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weaken the easterly winds, which lead to a decreased (dis-
charge) upper ocean heat content. This results in La Nina T 
anomalies that then strengthen the easterly winds, leading to 
the recharge of the upper ocean heat content and thus com-
pleting the cycle.

In this picture, ENSO is described by a two-dimensional 
phase space of T and h. In the idealised ReOsc model, we 
would expect that the ENSO state would circle around this 
phase space in a clockwise direction (Fig. 1), with prob-
abilities and amplitudes of similar values for all phases of 
the cycle. Meinen and McPhaden [2000] and Kessler [2002] 
are some of the first studies to discuss the observed structure 
of the ENSO phase space, illustrating that an analysis of the 
ENSO phase space can point out important characteristics. 
Kessler [2002] pointed out that the cycle may indeed be bro-
ken during La Nina like states, suggesting that ENSO is not 
a cycle but a series of events. It further points out some non-
linear aspects of the system, with the La Nina state being 
different from the El Nino state. An et al. [2020] provide 

1 Introduction

The most widely used theoretical, conceptual model of the 
El Nino Southern Oscillation (ENSO) mode is the linear 
recharge oscillator (ReOsc) model [Burgers et al., 2005; Jin, 
1997; Timmermann et al., 2018]. In this model ENSO is 
described by a cycle between subsurface upper ocean heat 
content and the sea surface temperature (SST), see sketch 
Fig. 1. Here increased (recharge) upper ocean heat content, 
which is measured by a deepening of the thermocline depth 
(h) leads to the development of El Nino SST anomalies in 
the eastern equatorial Pacific (T). These SST anomalies 
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Abstract
El Niño Southern Oscillation (ENSO) dynamics are best described by the recharge oscillator model, in which the eastern 
tropical Pacific sea surface temperatures (T) and subsurface heat content (thermocline depth; h) have an out-of-phase 
relationship. This defines a 2-dimensional phase space diagram between T and h. In an idealized, stochastically forced 
damped oscillator, the mean phase space diagram should be a perfectly symmetrical circle with a clockwise propagation 
over time. However, the observed phase space shows strong asymmetries. In this study we illustrate how the ENSO phase 
space can be used to discuss the phase-dependency of ENSO dynamics. A normalized spherical coordinate system allows 
the definition of phase-depending ENSO growth rates and phase transition speeds. Based on these we discuss the implica-
tions of the observed asymmetries with regards to the dynamics and predictability of ENSO; with a particular focus on 
the variations in the growth rate and coupling of ENSO along the oscillation cycle. Using linear and non-linear recharge 
oscillator models we will show how dynamics and noise are driving ENSO at different phases of the ENSO cycles. The 
results illustrate that the ENSO cycle with positive phase transitions is present in all phases but has strong variations in 
its strength. Much of these variations result from presenting the ENSO phase space with estimates of h based on the iso-
thermal depth, that is not ideal as it is not out-of-phase with T. Future work should address how h can be estimated better, 
including aspects such as the vertical temperature gradients and the meridional or zonal range. We further illustrated that 
a non-linear growth rate of T can explain most of the observed non-linear phase space characteristics.
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an analytical discussion of how non-linear dynamics affect 
the probabilities in the ENSO phase space. Takaheshi et al. 
[2019] used the ENSO phase space to illustrate differences 
between a linear and non-linear model of ENSO.

Non-linear aspects of ENSO have been documented in 
the past in many different studies; including non-lineari-
ties in the amplitude, time evolution and patterns [Burgers 
and Stephenson 1999; Dewitte et al. 2013; Su et al. 2009; 
Ohba et al. 2010; Okumura and Deser 2010; Takahashi et 
al. 2011; Dommenget et al. 2013]. The ENSO phase space 
should be able to reflect the non-linearities in the amplitude 
and time evolution of ENSO and could potentially help to 
better understand the underlying dynamics of these two 
characteristics.

Several studies have tried to model ENSO non-linearities 
with the help of a non-linear variation of the ReOsc or other 
models [e.g., Choi et al. 2013; An et al. 2020; Levine et 
al. 2016; Frauen and Dommenget 2010]. They have been 

able to explain a number of different non-linear aspects of 
ENSO, but it is unclear how these approaches capture the 
asymmetries observed in the ENSO phase space.

Previous studies suggest that the predictability of ENSO 
is likely to be phase-depending [e.g., Dommenget et al. 
2013; Timmermann et al. 2018]. Dommenget et al. [2013] 
found that strong La Nina events are likely to be more pre-
dictable than strong El Nino events of lead times of 7–11 
months, due to the non-linear wind-SST relation. In con-
trast, Timmermann et al. [2018] argue that the transition 
from a recharge to an El Nino state is more predictable and 
that La Nina conditions are generally less predictable.

The aim of this study is to take a closer look at the ENSO 
phase space and present a detailed analysis of its observed 
characteristics. We aim to combine this analysis with a 
comparison of the observed phase space and the observed 
ReOsc model fits. By doing so, we would like to illustrate 
the extent a linear and non-linear ReOsc model can describe 

Fig. 1 Sketch of the ENSO recharge oscillator model dynamics. The ENSO cycle is clockwise with the heat content (h) in the vertical direction 
and sea surface temperature anomalies (T) in the horizontal direction. The three blue arrows in the horizontal planes mark wind anomalies result-
ing from T

 

1 3

2148



Asymmetries in the ENSO phase space

and explain the observed phase space characteristics. The 
ultimate aim of this study is to introduce the ENSO phase 
space characteristics as an effective way to present and anal-
yse key ENSO dynamics.

The study is organised as follows: The following section 
introduces the data set used, the ReOsc model equations and 
the methods of estimating important parameters and statis-
tics. Section 3 presents the results of the observed ENSO 
phase space, which is followed by a section on the linear 
ReOsc model and a section on a non-linear ReOsc model. 
In the final analysis section, we focus on the predictability 
of ENSO in the context of the ENSO phase space. Then the 
study is concluded with a summary and discussion.

