelihoods derived using the profile likelihood method, 
the sampling-based integrated likelihood and the data dou-
bling methods described in Sect. 3.3 agree very closely with 
each other (supplemental material Figures S1 to S3). They 
should also agree with the likelihoods shown in S20, as they 
are based on the same statistical models and data-variable 
assumptions. The integrated likelihoods derived in this study 
are shown by solid lines in Fig. 2; likelihoods from S20 are 
the same color but dotted. The overall Paleoclimate likeli-
hood is that from combining evidence from the LGM and 
mPWP.

Figure 2a shows that mPWP paleoclimate evidence dis-
criminates more strongly against very high S values than 
does LGM or, particularly, PETM evidence, despite its 
median value being the highest of the three. This is primar-
ily because fractional uncertainty in forcing, and in those 
terms that effectively modify forcing, is lowest for mPWP 
evidence and highest for PETM evidence.

Figure 2b and c show that Paleoclimate evidence likeli-
hoods downweight the possibility of very high S values most 
strongly, while Historical evidence does so very weakly. The 
latter primarily reflects the use of the unconstrained Bellouin 
et al. (2020) aerosol forcing distribution, which assigns sub-
stantial probability to strongly negative values.

S20's own likelihoods generally peak marginally earlier 
than those computed here, and thereafter decline faster. The 
difference is barely noticeable for the LGM, but rather larger 
for the mPWP and for the overall Paleoclimate (LGM and 
mPWP combined) evidence. The difference is major for 
the likelihoods from PETM and Historical evidence. This 
is particularly the case, in ratio terms, for Shist (cyan lines 
in Fig. 2c). The differences arise because S20 employ an 
invalid method for deriving likelihoods (supplemental mate-
rial S2). The virtual identity of the present study's estimated 
likelihoods using three different methods (two for Historical 
evidence) provides further confirmation that the S20 likeli-
hoods are incorrect, and quantifies their inaccuracy.

When likelihoods from all lines of evidence used in S20 
are combined multiplicatively (Fig. 2d), the resulting likeli-
hood drops far more sharply than those from any individual 
line of evidence. The absolute difference between the com-
bined S20 likelihoods and those computed here is relatively 
small in this case. This is because the S20 likelihoods are 
reasonably accurate below the likelihood maxima, and the 
combined likelihood drops to a low level before the errors in 
the S20 likelihoods (which partially cancel) grow very sig-
nificant. By S = 5 K , the S20 combined likelihood is ~ 25% 

lower than that calculated here, but by that point the 95th 
probability percentile has been reached.

The likelihood difference for Process evidence is small, 
but of the opposite sign to the other cases; S20's likelihood 
peaks marginally later than that computed here and declines 
more slowly after the peak. The Process likelihood can also 
be derived using a formula that accurately approximates 
the distribution of the ratio of two normally-distributed 
variables, here λ and F2×CO2 (Raftery and Schweder 1993; 
Lewis 2018). The likelihood per that formula almost exactly 
matches the likelihoods derived using this study's three 
methods, but not S20's likelihood. Since S20's Process like-
lihood computation is not subject to the defects identified 
in their other likelihood computations, that suggests some 
other problem may exist in S20's statistical computations.

5.2 � Computed Jeffreys' priors

Figure 3 shows the computed and calibrated integrated 
likelihood based Jeffreys' priors for each of the three 
main lines of evidence, before and after transformation to 
λ-space (which aids comparing them), and so-transformed 
priors for individual Paleoclimate periods. Since these pri-
ors are very similar to those estimated using the revised 
assumptions, comments on them are deferred until the lat-
ter are discussed in Sect. 6.

5.3 � Posterior PDFs and percentiles for S

Figure 4a shows (solid lines) sampling-derived primary 
posterior PDFs for each main line of evidence, represent-
ing in each case the product of the estimated integrated 
likelihood and a Jeffreys' prior, normalizing to unit prob-
ability over the 0–20 K S range used. Posterior PDFs from 
using a uniform-in-λ prior, as in S20, with the same likeli-
hoods are also shown (dashed lines). For Process evidence, 
for which Jeffreys' prior is uniform in λ, the two PDFs 
coincide. For Historical and particularly Paleoclimate 
evidence, use of a uniform-in-λ prior biases the posterior 
PDF towards lower S values and, in the Paleoclimate case, 
excessively constrains high S values.

The primary combined evidence posterior PDF (Fig. 4b, 
solid red line) represents the product of the estimated Pro-
cess, Historical and Paleoclimate likelihoods, being the 
combined likelihood, and Jeffreys' prior for the combined 
evidence. The PDF using a uniform-in-λ prior is also 
shown (solid blue line). The difference between these is 
much smaller than in the case of separate Historical or 
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Paleoclimate evidence, reflecting the combined likelihood 
(Fig. 2d) being much narrower. The dotted cyan line shows 
S20's Baseline, uniform-in-λ prior based, PDF. It is very 
close to the uniform-in-λ prior based PDF derived here, 

which follows from the closeness of its combined evidence 
likelihood to that derived here, notwithstanding the sub-
stantial differences in the Paleoclimate and, particularly, 
Historical likelihoods at high S.