2 Data, models and methods

Observed SST data is taken from the HADISST 1.1 data 
set for the period 1980 to 2019 [Rayner et al., 2003]. The 
monthly mean SST anomaly index region for T is the 
NINO3 region (150°W–90°W, 5°S–5°N). The thermo-
cline depth anomalies, h, is estimated on the basis of the 
20oC thermocline depth (Z20) averaged over the equatorial 
Pacific (130°E–80°W, 5°S–5°N). Given the limitations in 
subsurface observations of temperature we use a combina-
tion of datasets to estimate monthly mean h: the 1980–2019 
20 °C isotherm depths from the temperature analyses of the 
Bureau National Operations Centre (BNOC) at the Austra-
lian Bureau of Meteorology [Meinen and McPhaden 2000], 
the ocean reanalysis from SODA3 1980–2017 [Carton and 
Giese 2008] and the CHOR AS and RL ocean reanalysis 
1980–2010 [Yang et al., 2017]. The four datasets are com-
bined to one long time series of T and h, thus repeating each 
year four times to better capture the variability. We also 
considered the GECCO2 reanalysis data [Köhl, 2015], but 
neglected it for this analysis, because it produced signifi-
cantly different statistics compared to the other four datasets.

The ReOsc model is based on two tendency equations 
[Burgers et al., 2005]:

 
dT (t)

dt
= a11T (t) + a12h (t) + ζT  (1)

 
dh (t)

dt
= a21T (t) + a22h (t) + ζh  (2)

with the growth rates of T(a11) and h(a22), the coupling 
parameters (a12 and a21) and the noise forcing terms (ζT  
and ζh). The parameters of Eqs. [1–2] are estimated for the 

combined observations by multivariate linear regression the 
monthly mean tendencies of T and h against monthly mean 
T and h, respectively [Burgers et al. 2005; Jansen et al. 
2009; Vijayeta and Dommenget 2018]. The residual of the 
linear regression fit can be interpreted as the random noise 
forcing, with the standard deviation (stdv) of the residuals 
being the stdv of the noise forcing for the T and h equations 
(ζT  and ζh). The values are shown in Table 1.

The ENSO phase space is presented by plotting T on 
the x-axis versus h on the y-axis, see Fig. 2. This Carte-
sian coordinate system can be transformed into a spheri-
cal coordinate system with the phase angle φ = 0o  in the 
h (y-direction) and 90o  in the T (x-direction). φ  follows a 
clockwise rotation (Fig. 2). For this presentation it is useful 
to normalise T and h, by their respective standard deviation 
(Table 2) to get a non-dimensional presentation of the vari-
ables (Tn and hn). This normalization can also be applied to 
the fitted ReOsc model parameters (Table 2).

In this normalized presentation we can define an ENSO 
system anomaly, S, as function of the two components Tn 
and hn. The magnitude of S is constant for a constant radius 
and is not a function of the phase φ . Thus, the ENSO system 
is now described by the magnitude of S and φ . The tenden-
cies of the ENSO system, as a function of the ENSO phase, 
are best described by the radial and tangential components. 
The radial component describes the tendency to move away 
from the origin (positive values) or towards it (negative val-
ues). The tangential component describes the tendency of 
the system to circle around the origin, with positive values 
indicating clockwise motion and negative values indicating 
anti-clockwise motion.

The analysis of observed or simulated statistics is based 
on monthly mean vales of T and h. The tendencies of T and 
h are estimated as:

 
dT (t)

dt
≈ (T (t + 1) − T (t − 1))/2mon

 
dh (t)

dt
≈ (h (t + 1) − h (t − 1))/2mon

Table 1 statistics of T and h, for observations and different ReOsc 
models
Observed distribution statistics
stdv(T) = 0.94oC stdv(h) = 8.5 m
skewness(T) = 0.98 skewness(h) = -0.59
Observed linear model
stdv(T) = 0.92oC stdv(h) = 8.9 m
skewness(T) = 0.02 skewness(h) = -0.01
Non-linear-a11 model
stdv(T) = 0.76oC stdv(h) = 8.6 m
skewness(T) = 0.78 skewness(h) = -0.51
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from the ReOsc model. This clockwise rotation is present 
for all phase angles, or more generally, in all four quarters of 
the diagram. Thus, positive heat content anomalies (hn) lead 
to positive SST anomalies (Tn), which subsequently lead to 
negative hn, which lead to negative Tn, and then back to a 
positive hn to complete the cycle. Therefore, the observed 
ENSO anomalies and their mean tendency do fit into the 
ReOsc model idea.

However, there are some clear asymmetries present in the 
observed ENSO phase space diagram that are not expected 
from the idea of a linear ReOsc model. First of all, we can 
note that the ENSO system scatters much more towards 
positive Tn values, than towards negative ones, and more 
towards negative hn values, than towards positive ones. 
Both asymmetries are expected from the well-known posi-
tive skewness in Tn and negative skewness in hn [Trenberth 
1997; Burgers and Stephenson 1999; Su et al. 2009].

It should be noted that much of the analysis could poten-
tially also be done by analytically analysing Eqs. 1 and 2. 
However, this is not done here to provide a basis for apply-
ing this kind of analysis to any simulated or observed data.

3 Observed Phase Space

Figure 2 shows that the observed monthly mean ENSO 
phase space values are mostly a chaotic clustering around 
the origin, but for larger values the transition from one 
month to the next appears to be circling around the origin. 
This is indicating a transition in the phase space. To better 
illustrate how the system is developing in this phase space 
we compute the mean tendencies of the ENSO anomalies at 
different sections of the phase space, see vectors in Fig. 2.

The mean tendencies of the ENSO anomalies highlight 
a clear clockwise rotation in the ENSO system, as expected 

Fig. 2 Observed ENSO phase space of normalized monthly mean Tn and hn. The vectors are the mean tendencies of Tn and hn within a range of 
+/- 0.4 to the reference point in the phase space (starting point of the vector). A vector of unit length is a tendency of 1 mon-1 and the scale of the 
vector is proportional to the magnitude of the tendencies. Vectors are only shown for S < 3.5 and where there is actual data. The red line marks the 
mean value of �S  for each angle within an angle range of +/-20°. In addition to the Cartesian coordinates Tn and hn, the spherical coordinates for 
the radius (�S) values [2,3,4] and angle (φ) in clockwise notation are given. The diagram quarters 1–4 are marked as Q1, Q2, Q3 and Q4.
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between Tn and hn with a lag zero correlation of zero, is not 
quite as it is observed.

The mean tendencies, as a function of the phase, are 
best described by the radial and tangential components, 
see Fig. 3b. For a stationary system, as ENSO is, the mean 
radial part over all phases must be zero, as the system is in 
average around the origin. The radial component is related 
to the growth rate of the system as it describes the tendency 
of the system to grow or decay.

The observed mean radial tendency is positive around 0o  
and negative around 100o  and 220o . This can also be noted 
by the mean tendency vectors in Fig. 2. At phase 0o  they 
point away from the origin, indicating growth and a positive 
radial component. At phases 100o  and 220o , we can note 
that the vectors point inwards towards the origin, indicating 
decaying ENSO anomalies on average.

The observed mean tangential component values are 
always positive, indicating a clockwise evolution of the sys-
tem consistent with the ReOsc model. The values are larger 
from about 60o to 180o , and smaller from about 210o to 30o . 
The smaller values indicate that the transition in the ENSO 
cycle is slowed down on average.

As mentioned above, the radial component of the tenden-
cies are related to the growth rate of S. However, unlike in 
the ReOsc model (Eqs. [1–2]) where a11 and a22 are constant 
growth rates of T and h, which do not depend on T and h, 
the mean radial component as presented in Fig. 3b is a func-
tion of the mean S for each phase (e.g., the vectors in Fig. 2 
depend on the mean S; they increase with distance to the 
origin).

Analogous to the ReOsc model growth rates, we can esti-
mate a growth rate of S as a function of the phase by divid-
ing the radial component (Fig. 3b) by the mean S (red line 
in Fig. 2); see Fig. 5a. The structure of the growth rate of 
S is very similar to that of the radial component of the ten-
dencies but can now be interpreted in the same way as the 
growth rate in the ReOsc model. We should note here that 
this statistical definition of the growth rate by definition is in 
average over all phases zero, and it represents the combined 
effect of the dynamics (T and h) and the noise forcing.

Similarly, the tangential component of the tendencies is 
also a function of the mean S for each phase. We can define 
a phase transition (angular speed) by dividing the tangential 
component (Fig. 3b) by the mean S (red line in Fig. 2), see 
Fig. 5b. The phase transition is fastest between the El Nino 
state and the discharged state (~140o ), and slowest between 
the discharged state and the La Nina state (~220o ). The dif-
ferences in the angular speeds are consistent with the differ-
ences in the likelihoods to be at different phases (Fig. 3a). 
ENSO phases which have large ENSO angular speeds are 
less likely to occur because ENSO transitions through these 
phases are relatively fast. In turn, phases which have small 

In the phase space we can note that we have larger scatter 
from about 30o to 240o  and smaller scatter clockwise from 
about 240o to 30o . We can quantify these phase dependent 
probability distributions by estimating the probability sta-
tistics as a function of φ . The mean of S as function of φ  is 
shown in Fig. 2 (red line). The mean is largest around 60o to 
90o  and smallest around 270o to 360o .

Figure 3a shows the 2-dimensional probability density 
function. It shows the highest probabilities near the origin 
in quarter Q4 and larger probabilities for large S values in 
quarter Q1 to Q3, consistent with the scatter plot in Fig. 2. 
We can further estimate the probabilities of S values to be at 
different phase angles φ  (black line in Fig. 3a). This shows 
higher probabilities to be in Q1 or Q3, and lower probabili-
ties to be in Q2 or Q4. The probabilities are somewhat simi-
lar for Q2 and Q4 but show some enhanced likelihoods to 
be in Q1 compared to those in Q3. This shows that ENSO 
states between a recharge and an El Nino state (4̃0o) have 
the highest probabilities. The lowest probabilities are the 
state at 90o , and states before and after this.

The probability distribution shifts a bit towards quarter 
Q2, if we only consider ENSO states with |S| > 1.0 (red 
line in Fig. 3a). It illustrates that large ENSO anomalies are 
primarily in phases from about 60o to 240o  and less so from 
about 270o to 360o . Thus, large ENSO anomalies do not 
exist from the La Nina to the recharge state phase.

The scatter in Fig. 2 or the probability distribution 
between Tn and hn in Fig. 3 shows an enhance likelihood 
along the diagonal from lower left (225o) to upper right 
(45o), which is reminiscent of a positive correlation between 
Tn and hn. The observed correlation between Tn and hn at a 
time lag of zero is 0.4, see Fig. 4a. Thus, the idealized con-
cept of the ReOsc model which has an out-of-phase relation 

Table 2 statistics of T and h for different ReOsc model
Observed ReOsc model parameters
Growth rate Coupling Noise forcing
a11 = -0.115 mon− 1 a12 = 0.018 

Km− 1mon− 1
stdv (ζT ) = 0.27 
Kmon− 1

a22 = + 0.002 mon− 1 a21 = -1.42 
mK− 1mon− 1

stdv(ζh)  = 2.3 m 
mon− 1

Normalized observed ReOsc model parameters
a11n = -0.115 mon− 1 a12n = 0.17 

mon− 1
norm-stdv(ζT ) = 0.29 
mon− 1

a22n = + 0.002 mon− 1 a21n = -0.16 
mon− 1

norm-stdv(ζh)  = 0.27 
mon− 1

Non-linear ReOsc model parameters
a11 − 0 = -0.035 K mon− 1

a11 − 1 = -0.188 mon− 1

a11 − 2 = 0.058 K− 1mon− 1

a12 = 0.018 
Km− 1mon− 1

stdv(ζT ) = 0.27 
Kmon− 1

a22 = + 0.002 mon− a21 = -1.42 
mK− 1mon− 1

stdv(ζh)  = 2.3 m 
mon− 1
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ReOsc model to illustrate what observed asymmetries are 
significant. We then discuss the linear ReOsc model with 
parameters fitted to the observed data to illustrate what kind 
of structures in the space phase can be explained by the 
observed linear dynamics.