Figure 4c shows (solid cyan line) this study's posterior 
PDF for Shist, derived by a sampling-based method, without 
normalization to unit probability over 0–20 K. The dashed 

Fig. 3   Jeffreys' priors based on S20's data-variable assumptions, 
computed using the integrated likelihoods. a For each main line of 
evidence and for the combined evidence from all three lines. Pale-
oclimate evidence from the LGM and mPWP is included but, as in 
S20, not that from the PETM. b As (a) but with the prior, although 
still plotted against S values, having been transformed into λ-space. 
c As for (b), but for evidence from individual paleoclimate periods. 
Transformation of the prior to λ-space is effected in the standard way, 
by multiplying the original, S-space, prior by the absolute Jacobian 
of the inverse transformation, being S2/F2×CO2. The relatively small 
uncertainty in F2×CO2 is ignored when effecting this transformation, 
which accounts for the decline in the transformed Process evidence 
prior as S reduces to a low level. Note that the separate priors shown 
cannot validly be added in quadrature to obtain a Jeffreys' prior for 
the All combined case, or for Paleoclimate evidence using the priors 
in panel (c), because such summing would multiply count the influ-
ence of uncertain data-variables in common. The panel (a) and (b) 
plots start at 1.5 K because the priors become artefacted below that 
level

Fig. 4   Posterior PDFs based on S20's data-variable assumptions. a 
PDFs for S from separate Process, Historical and Paleoclimate evi-
dence, using computed Jeffreys' priors (solid lines) and uniform-in-λ 
priors (dashed lines). b Combined evidence PDFs for S derived in 
this study (solid lines) using both Jeffreys' prior and a uniform-in-λ 
prior and, for comparison, the Baseline PDF in S20 using a uniform-
in-λ prior (dotted line), accurately digitized from the relevant figure 
in S20. In panels (a) and (b) this study's PDFs for S have been nor-
malized to unit probability over 0–20 K. Normalization has a negli-
gible effect on the comparison with the S20 Baseline PDF. c Unnor-
malized PDF for Shist, that from this study (solid cyan line) and the 
"non-Bayesian Shist PDF" from S20's Fig. 11(b), accurately digitized 
(dashed orange line). The dotted red line shows the S20 PDF scaled 
by a factor of 0.86. The black line shows the PDF implied by use of 
S20's Shist likelihood with their uniform-in-λ prior
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orange line shows S20's corresponding "non-Bayesian Shist 
PDF", derived directly (by sampling) from their (19), the 
equivalent of (9) here. When S20's PDF is scaled by a fac-
tor of 0.863 (dotted red line) it closely matches this study's 
sampling-based Shist PDF (which equates to a Bayesian 
posterior PDF derived using a noninformative prior).

Although all S20's main probabilistic estimates are 
based on Bayesian analysis with a uniform-in-λ prior, 
no such results are given for Shist. However, the solid 
black line in Fig. 4c shows a uniform-in-λ prior based 
PDF, using the accurate emulation of S20's Shist likeli-
hood (supplemental material Figure S2.1(a)). This PDF is 
much better constrained at high Shist than the non-Bayesian 
sampling-derived PDFs, primarily reflecting S20's mises-
timation of the Shist likelihood.

Table 4 presents results in the form of medians and 66%, 
90% and 95% uncertainty ranges for posterior PDFs for S and 
Shist on S20's data-variable assumptions, using this study's 
methods, with the comparative S20 results where available. 
It is evident from the high percentile S values that Pale-
oclimate evidence gives the strongest constraints on upper 
uncertainty bounds, with Historical evidence constraining 
them least. That is consistent with the relative shapes of the 
likelihood functions for the three lines of evidence.

Notwithstanding the difficulty the optimization-based 
profile likelihood method has in deriving a satisfactory 
data-space movement prior for S20's Historical evidence, the 
'All combined' 5% to 95% percentile values from combining 
that method's results for each line of evidence are all within 

0.05 K of those using the sampling-based integrated likeli-
hood method and related Jeffreys' priors, as given in Table 4.

Compared to S20's Baseline combined evidence results, 
the Table 4 median estimate for S is approximately 0.13 K 
higher, and the 95% bound 0.35 K higher. The likely reasons 
for these differences being small are that (i) neither of S20's 
most seriously inaccurate likelihood estimates were used for 
its Baseline estimate, resulting in the combined likelihood 
that they used for that purpose deviating only modestly from 
that given by this study's methods until both have fallen to 
a moderate level, as well as being nearly identical to it up 
to the likelihood maximum; (ii) both S20's uniform-in-λ 
prior and this study's combined-evidence Jeffreys' prior 
fall sharply over the high likelihood (> 0.5 × its maximum) 
region, by about two-thirds in S20's case, which means that 
differences in the likelihood and (still declining) prior used 
beyond that region have a minor effect on S estimates; and 
(iii) over the high likelihood region the Jeffreys' prior only 
increases by ~ 25% relative to a uniform-in-λ prior, which 
difference is only sufficient to produce small upward shifts 
in the median and higher percentile S estimates.

PDFs for S used in Table 4 were normalized to unit prob-
ability over 0–20 K, except in one case. As discussed in 
Sect. 3, for combined evidence virtually all probability 
lies within the 0–20 K range over which computations are 
performed and over which total probability is normalized 
to unity. Likewise, almost no probability for S lies outside 
0–20 K when combining two or more lines of evidence, or 
using Paleoclimate evidence alone, and under 1% does for 
Process evidence alone. However, when using Historical evi-
dence alone 30% of samples produce S values that are above 

Table 4   Primary results 
using S20's data-variable 
assumptions, sampling-derived 
integrated likelihoods and 
Jeffreys' priors. PDFs for S 
have been normalized to unit 
probability over 0–20 K except 
where stated. All values are in 
K and except for the medians 
(50th percentiles) are rounded 
to the nearest 0.05 K