An idealised damped oscillator can be presented by the 
ReOsc model with all model parameters being symmetrical 
for T and h. To illustrate the characteristics of an idealised 
damped oscillator, we create a ReOsc model that is identical 
for both tendency equations. That is, the growth rates, cou-
pling and strength of the noise forcing are the same magni-
tudes for both T and h. We chose the following parameters 
based on the normalised parameters in Table 2:

 a11 = a22 = −0.048mon−1 and a12 = −a21 = 0.16mon−1 (3)

We refer to this model as the idealised linear ReOsc model. 
The resulting phase space statistics of Tn and hn are shown 
in Fig. 6a-c. Here we can note that all statistics are phase 
independent. The growth rate is zero at all phases, indicating 
that the mean tendencies in all phases only have a tangential 
part. Subsequently, the system is in statistical average mov-
ing around the origin in a perfect circle. In contrast, a ReOsc 
model without coupling (a12 = a21 = 0), which reduces to 
two unrelated red noise processes, does not have any mean 

ENSO angular speed are more likely to occur because the 
ENSO system spends more time in these phases.

The time to complete a full cycle (the mean period of 
ENSO) can be estimated by integrating the angular speed 
over all angles. This gives us a period for one cycle of about 
42 months (3.5 yrs). This is consistent with the observed 
peak period in the T power spectrum (Fig. 4c). The phase 
transition time is however strongly variable within the cycle 
with the slowest transition of about 0.1 per months. This 
corresponds to a full cycle in about 5yrs. The fastest tran-
sition is about 0.3 per months which corresponds to a full 
cycle in 1.7yrs. These variations in the phase transitions are 
likely to contribute to the broadening of the power spectrum 
of ENSO.

The observed data record for the above analysis is only 
about 30yrs to 40yrs, which opens the question: ‘to what 
extend are the observed characteristics statistically signifi-
cant?’ To address this question, we can use the linear ReOsc 
model; which will be discussed next.

4 Linear recharge Oscillator

The ReOsc model can help us understand what underly-
ing dynamics are causing the asymmetries in the ENSO 
phase space. We start the discussion with an idealised linear 

Fig. 3 (a) Probability distribution of the observed ENSO phase space. Radial range from 0 to 4, as in Fig. 2. Probability as function of angle within 
a range of +/- 20° for all values (black line) and for S > 1 (red line). Probability values are in arbitrary units of function of radius. (b) Mean radial 
and tangential components of the tendencies as function of phase in units of mon-1. Averaging is for +/- 20°. Regions of negative values are shaded 
red. T and h axes are shown for reference
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idealized linear ReOsc model. Similarly, the distribution of 
asymmetries in the tangential part for quarter Q2 minus Q4 
values (Fig. 7b) is well separated from the observed value, 
indicating that the observed variations in the tangential part 
of the tendencies is a clear signal.

We now focus on the linear ReOsc model with param-
eters as they result from a linear regression to the observed 
monthly mean T and h data, see Table 2. Using these param-
eters, we integrate the linear ReOsc model (Eqs. [1–2]) for 
104yrs and analyse the resulting normalized anomalies of 
monthly mean Tn and hn. We refer to this model as the 
observed linear ReOsc model.

Figure 8 shows statistics of the ENSO phase space for the 
observed linear ReOsc model. There are several interesting 

tendencies, and therefore, shows no mean propagation in 
the phase space cycle (Fig. 6d-f).

We can use the idealised linear ReOsc model to evaluate 
the statistical significance of the phase variations we noted 
for the observed ENSO phase space. For this, we integrate 
a 30yrs period with the idealized linear ReOsc model and 
repeat this 104 times to estimate distributions of important 
statistics for a 30 year observational period. In Fig. 7a, we 
show the distribution of the mean radial component of the 
tendencies around φ = 0o ± 45o  from the 104 idealized lin-
ear ReOsc model integrations in comparison to the observed 
value. The observed value is clearly outside the modelled 
distribution, indicating that such large positive radial com-
ponents of the tendencies cannot happen by chance in an 

Fig. 4 Upper: cross-correlation between T and h for the observations and ReOsc models fitted to observations (a) and for an idealized ReOsc model 
(b). Negative lag time indicate T is leading the time evolution of h. Lower: power spectrum of T for observations (c) and for an idealized ReOsc 
model (d). The vertical dashed lines mark the periods of 3yrs and 4yrs.
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ENSO anomalies, with much higher likelihoods around the 
Q2 quarter and lower in the Q4 quarter. This is not pres-
ent in the observed linear ReOsc model (compare Fig. 3a 
with Fig. 8b). The observed growth rate around the phases 
of 0o  is much larger than around 180o , which is not captured 
by the observed linear ReOsc model (compare Fig. 5a with 
Fig. 8c).

The phase-depending characteristics of the observed 
linear ReOsc model result from asymmetries in the ReOsc 
model parameters. The normalized model parameters 
(Table 2) allow us to compare the dynamics of the two ten-
dency equations irrespective of the physical units of T and 
h. Here we can note that the main asymmetries in the two 
dynamical equations are in the growth rates. The growth 
rate of T is strongly negative and therefore T is damped. The 
growth rate of h is slightly positive and therefore unstable. 
In contrast, the coupling parameters and strength in noise 
forcing are nearly identical in magnitude for both equations. 
Thus, it is the asymmetry in the growth rates of T and h that 
cause the phase-depending characteristics of the observed 
linear ReOsc model.

The asymmetries in the growth rates have consequences 
for the growth and decay of the ENSO system at different 
phases. This is best illustrated if we split the total tendencies 
of the system (Eqs. [1–2]) into a dynamical part (first two 
terms on right hand side) and a noise driven part (last term 
on right hand side). The dynamical part can be calculated 
based on Eqs. [1–2] for any given T and h, and the noise 

aspects to point out in these statistics. First, we can note that 
in this observed linear ReOsc model, all statistics presented 
are phase dependent (Fig. 8), indicating that the observed 
linear ReOsc model does create structure in the phase space. 
This contrasts with what may be expected from an idealised 
damped oscillator or the idealised linear ReOsc model 
(compare with Fig. 6). Secondly, we also note that all statis-
tics are symmetric for opposing phases (e.g., shifts by 180o

). This is a result of the linear approach in the ReOsc model, 
which assumes that the sign of T and h are irrelevant, and all 
feedbacks are symmetrical.

The probability distribution and tendencies in the ENSO 
phase space of the observed linear ReOsc model have some 
similarities with the observed statistics (compare Fig. 8a 
and b with Figs. 2 and 3a). This is also quantified by the 
correlations of these phase-depending statistics with those 
observed (see r-values in Fig. 8). The following similari-
ties can be noted: (1) likelihoods are much higher in the Q1 
and Q3 quarters relative to the Q2 and Q4 quarters. (2) The 
growth rate of the tendencies is positive around phases of 0o  
and 180o , and negative around phases of 90o  and 270o . (3) 
The phase transition speed is larger in Q2 and Q4 quarters 
relative to the Q1 and Q3 quarters.

In contrast, the observed linear ReOsc model also has 
clear deviations from the observed statistics. These are 
observed statistics that are asymmetric for opposing phases. 
The following important mismatches can be noted: There is 
a clear asymmetry in the observed probability of extreme 

Fig. 5 (a) Observed ENSO system mean growth rate as function of phase. Regions of negative values are shaded red. (b) mean phase transition 
speed. Averaging is for +/- 20°. T and h axes are shown for reference. See text for definitions
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at first seem strange since the noise part is by construction 
random and therefore should not have a preferred direction.

Here we need to remember that in the phase space dia-
gram, we are considering conditional probabilities. For 
instance, if we are at S = 1 and φ = 30o (Fig. 9a), then the 
ENSO system must have arrived at this point due to its 
past tendencies. Since the system is overall stationary and 
damped by the dynamics, it is by statistical average that 
it would arrive at this point, that is away from the origin, 
due to the noise. Thus, the noise is overall creating the vari-
ability leading to growth in general. This balance between 
dynamical damping and growth by the noise forcing is also 

part is estimated as the difference between the total tenden-
cies and the dynamical part.

Figure 9 shows the total tendencies and their dynami-
cal and noise driven parts for the observed linear, idealized 
and uncoupled ReOsc models. Starting with the uncoupled 
ReOsc model (Fig. 9a) we can see that the mean tenden-
cies are zero. For the radial part, which is related to the 
growth, we can see that the dynamical and noise parts of 
the tendency balance each other with the dynamical tenden-
cies damping, therefore, pointing towards the origin. The 
noise part is pointing away from the origin, indicating that 
the noise is leading to the growth of the system. This may 

Fig. 6 Statistics of the ENSO phase space for the idealized ReOsc model (upper) and for an uncoupled idealized ReOsc model (lower). Left: 
monthly mean Tn and hn and their tendencies presented as in Fig. 2. Middle: probability values presented as in Fig. 3a. Upper right: Mean radial 
and tangential components of the tendencies as function of phase presented as in Fig. 3b.
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of Table 2. Therefore, we compute the dynamical tenden-
cies for all phases using S = 1 and Eqs. [1–2] without the 
noise terms. Figure 10a-c shows the magnitudes, radial and 
tangential part of the dynamical tendencies. Since S = 1 for 
all phases, we can interpret the radial part as the dynamical 
growth rate and the tangential part as the dynamical phase 
transition (angular speed).

The dynamical growth rate of the system is directly 
related to the ReOsc model growth rate of T(a11n) and 
h(a22n). The strongly negative a11n

 leads to strongly nega-
tive growth rate of the system when Tn is large (at phases 
90o  and 270o ). The weakly positive a22n

 leads to near zero 
growth rates when hn is small and weakly positive growth 
rates of the system when hn is large (at phases 0o  and 180o ). 
The entire phase dependency of the growth rate of the sys-
tem is directly related to these two extreme cases.

The phase dependencies of the magnitudes of the dynam-
ical tendencies and the phase transition speed have similar 
structures as those of the dynamical growth rate of the sys-
tem. However, they have maxima and minima at different 
phases. The phase dependency of the magnitude of the 
dynamical tendencies can best be understood if we look at 
the equation for the magnitude of the dynamical tendencies:

 mag

(
dS

dt

)
=

√
dTn

dt

2

+
dhn

dt

2

=
√

(a11nTn + a12nhn)
2 + (a21nTn + a22nhn)

2 (4)

Considering that a21n ≈ −a12n  and |a11n| � |a22n|  we find:

present in the observed linear and idealized ReOsc models 
(Fig. 9b and c).

The uncoupled ReOsc model has also no mean tangen-
tial tendencies for transition to another phase (Fig. 9a). Here 
both the dynamical and the noise part are zero. A mean phase 
transition in the ReOsc model is caused by the dynamical 
coupling between T and h [Lu et al. 2018], which is by con-
struction zero in the uncoupled ReOsc model.

For the idealized ReOsc model, the mean dynamical and 
noise terms add up to have perfectly circular motion with 
the mean tendencies only having a tangential part and zero 
radial part. The dynamical part has a negative radial com-
ponent; which is compensated by a positive radial noise as 
mentioned above, and a larger tangential component; which 
leads to the clockwise phase transition of the whole ENSO 
system. In this idealized ReOsc model all dynamical and 
noise parts of the tendencies are the same for all phases 
(Fig. 9b). Hence, it is entirely symmetrical in all parts.