Note: PDFs for Process alone and Historical alone are directly derived by sampling but are equivalent to 
their integrated likelihoods multiplied by Jeffreys' priors

Percentile of posterior PDF for S (as %) 2.5% 5% 17% 50% 83% 95% 97.5%

All combined 2.2 2.3 2.65 3.23 4.1 5.05 5.6
S20 Baseline (UL) results for comparison 2.3 2.6 3.1 3.9 4.7
Process alone 1.8 1.95 2.3 3.07 4.55 6.75 8.45
Historical alone 1.95 2.15 2.7 4.21 8.15 13.65 16.15
Historical: no restriction to 0–20 K 2.05 2.3 3.0 6.09 None None None
Paleoclimate alone 1.45 1.6 2.1 3.02 4.5 6.1 7.05
No Process 2.05 2.2 2.6 3.40 4.65 6.1 7.0
S20 UL No Process results 2.0 2.4 3.1 4.1 5.2
No Historical 1.95 2.05 2.4 3.04 4.0 5.0 5.6
S20 UL No Historical results 2.0 2.3 2.9 3.7 4.6
No Paleoclimate 2.1 2.25 2.65 3.39 4.8 6.8 8.35
S20 UL No Paleo results 2.2 2.6 3.3 4.6 6.4

Percentile of posterior PDF for Shist /TCR​ 2.5% 5% 17% 50% 83% 95% 97.5%
Historical Shist: no restriction to 0–20 K 1.75 1.9 2.25 3.38 13.75 None None
Historical TCR: no restriction to 0–20 K 1.4 1.5 1.7 2.26 4.45 None None

3  So that over the range plotted in S20 the cumulative probability of 
the two PDFs is then equal.
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20 K or negative due to ΔR > 0, implying an unstable climate 
system, and 15% of samples do so for Shist. The substantial 
proportion of sampled S and Shist values exceeding 20 K pri-
marily reflects the significant probability assigned by S20's 
data-variable assumptions to highly negative aerosol ERF 
values: ΔFaerosol

Hist
< −2 Wm2 in 17% of samples. Unnormalized 

results for S and Shist from Historical evidence are therefore 
also given, without probability being restricted to any range 
of S values. This unrestricted basis, which correctly reflects 
the implications of the data-variable uncertainty distribu-
tions, is usual for sampling-based energy budget studies that 
derive Shist (Gregory et al. 2002; Otto et al. 2013; Lewis and 
Curry 2015, 2018).

S20 did not provide any estimate of the transient climate 
response (TCR), a shorter-term climate sensitivity measure, 
however Table 4 does do so. TCR is estimated as for Shist 
but omitting the deduction for ΔN in (9), a common method 
(Otto et al. 2013; Lewis and Curry 2015, 2018; Forster et al. 
2021 7.5.2.1), so that:

The resulting median TCR estimate of 2.26 K exceeds 
the AR6 likely range, and there is a 7% probability that TCR 
exceeds 20 K. Moreover, if S20's estimates of the historical 
pattern effect are accurate then over half of it is unforced 
(supplemental material S5.2.4) and will have depressed 
ΔTHist . Amending (15) to correct for that would increase 
the implied S20 TCR estimate.

Table 5 presents equivalent results from posterior PDFs 
based on uniform-in-λ priors, with the comparative S20 
results where available. Where Process evidence is not used, 
the entire posterior probability will in theory be located 
immediately above zero S, resulting in all S percentiles being 
almost zero (supplemental material S7). This study's Table 5 
results reflect imposing a restriction to S ≥ 0.01 K , which 
avoids the uniform-in-λ prior producing non-negligible 
probability at very low S values.

(15)TCR = F2×CO2∕(ΔFHist∕ΔTHist)

The S values are lower, particularly at high percentiles, 
than when using Jeffreys' priors, except for Process alone 
where the two types of prior and hence the S values are 
identical. This behavior reflects the fact that, while all the 
Jeffreys' priors decrease with S, they decline less rapidly 
than the uniform-in-λ prior. Equivalently, when transformed 
to λ-space, all the non-Process Jeffreys' priors increase with 
S, whereas the uniform-in-λ prior does not. The S values at 
higher percentiles derived here using a uniform-in-λ prior 
differ from those per S20's Baseline results, as would be 
expected given the identified differences between their likeli-
hoods. However, the differences in S values are small, only 
reaching 0.1 K beyond the median. That is consistent with 
the differences in likelihoods only becoming significant 
beyond the medians; since the uniform-in-λ prior varies with 
S−2 the effect on the posterior PDFs of sizeable likelihood 
differences is muted at higher S values.

Comparing the present study's results using the two types 
of prior, the differences between their 95th percentile S val-
ues are quite significant when Historical and/or Paleoclimate 
evidence are used, either alone (differences of ~ 1 K) or in 
combination (a difference of 0.6 K, or 0.9 K using S20's 
results). When Process evidence is used in combination with 
Historical and/or Paleoclimate evidence the differences are 
smaller. When combining all three lines of evidence, the 
95% bound is only 0.2 K lower when using a uniform-in-λ 
prior, and the difference in medians is under 0.1 K. That 
is mainly due to the combined evidence being much more 
informative about S, and constraining it more tightly, than 
any of the separate lines of evidence, and partly due to con-
tributions to the combined Jeffreys' prior from Process and 
Historical evidence respectively being uniform-in-λ, and 
increasing only gently relative to a uniform-in-λ prior.

S20 also present various posterior PDFs based on a 
uniform-in-S prior. That prior is unsuitable for S estima-
tion unless ΔT uncertainty dominates, which it almost 
never does, and will often result in uncertainty ranges that 
are far from being true confidence intervals. For Historical 

Table 5   Results if using S20's 
uniform-in-λ prior as well as 
their data-variable assumptions, 
with PDFs normalized to unit 
probability over 0–20 K, and 
comparisons with similarly 
based results in S20's Table 10. 
All values are in K and 
except for the medians (50th 
percentiles) are rounded to the 
nearest 0.05 K

Percentile of posterior PDF for S (as %) 2.5% 5% 17% 50% 83% 95% 97.5%

All combined 2.15 2.25 2.6 3.16 4.0 4.85 5.35
S20 Baseline results for comparison 2.3 2.6 3.1 3.9 4.7
Process alone 1.8 1.95 2.3 3.07 4.55 6.75 8.45
Historical alone 1.9 2.05 2.55 3.80 7.2 12.55 15.3
Paleoclimate alone 1.25 1.4 1.8 2.62 3.85 5.15 5.95
No Process 1.95 2.1 2.45 3.17 4.3 5.5 6.25
S20 UL No Process results 2.0 2.4 3.1 4.1 5.2
No Historical 1.9 2.05 2.35 2.97 3.85 4.75 5.3
S20 UL No Historical results 2.0 2.3 2.9 3.7 4.6
No Paleoclimate 2.1 2.25 2.6 3.35 4.7 6.65 8.1
S20 UL No Paleo results 2.2 2.6 3.3 4.6 6.4
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evidence, use of a uniform-in-S prior has been shown to 
be unsuitable and to result in seriously biased estimation 
(Annan and Hargreaves 2011; Lewis 2014). For Process 
evidence, the likelihood for λ is normal in λ space, a case 
for which there is general agreement that use of a uniform 
prior is appropriate. When transformed to S space, the 
resulting appropriate prior for S for Process evidence will 
(applying the Jacobian factor) be proportional to S−2, very 
far from uniform.4 Most damningly, use of a uniform-in-S 
prior would result, even for 'All combined' evidence, in the 
S values for all percentiles being an unbounded function of 
the upper bound of the S range over which normalization to 
unit probability occurs, and to increase without limit as that 
bound tends to infinity.5

6 � Results using the revised data‑variable 
assumptions

Results are now presented using the data-variable assump-
tions as revised per Sect. 4, including rectification of the 
omission of the necessary scaling of F2×CO2 when using Pro-
cess and Historical evidence ("the revised assumptions"), 
employing the integrated likelihood method with computed 
Jeffreys' priors.

6.1 � Likelihoods

Figure  5 shows likelihoods derived using the revised 
assumptions (solid lines), with similarly calculated likeli-
hoods using S20's data-variable assumptions in the same 
colors but dotted. The revised assumptions produce likeli-
hoods that peak at lower S values, and are lower at high S 
values, than do S20's assumptions.

The likelihoods for both separate and combined evidence 
derived using the integrated likelihood method, the data 
doubling method, and the profile likelihood method, are all 
almost identical when employing the revised assumptions 

Fig. 5   Likelihoods for S based on this study's revised data-variable 
assumptions (solid lines) and, for comparison, those derived in this 
study using S20's data-variable assumptions (same color, dotted, 
lines). Likelihoods, on both sets of data-variable assumptions, have 
been derived using the integrated likelihood method and normal-
ized to a maximum of one. a Likelihoods from evidence for the three 
Paleoclimate periods: LGM, mPWP and PETM. b Likelihoods from 

Process evidence and from combining Paleoclimate evidence from 
the LGM and either the mPWP or the PETM. S20 did not combine 
LGM and PETM evidence so no comparison dotted line is shown for 
this case. c Likelihoods from Historical evidence for both S and Shist. 
d Likelihoods from combining Process and Historical evidence with 
Paleoclimate evidence from the LGM combined with that from either 
the mPWP or the PETM

4  Ignoring uncertainty in F2×CO2, which has a negligible effect on the 
transformation over the 2.5%–97.5% uncertainty range.
5  Because use of a uniform-in-S prior means the PDF for S is a scaled 
version of its likelihood, which remains above zero as � → 0 and 
hence S → ∞.
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(supplemental material Figures S4 to S7).This includes, 
unlike on S20's data-variable assumptions, likelihoods from 
the doubled-data method applied to Historical evidence, 
confirming that it is difficulty incorporating the unusual 
historical aerosol forcing distribution employed by S20 that 
prevents data-doubling working satisfactorily in that case.

6.2 � Computed Jeffreys' priors

Figure 6a shows the computed and calibrated Jeffreys' pri-
ors for S for each main line of evidence, with Paleoclimate 

represented by LGM evidence combined with either mPWP 
or PETM evidence, and for all main lines of evidence com-
bined, from S = 1 K upwards. Below that level, they start to 
become artefacted—as they do below ~ 1.5 K when using 
S20's data-variable assumptions—due to the paucity of sam-
ples for Process and Historical evidence. The likelihood and 
the probability are both almost zero below those levels, so 
the effect on inference for S is negligible.