The observed linear ReOsc model is similar to the ideal-
ized ReOsc model, but all elements of the mean tendencies 
are phase dependent, this includes the radial and tangential 
parts of both the dynamical and noise part (Fig. 9c). Start-
ing with the dynamical part of the tendencies, we can see 
that the radial part (growth) is pointing towards the origin 
(is negative) at phases 90o  and 270o , but is close to zero 
at phases 0o  and 180o . Further, we can see that the overall 
tendencies and the tangential parts are larger at phases 315o  
and 135o , and smaller at phases 45o  and 215o .

We can best understand these different phase dependen-
cies of the dynamical tendencies by examining the ReOsc 
model Eqs. [1–2] using the normalized model parameters 

Fig. 7 (a) Probability distribution for the radial tendency part at 0° +/-45° for the idealized ReOsc model and the observed value (blue vertical 
line). (b) Probability distribution for the difference of the tangential tendency part between [90° – 180°] minus [270° – 360°] for the idealized ReOsc 
model and the observed value (blue vertical line).
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of T(a11n) and h(a22n) directly lead to a phase dependency 
of the dynamical magnitudes of the tendency; with maxima 
and minima at different phases than the growth rate. Similar 
computations (not shown) find that the dynamical transition 
speed has maxima and minima at phases similar to those of 
the magnitudes but shifted closer to the maxima and minima 
of the growth rate.

 
mag

(
dS

dt

)
≈

√
(a11nTn)

2 + (a12nhn)
2 + (a12nTn)

2 − |2a11na12nTnhn|  (5)

Here we can note that all terms add up if T and h have 
opposing signs (quarters Q2 and Q4), but if T and h have 
same signs, then the last term of the equation act against 
the other terms, reducing the magnitude of the tendencies. 
Consequently, the asymmetry in the dynamical growth rates 

Fig. 8 Statistics of the ENSO phase space for the observed ReOsc model: (a) monthly mean Tn and hn and their tendencies presented as in Fig. 2. 
(b) probability values presented as in Fig. 3a. (c) mean growth rate and (d) phase transition speed as function of phase presented as in Fig. 5. The 
correlation (r) values shown in each panel are for the phase depending statistics of the observed ReOsc model (colored lines) correlated with the 
corresponding values for the observed are
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In summary, we can say that the dynamical tendencies of 
the observed linear ReOsc model have phase dependencies 
resulting from the asymmetries in the dynamical growth 
rates of T and h. This makes the system anomalies decay 
when |T| is large and grow when |h| is large. The dynami-
cal phase transition speed is largest at about 45o  before we 
reach the largest dynamical growth rates, and smallest at 
about 45o  after we reached the largest dynamical growth 
rates. This falls in-phase with the minima and maxima of 
the mean ENSO system anomalies (red line in Fig. 8a or 9c). 
As a result, the observed linear ReOsc model transitions fast 
when it is at phases with relatively small mean anomalies, 
and transitions slow at phases with relatively large mean 
anomalies.

Interestingly, the noise part of the tendencies of the 
observed linear ReOsc model is also phase dependent 
(Fig. 9c), although we have assumed by construction that 
the noise is purely random and not state dependent. Nev-
ertheless, the phase-dependent dynamical parts of the ten-
dency also lead to noise tendencies that are effectively 
phase-dependent. The radial part of the noise tendencies 
is always positive, but smaller at phases 30o  and 210o , and 
larger at phases 120o  and 300o . The tangential part of the 
noise tendencies is weak, but not zero. It is acting against 
the clockwise phase transition and is most strongly negative 
at phases 150o  and 330o .

5 Non-linear recharge Oscillator

The above discussion has shown that the observed lin-
ear ReOsc model can capture a few characteristics of the 
observed ENSO phase space but has also illustrated that 
there are some asymmetries in the phase space that cannot 
be captured by a linear ReOsc model (e.g., asymmetries for 
opposing phases).

It is therefore instructive to consider non-linear ReOsc 
models to study how they would represent the ENSO phase 
space. Previous studies have suggested several different 
approaches to incorporate non-linear aspects of ENSO into 
the ReOsc model [e.g., Frauen and Dommenget 2010; Kim 
and An 2020; Levine et al. 2016]. These studies focused 
mostly on non-linear growth rates of T, state dependent 
noise or considered other non-linear elements in the ReOsc 
model. It is beyond the scope of this study to explore which 
non-linear process may explain the observed ENSO non-
linearities. However, we do want to provide an example to 
illustrate what a non-linear model could do and what it may 
be missing in the ENSO phase space.

We chose to focus on a non-linear growth rate of T and 
follow the approach of Frauen and Dommenget [Frauen and 
Dommenget 2010] by assuming a quadratic function. We 

Fig. 9 Mean tendencies for the total (black), dynamical part (blue) and 
the noise part (red) for the uncoupled idealized (upper), the idealized 
(middle) and observed linear (lower) ReOsc model. A vector of unit 
length is a tendency of mon−1. The red line is the mean value of �S  for 
each angle within an angle range of +/-20°.
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non-linear parameters of this model suggest a stronger neg-
ative feedback for large negative T values, and a weaker or 
positive feedback for large positive T values. This is qualita-
tively similar to models suggested in previous studies [e.g., 
Frauen and Dommenget 2010; Geng et al. 2019; Kim and 
An 2020]. We integrate this model with the same noise forc-
ing as for the linear model. We refer to this model as the 
non-linear ReOsc model.

Several phase space statistics of this model are shown 
Fig. 11. First, we can note that the non-linear ReOsc model 
has clear phase-depending statistics. Unlike the linear 
ReOsc model the statistics are also different for opposing 
phases. For instance, the phase-depending mean values (red 
line in Fig. 11a) are different at phases 90o  and 270o  (e.g., 
positive vs. negative T values).