In all cases the priors decline rapidly with increasing S, 
reflecting declining informativeness of the evidence about S, 
making it difficult to compare their behavior at high S levels. 
Figure 6b shows these priors transformed into λ-space—that 
is converted into priors for λ—but plotted against the cor-
responding values of S. Figure 6c shows the transformed 
priors for LGM, mPWP and PETM Paleoclimate evidence 
separately. Strictly, because for computational reasons 
the relatively small uncertainty in F2×CO2 is ignored when 
effecting the transformation, it is into priors for F2×CO2∕S , 
whereas � = F2×CO2∕S . The transformed priors show how 
informative the evidence is about λ at each S value, which 
varies comparatively little. Their shapes are all similar when 
using the revised data-variable assumptions to those when 
using S20's assumptions (Fig. 3b, c), except that the revised 
Historical evidence prior flattens out much earlier with ris-
ing S. For Process evidence, the prior should in both cases be 
uniform (constant) when transformed to λ-space—the same 
prior as used for all lines of evidence in S20—since the λ 
likelihood is for the sum of normally distributed variables. 
The drop in the transformed priors that occurs at low S is due 
to uncertainty in F2×CO2 not being removed by the transfor-
mation. At low S values, which arise where ΔR is large and 
ΔT is small, fractional uncertainty in ΔT translates to signifi-
cant absolute uncertainty in λ, hence Paleoclimate evidence 
(which has large ΔT uncertainty) is relatively uninformative.

At low S values, Process evidence is most informative, 
and dominates the combined evidence prior. As S increases, 
mPWP and hence Paleoclimate evidence becomes increas-
ingly more informative, due mainly to fractional uncertainty 
in ΔR being low for the mPWP, and at high S dominates 
the combined evidence prior. Historical evidence is less 
informative than Process evidence at all S values, although 
only modestly so at high S when using S20's data-variable 
assumptions. The priors generally have slightly lower val-
ues when using the revised rather than S20's original data-
variable assumptions. The reasons for this are discussed in 
the supplemental material (S6).

In all cases the priors derived using the doubled data 
and profile likelihood data-space movement methods are 
close to those derived using the primary integrated like-
lihood method over S of 1–10 K, outside which virtually 
zero probability lies (supplemental material Figures S8, 
S9). In some Paleoclimate cases there is minor divergence 
at S > 4 K when using the data-space movement method, 

Fig. 6   Computed Jeffreys' priors based on based on this study's 
revised data-variable assumptions. a Prior in S-space for each 
main line of evidence and for the combined evidence from all three 
types. Paleoclimate evidence from the LGM and PETM combined 
is included as well that from the LGM and mPWP combined. b As 
for (a) but with the S priors transformed into priors in λ-space (that 
is, priors for λ, but plotted at the corresponding S values). c Priors 
transformed into λ-space for evidence from individual paleoclimate 
periods. The transformations from S-space to λ-space are effected 
by multiplying them by S2/F2×CO2, for simplicity ignoring the minor 
uncertainty in F2×CO2 and hence not being exact
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but for combined Paleoclimate evidence little probability 
exists there. Although all the priors have been calibrated to 
equal (the square root of) Fisher information, those derived 
using the profile likelihood data-space movement method 
are almost identical with and without calibration, confirm-
ing the soundness of that method. These comments apply 
also (at S > 1.5 K) to the priors derived when using S20's 
data-variable assumptions (Fig. 3), save that only the inte-
grated likelihood method produces a usable prior for S20's 
Historical evidence (see Sects. 3.3 and 3.5), and hence for 
the combined evidence.

6.3 � Posterior PDFs and percentiles for S

The estimated posterior PDFs based on the revised assump-
tions (Fig. 7, solid lines) all peak at lower S values, and are 
better constrained beyond their peaks, than those based on 
S20's assumptions (shown dotted).

Figure 7a shows the PDFs for separate lines of Pale-
oclimate evidence, derived using the revised data-variable 
assumptions and, for comparison, using S20's assumptions. 

Figure 7b shows PDFs from combining Paleoclimate LGM 
evidence with that from the mPWP or PETM, and for sepa-
rate Process and Historical evidence. Figure 7c shows the 
final PDFs after combining Process, Historical and Pale-
oclimate evidence. The PDFs incorporating PETM evidence 
are almost identical to those incorporating mPWP evidence; 
they peak marginally earlier, and at a slightly higher level.

Figure 7d shows unnormalized posterior PDFs for S and 
Shist. The PDFs for S are the same as in panel (b) except for 
the lack of normalization. When using the revised assump-
tions, there is little difference between the normalized 
and unnormalized PDFs, as only 2.0% of the probability 
lies beyond S = 20 K, down from 30% when using S20's 
assumptions.

Posterior PDFs computed using the doubled data method, 
or the profile likelihood method and its data-space move-
ment prior, are visually identical to those using the primary 
integrated likelihood method shown in Fig. 7, save for a 
marginal difference in the peak PDF level for separate LGM 
and PETM evidence (supplemental material Figures S10 to 
S13). For separate evidence, the sampling based integrated 
likelihood and doubled data method both derive their PDFs 

Fig. 7   Posterior PDFs for S based on the revised data-variable 
assumptions (solid lines) and, for comparison, on S20's original 
assumptions (dotted lines), in both cases using the sampling-based 
integrated likelihood method. The PDFs for individual separate 
lines of evidence, are obtained directly by sampling, but equate to 
the product of the estimated integrated likelihood and derived Jef-
freys' prior. Save in panel (a), comparative PDFs involving the PETM 
are not given, since S20 did not provide any such PDFs. Except in 
panel (d), the PDFs have all been normalized to unit probability over 

0–20  K. a PDFs for S from Paleoclimate LGM, mPWP and PETM 
evidence separately. b PDFs for S from separate Process, Historical 
and Paleoclimate (LGM combined with mPWP or PETM) evidence. 
c Combined evidence PDFs derived using, as Paleoclimate evidence, 
that from the LGM combined with that from either the mPWP (black 
lines) or the PETM (purple line). d Unnormalized PDFs for S and 
Shist. These account for probability outside 0–20 K, which is substan-
tial when using S20's original assumptions 



3160	 N. Lewis 

1 3

directly by sampling, so they are bound to be identical in 
these cases. However, PDFs computed using the non-
sampling profile likelihood method and its very differently 
derived data-space movement prior are completely inde-
pendent of those from the integrated likelihood and doubled 
data methods.