The non-linear ReOsc model does capture the observed 
phase-depending characteristic that the observed linear 

therefore use Eq. [2] of the ReOsc model and change Eq. [1] 
to include a non-linear growth rate of T:

 
dT (t)

dt
= a11−2T

2 (t) + a11−1T (t) + a11−0 + a12h (t) + ζT  (6)

We used a Nelder-Mead optimization scheme [Nelder and 
Mead 1965] to estimate the non-linear model parameters 
(a11−2, a11−1, a11−0) . The cost function for this optimization 
is based on integrating the model for 1000yrs and estimate 
the monthly mean distribution parameters. These are: the 
mean, stdv and skewness for T and h, and also the correla-
tion between T and h. The root mean square of the differ-
ences in these statistics between the observed and the model 
values define the cost function of our optimization fit. The 
values of the non-linear model are shown in Table 1. The 

Fig. 10 Dynamical tendencies for the observed linear (upper) and non-linear ReOsc model (lower) for the magnitudes (left), radial (middle) and 
tangential (right) parts. For the observed linear ReOsc the tendencies are for S = 1, and for the non-linear ReOsc model they are for S = 0.5, 1 and 2.
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and 3a with Fig. 11a, b). The growth rate of the tendencies is 
larger for phases around 0o  than they are for phases around 
180o . The mean phase transition is slowest in Q3 and fastest 
in the Q2 quarter.

While the non-linear ReOsc model is clearly closer to the 
observed phase space than the linear model there are also a 
number of significant mismatches between the non-linear 

ReOsc model captures, but also captures a few other char-
acteristics. This is also quantified by larger correlation val-
ues in the phase-depending statistics (compare r values in 
Figs. 8 and 11). The following additional similarities to the 
observed can be noted: The mean and probabilities of the 
ENSO system are shifted away from the Q4 quarter and 
towards the other quarters Q1, Q2 and Q3 (compared Figs. 1 

Fig. 11 Statistics of the ENSO phase space for the non-linear ReOsc model: (a) monthly mean Tn and hn and their tendencies presented as in Fig. 
2. (b) probability values presented as in Fig. 3a. (c) mean growth rate and (d) phase transition speed as function of phase presented as in Fig. 5. 
The correlation (r) values shown in each panel are for the phase-depending statistics of the observed ReOsc model (colored lines) correlated with 
the corresponding values for the observed are
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would correspond to a full ENSO cycle period of 35yrs to 
1.7yrs, respectively. The extremely small phase transition 
values suggest that the ENSO cycle stalls and is potentially 
interrupted. This is also reflected in the total phase transi-
tion of the system (Fig. 11d). We can further note that small 
S anomalies transition faster relative to large S anomalies 
in quarters Q2 and Q3. The opposite is true in quarters Q1 
and Q4.

These large variations in the phase transition does affect 
the power spectrum of T, by reducing the power at the peak 
oscillation period and increasing the power at all other fre-
quencies (Fig. 4c). In particular, it enhances the decadal 
variations of T. Thus, the non-linearities in the growth rate 
of T is broadening the power spectrum, making it more 
realistic.

6 Predictability

We would expect that the variations in the ENSO char-
acteristics at different phases of the ENSO cycle would 
lead to differences in the predictability of ENSO for dif-
ferent phases. We can get some approximation of how the 
observed ENSO may be predictable at different phases of 
the ENSO cycle by studying the predictability of the linear 
and non-linear ReOsc models discussed above.

First, we use the non-linear ReOsc model to start 8 
ensembles of 100 members at different phases of the ENSO 
cycle with an initial S = 2, see Fig. 12. For each ensemble 
member a different realisation of the noise forcing was used, 
and the integration of the model was done for 12 months. 
We can define an ensemble mean S and phase φ  for each 
forecast lead month, defining a mean position in the phase 
space. This is equivalent to a mean T and h (see solid lines 
in Fig. 12). The spread can be estimated by the distance of 
each ensemble member to the mean T and h for each fore-
cast month and is shown as dashed lines in Fig. 12. Note, 
that in this representation we neglect the fact that the spread 
is not just in S, but also in the phase φ , as can be seen in the 
individual ensemble members in Fig. 12a.

The first example, starting at phase φ = 0o  (Fig. 12a), 
illustrates how the ensemble spreads out in terms of ampli-
tude (S) and phase (φ). Some ensemble members decay in 
amplitude, while others grow or stay at the same amplitude. 
There are fairly large variations in the phase propagation, 
with some ensemble members propagating much further 
in the ENSO phase than the ensemble mean while others 
almost do not transition at all in the ENSO phase, but stay 
close to the initial phase.

The growth of the forecast ensembles is strongly depend-
ing on the initial starting phase (see Fig. 12b). Forecast 
ensembles that start at phases where the growth rate is 

model and the observations. The following deviations in 
the phase space can be noted: The probabilities of the non-
linear model are higher in Q3 than Q1, which is the opposite 
of what is observed. The observed growth rate asymmetry 
between 0o  and 180o  is much larger than in the non-linear 
model. In addition to these phase space deviations, we can 
also note that the cross-correlation between T and h of 
the non-linear model deviates quite significantly from the 
observed (Fig. 4a). In particular, when T leads h we find a 
strong underestimation of the cross-correlation in the non-
linear model.

The phase-dependency of the non-linear ReOsc model 
dynamical tendencies are overall like those of the linear 
ReOsc model, but are in detail more complex; see Fig. 10. 
First, we must note that in the non-linear model the dynami-
cal tendencies do not just scale with S, as in the linear 
model, but will change its phase-dependency depending on 
the scale of S. This is illustrated by presenting the dynamical 
tendencies of the non-linear ReOsc model for three different 
values of S (S = 0.5, 1, 2; see Fig. 10). Here we can clearly 
note that the magnitude, radial (growth rate) and tangential 
part (phase transition) all vary more strongly as function of 
phases than in the linear model.

The variations in the radial part (growth rate) of the 
dynamical tendencies are mostly a function of T. This is 
an expected result given we have only made the growth 
rate of T non-linear and kept growth rate of h linear (see 
Eqs. [2 and 6]). The growth rate of T is less negative for 
large positive T values and much more negative for large 
negative T values, with a reverse relation for small T val-
ues (Fig. 10e). From this difference in the dynamical growth 
rate, we would have assumed a similar asymmetry in the 
overall growth rate of the non-linear ReOsc model. How-
ever, this is not observed (Fig. 11c). The growth rate of the 
non-linear ReOsc model is mostly symmetric in respect to 
T, but is asymmetric in respect to h. This suggests that the 
interaction with the phase-dependent tangential part of the 
tendencies and the noise forcing does lead to a significant 
shift in the asymmetries of the total system growth rate.