Table 6 presents this study's primary results, in the form 
of medians and 66%, 90% and 95% uncertainty ranges from 
posterior PDFs, on the revised data-variable assumptions, 
derived using the integrated likelihood method and Jeffreys' 
priors. Results based on combining different pairs of lines of 
evidence, as well as all of them, are given. PDFs for S used 
in Table 6 were normalized to unit probability over 0–20 K; 
almost no probability (≤ 0.1%) lies outside that range.

As when using S20's assumptions, the S values at high 
percentiles confirm that Historical evidence is least impor-
tant for constraining the upper uncertainty bounds, but Pro-
cess evidence now constrains them almost as strongly as 
Paleoclimate evidence.

The limited revisions made to S20's assumptions reduce 
by one-third, from 3.23 to 2.16 K, the median estimate of S 
given by the combined evidence, using Jeffreys' priors and 
warm Paleoclimate evidence from the mPWP in both cases. 
The 83% and 95% uncertainty bounds reduce respectively 
from 4.1 to 2.7 K and from 5.05 to 3.2 K. If warm Paleocli-
mate evidence is instead taken from the PETM when the 

revised assumptions are used, the PDF percentiles from the 
median upwards reduce further, by ~ 0.05 K.

All the profile likelihood method (using the associated 
data-space movement prior) derived percentile values are 
within ± 0.02 K of those in Table 6, with medians identi-
cal, when combining evidence in two stages (supplemental 
material S4). Moreover, when using the revised assump-
tions, the profile likelihood optimization process can simul-
taneously combine Process, Historical, LGM, and either 
mPWP or PETM evidence, and hence produce, in a single 
step, a posterior PDF for all lines of evidence combined. 
The 1% to 99% percentile points of those two PDFs match 
those from the sampling-based integrated likelihood method 
within ± 0.02 K.

The median S values when omitting evidence from each 
of the three main lines in turn, with Paleoclimate evidence 
combining LGM evidence with that from either the mPWP 
or PETM, are all within 0.1 K of the average of the two 'All 
combined' values.

It is useful to establish how sensitive the combined-evi-
dence results are to the various categories of revisions to 
data-variable assumptions. A few of the revisions might be 
regarded as more questionable since they are based wholly 
or partly on reevaluation of existing evidence. That category 
includes LGM cooling and non-CO2 forcing, and also the 
revision to Historical aerosol forcing, which although largely 

Table 6   Primary results using 
the revised data-variable 
assumptions and Jeffreys' 
priors. All values are in K and 
except for the medians (50th 
percentiles) are rounded to the 
nearest 0.05 K

Percentile of posterior PDF for S (as %) 2.5% 5% 17% 50% 83% 95% 97.5%

All combined: Paleo LGM + mPWP 1.45 1.55 1.75 2.16 2.7 3.2 3.5
Same but using original assumptions 2.2 2.3 2.65 3.23 4.1 5.05 5.6
All combined: Paleo LGM + PETM 1.45 1.5 1.75 2.12 2.65 3.15 3.45
No Process: Paleo LGM + mPWP 1.25 1.35 1.6 2.12 2.85 3.65 4.15
No Process: Paleo LGM + PETM 1.25 1.35 1.6 2.05 2.75 3.55 4.1
No Historical: Paleo LGM + mPWP 1.4 1.5 1.75 2.16 2.8 3.4 3.75
No Historical: Paleo LGM + PETM 1.35 1.45 1.7 2.12 2.7 3.35 3.7
No Paleoclimate 1.35 1.5 1.7 2.19 2.9 3.7 4.25

Table 7   Sensitivity of the 
primary combined evidence 
results (using LGM + mPWP for 
Paleo) to the various revisions 
of data-variable assumptions, 
using the integrated likelihood 
method and Jeffreys' priors. All 
values are in K and except for 
the medians (50th percentiles) 
are rounded to the nearest 
0.05 K

a AR6 Historical ERF time series are used to estimate ΔFother, but only to scale the main 1850 to 2005–
2015 ΔFaeroso estimate to a 1861−80 to 2006−18 change. The AR6 revision to the ΔT basis relates to 
changing S20's estimated GMAT—GMST adjustment to match the AR6 zero estimate of their difference

Percentile of posterior PDF for S (as %) 2.5% 5% 17% 50% 83% 95% 97.5%

Using S20's original data-variable assumptions 2.2 2.3 2.65 3.23 4.1 5.05 5.6
After adopting revisions relating to:
Use of CO2 ERF & abrupt2/4 × simulations (ζ &γ) 1.85 1.95 2.3 2.82 3.6 4.35 4.85
Also AR6 Historical ex-aerosol ERF & ΔT basisa 1.7 1.85 2.15 2.64 3.35 4.1 4.55
Also, per later data/newer evidence (non-cloud) 1.6 1.7 1.95 2.39 3.0 3.65 4.05
Also cloud feedback, per newer evidence 1.5 1.6 1.85 2.25 2.8 3.4 3.75
Also LGM ΔT and ΔFexCO2 (preferred evaluation) 1.45 1.55 1.75 2.15 2.7 3.25 3.55
All revisions, including to Historical aerosol ERF 1.45 1.55 1.75 2.16 2.7 3.2 3.5
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based on newer evidence concerns a very poorly constrained 
forcing.

Table 7 divides the revisions made into six categories, 
starting with those that appear least debatable, being that 
to F2×CO2 together with appropriate adjustments (omitted in 
S20) to the calculation of the CO2 ERF estimates used, or 
which arise from alignment of the CO2 concentrations used 
for estimating of the ECS to S ratio. Without these changes, 
the bases of S estimation are biased and are not consistent 
between lines of evidence.

The next set of changes relate primarily to the substi-
tution of the AR6 Historical non-aerosol ERF time series 
estimates, and of the AR6 zero-mean estimate of the differ-
ence between Historical GMST and GMAT warming, for 
the estimates used by S20. Together, these two categories of 
revision reduce the median S estimate by almost 0.6 K, and 
the 95% uncertainty bound by almost 1 K.

The third category comprises all other revisions that 
are based entirely on newer evidence or later data, other 
than cloud feedback, the least well constrained feedback. 
The main changes involved are to scaling factors used for 

estimation of S from mPWP evidence, with those factors 
being derived from a more recent model intercomparison 
project than previously, and to the estimate of the Historical 
pattern effect. These revisions reduce the median S estimate 
by a further 0.25 K. Next, cloud feedback is revised, which 
reduces the median S estimate by almost 0.15 K more, to 
2.25 K, with the 95% uncertainty bound now down to 3.4 K. 
Including the penultimate category, of revisions to LGM 
cooling and non-CO2 forcing, brings the median S estimate 
down by another 0.1 K, to 2.15 K.

Finally, and somewhat counter intuitively, revising the 
Historical aerosol ERF distribution, with the resulting S 
estimation basis now being the same as that in Table 6, 
does not further reduce the median S estimate. That esti-
mate remains unchanged within computational uncertainty, 
although the 95% (and 97.5%) uncertainty bounds reduce 
by a further 0.05 K. Investigation suggests the principal 
cause is likely that, although the aerosol ERF distribution 
used by S20 has a median that (after scaling between peri-
ods using the AR6 time series) is some 0.2 Wm−2 more 
negative than for the adopted revised distribution, its mode 

Table 8   Percentile results for individual paleoclimate periods, and for 
each main line of evidence, separately, including for Shist and TCR, 
using the revised assumptions and, in italics in the following row, 

using the same methods but S20's assumptions. All values are in K 
and except for the medians (50th percentiles) are rounded to the near-
est 0.05 K

Percentile of posterior PDF for S (as %) 2.5% 5% 17% 50% 83% 95% 97.5%

Paleoclimate: LGM alone 0.75 0.9 1.25 1.95 3.15 4.9 6.35
Using original data-variable assumptions 1.15 1.3 1.75 2.64 4.35 7.05 9.1
LGM: without restriction to 0–20 K 0.75 0.9 1.25 1.95 3.15 5.1 7.0
Paleoclimate: mPWP alone 0.35 0.6 1.25 2.42 4.2 6.3 7.7
Using original data-variable assumptions 1.05 1.35 2.1 3.46 5.55 8.0 9.55
mPWP: without restriction to 0–20 K 0.05 0.4 1.15 2.38 4.2 6.3 7.75
Paleoclimate: PETM alone 0.45 0.65 1.1 1.94 3.65 6.85 9.55
Using original data-variable assumptions 0.55 0.8 1.3 2.33 4.55 8.4 11.25
PETM: without restriction to 0–20 K 0.4 0.65 1.15 2.01 4.2 17.0 None
Paleoclimate: LGM + mPWP 0.9 1.05 1.45 2.10 3.1 4.2 4.9
Using original data-variable assumptions 1.45 1.6 2.1 3.02 4.5 6.1 7.05
Paleoclimate: LGM + PETM 0.95 1.05 1.4 1.98 2.9 4.05 4.95
Using original data-variable assumptions 1.25 1.4 1.8 2.59 3.95 5.75 7.05
Process 1.3 1.4 1.65 2.21 3.1 4.3 5.15
Using original data-variable assumptions 1.8 1.95 2.3 3.07 4.55 6.75 8.45
Historical 1.05 1.15 1.45 2.13 3.55 6.1 8.3
Using original data-variable assumptions 1.95 2.15 2.7 4.21 8.15 13.65 16.15
Historical: without restriction to 0–20 K 1.05 1.2 1.5 2.15 3.7 7.6 14.75
Using original data-variable assumptions 2.05 2.3 3.0 6.09 None None None

Percentile of posterior PDF for Shist/TCR​ 2.5% 5% 17% 50% 83% 95% 97.5%
Historical Shist: no restriction to 0–20 K 1.2 1.3 1.55 2.05 2.95 4.25 5.35
Using original data-variable assumptions 1.75 1.9 2.25 3.38 13.75 None None
Historical TCR: no restriction to 0–20 K 1.0 1.05 1.25 1.54 2.0 2.45 2.75
Using original data-variable assumptions 1.4 1.5 1.7 2.26 4.45 None None
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is actually the less negative of the two. The shapes of the 
two distributions are such that the Historical S likelihoods 
resulting from their use, with other revisions to Historical 
data-variables having been made, are very similar below 
approximately 2 K. While highly negative aerosol ERF 
values, which correspond to high S values, are much more 
probable when using the S20 aerosol distribution, resulting 
in a larger Historical S likelihood, those high S values are 
almost ruled out by their low likelihood from Process and 
Paleoclimate evidence.

Table 8 presents sampling-derived medians and 66%, 
90% and 95% uncertainty range bounds for S, for the three 
main lines of evidence and for each Paleoclimate period 
separately, using the revised and (in italics) the original S20 
assumptions. S20 did not provide any similar estimates. 
Posterior PDFs for S were normalized to unit probability 
over 0–20 K except where stated; results are also given 
without excluding probability outside that range, where it 
is non-negligible.

Consistency between median S values from different lines 
of evidence is much improved when based on the revised 
assumptions; they span (without restriction to 0−20 K) only 
1.9−2.4 K, compared to 2.4−6.1 K using S20's assumptions.

The median TCR is 1.54 K, within the AR6 likely range. 
The median TCR and Shist estimates are respectively almost 
one-third lower, and almost 40% lower, than when using 
S20's assumptions.

7 � Discussion

This study first identifies statistical problems in S20. Using 
a Subjective Bayesian statistical method involving an inves-
tigator-selected prior distribution, as S20 does, may produce 
unrealistic climate sensitivity estimation when used to com-
bine differing types of evidence (Lewis 2018), even assuming 
that the data likelihood functions are correct. In this case, I 
found that the method S20 used for estimating likelihoods 
for all but Process evidence was in fact unsound, and that it 
underestimated likelihood at high S levels, substantially so 
in some cases. I also found that S20 used an uncertainty esti-
mate for PETM CO2 forcing that was a factor of ten too low, 
due to an apparent coding error, further biasing their likeli-
hood estimate (although not affecting their main results).

This study then develops an Objective Bayesian approach 
to combining differing climate sensitivity evidence that, 
unlike the method used in Lewis and Grünwald (2018), is 
not restricted to dealing with a particular simple statisti-
cal model. The approach involves computationally deriv-
ing Jeffreys' prior distributions that are designed to maxi-
mize the influence of the data on the results and to produce 
probabilistic estimates that are as close as possible to being 

confidence intervals, and thus are well calibrated. Three dif-
ferent inferential methods employed for this purpose each 
provide nearly identical estimated likelihoods and Jeffreys' 
priors, and final results. This result is very supportive of the 
validity of the methods used and of the results they produce.

The robustness of S20's results to the use of properly 
calibrated statistical methods and validly calculated likeli-
hood estimates is then examined, using the Objective Bayes-
ian methods developed in this study. It is shown that while 
S20's choice of prior and its likelihood misestimation lead 
to over-constraining of high S levels, based on S20's data-
variable assumptions the downwards bias in S20's Baseline 
combined evidence results is modest: the median S estimate 
is approximately 0.13 K low, and the 95% uncertainty bound 
0.35 K low. However, the bias in S20's No Process results is 
over twice as large.

The other main contribution of this study is to assess the 
impact of revising various input data-variable distributions 
used by S20, by:

	 (i)	 adjusting the F2×CO2 value used for inferring S from 
Process and Historical evidence to reflect the effect of 
climate feedback changing over GCM abrupt4xCO2 
simulations, as should undoubtedly be done;

	 (ii)	 allowing for the CO2 concentration-ERF relationship 
being slightly non-logarithmic, and estimating the 
ECS to S ratio in a way that is unaffected by that 
relationship;

	 (iii)	 changing some of S20's other data-variable estimates 
to reflect more recent information; and

	 (iv)	 using arguably better justified (albeit not based purely 
on more recent information), alternative estimates for 
a few other data-variables.

I find that doing so results in substantially lower and 
better constrained estimates for S. The median S estimate 
when combining all lines of evidence, using the Objective 
Bayesian method and the LGM and mPWP for Paleocli-
mate evidence, reduces from 3.23 to 2.16 K.

All the revised data-variable estimates are not only 
defensible but, given the evidence now available, in my 
view are better justified than S20's original estimates. 
Moreover, omitting the only revisions dependent, to a 
greater or lesser extent, on reevaluation of existing evi-
dence only very modestly changes the combined evidence 
results, with the omission just of the revision of the Histor-
ical aerosol forcing having almost no effect on the results.

It therefore currently remains quite plausible that S is 
below 2 K. The truncation in S20's results of the lower 
bound for S does not appear justified given the range of 
data-variable estimates supported by relevant, mainly more 
recent, studies. There is 36% probability of S being under 
2 K, considerably greater than the 26% probability of S 
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exceeding 2.5 K, according to the revised data-variable 
assumptions 'All combined: Paleo LGM + mPWP' results; 
they also imply that it is extremely unlikely that S is below 
1.5 K, and extremely unlikely that S is above 3.2 K.

The revised data-variable median Historical evidence 
estimates of Shist and TCR are somewhat higher than the 
comparable estimates in Lewis and Curry (2018), of 
1.66 K and 1.33 K respectively. The excess is mainly due 
to a stronger aerosol ERF change, even after revising S20's 
assumptions. Further revising S20's median aerosol ERF 
to match the change per the AR5 time-series, extended 
post-2011 using AR6's annual changes, would reduce the 
Table 8 median Shist and TCR to respectively 1.82 K and 
1.40 K. Changing the base period to 1869–1882 to match 
Lewis and Curry (2018), avoiding the poorly observed 
1861–1868 period, would further reduce those estimates, 
to 1.79 K and 1.37 K. The methane shortwave ERF adjust-
ment, and greater estimated change in radiative imbalance, 
in AR6 can account for the small remaining differences.
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