The variations in the tangential part (phase transition) of 
the dynamical tendencies in the non-linear ReOsc model are 
substantial (Fig. 10f). Before we discuss these large varia-
tions, we need to note that the coupling between T and h 
(a12

 and a21
) in the non-linear ReOsc model are assumed to 

be still linear (e.g., not phase-depending). So, all non-lin-
ear and phase-dependent variations that we can note in the 
phase transition is a result of the non-linear growth rate of T.

The most extreme variations in the dynamical phase 
transition can be noted with minima in the Q1 and Q3, and 
maxima in Q2 and Q4 quarters. The extremes are ranging 
from 0.015 month− 1 for small values of S in Q1 to 0.315 
month− 1 for small values of S in Q2. These extreme values 
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the anomaly correlation between each forecast run and the 
control run for all forecast whose initial phase falls within 
±15o  of the reference phase of T and h at different lead 
times, see Fig. 13.

Starting with the forecast of the idealised linear ReOsc 
model we can note a clear structure in the phase space 
for both T and h anomaly correlation skill (Fig. 13a and 
b). First, we have to recall that the idealised linear ReOsc 
model has no phase-depending ENSO characteristics, as 
discussed above, Subsequently, the structure that we see in 
the anomaly correlation skill scores is a characteristic of the 
phase space presentation; not a reflection of the characteris-
tic of the idealised linear ReOsc model itself. For instance, 
at phases 0o and 180o , T is zero, and an anomaly correlation 
skill score for T at these phases must be zero too. Another 
instance is at a 3-month lead forecast starting at 3̃40o . This 
will on average end up at phase ~0o  and will therefore have 
small anomaly correlation skill scores for T. Accordingly, 
the minima and maxima will shift for different lead times, 
and the anomaly correlation skill scores for h will be shifted 
by 90o .

The anomaly correlation skill scores for the observed lin-
ear ReOsc model are very similar to those of the idealized 
linear ReOsc model (Fig. 13c and d). However, there are 
some small differences. Due to the asymmetries in ENSO 
amplitudes and phase transition speeds for this particular 

relatively large (see Fig. 11c) will have ensemble means 
that do not decay as fast, as seen for the ensembles starting 
at phases 0o , 135o , 180o  and 315o . The opposite holds true 
for ensembles that start at phases where the growth rate is 
strongly negative (e.g., 90o  or 270o ).

The phase transition speed is also strongly depending on 
the initial starting phase, with the fastest phase transition 
for the ensembles starting at phases 135o  and the slowest at 
225o  (see Fig. 12b). Here it should be noted that all forecast 
ensembles have the same length in time (6mon), but appear 
to have different length in the phase space diagram due to 
their different phase transition speeds. The phase transition 
speed variations are strongly linked to the mean phase tran-
sition speeds (see Fig. 11d). The combination of the growth 
rate variations and phase transition variations splits the 
ENSO cycle into phases where the system clearly follows 
an ENSO cycle (around 315o to 30o  and 135o to 210o ) and 
phases where the system is more or less collapsing and not 
propagating much (around 210o to 300o  and 30o to 90o ).

We can evaluate the predictability of T and h in terms of 
the anomaly correlation skill as a function of phase within 
the ENSO cycle; based on the linear and non-linear ReOsc 
models. For this, we integrate a long control simulation, 
from which we start one additional simulation with different 
noise forcing every 60 months for a 9-month lead forecast. 
We do this 3.6• 104 times, which roughly gives us about 100 
forecasts for every 1o of the ENSO cycle. We then estimate 

Fig. 12 Ensemble realizations of the non-linear ReOsc model starting at 8 different initial values with S=1. (a) 12 month time series for an initial 
start value at φ = 0 for 20 members of the ensemble (grey lines), the ensemble mean (solid black line) with the ensemble standard deviation in S 
(dashed lines). (b) 6 month time series at 8 different starting dates for the ensemble mean (solid black/blue line) with the ensemble standard devia-
tion in S (dashed lines).
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than the recharge state (at around 0o − 30o ). It is remarkable 
that we observe stronger non-linearities in the forecast skill 
of h than in T, considering that the non-linear ReOsc model 
discussed here is only non-linear in the tendencies of T, but 
is linear in the tendencies of h.

7 Summary and discussion

In this study we introduced the ENSO phase space for a 
detailed analysis of the ENSO dynamics. The observed 

model, the correlation skill score for h is not 90obut only 
about 60oout-of-phase with those of T.

The non-linear ReOsc model shows some clear asym-
metries in anomaly correlation skill scores that are different 
from those of the linear ReOsc models. Anomaly correlation 
skill scores for T are in general larger in quarters Q1 and Q2 
and lower in Q3 and Q4. Asymmetries are even more pro-
nounced for correlation skill scores in h; with much larger 
skill scores in Q2 (with values at around 0.6) than in the Q4 
quarter (values around 0.2). This suggests that the discharge 
state of ENSO (at around 180o ) is much more predictable 

Fig. 13 Anomaly correlation skill scores for the idealized linear (upper), observed linear (middle) and the non-linear (lower) ReOsc models for T 
(left) and h (right) at lead times of 3mon (blue), 6mon (black) and 9mon (red)
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The positive in-phase (lag zero) correlation between T 
and h is not ideal in the context of the ReOsc model, sug-
gesting that this is not an accurate presentation of the ENSO 
phase space as it assumes that T and h should be out-of-
phase (zero correlation at lag zero). Other studies assume 
that the western equatorial thermocline is a good presenta-
tion of the ReOsc model [e.g., Jin 1997b; Chen et al. 2021], 
but western equatorial thermocline has a significant nega-
tive correlation with T at lag zero [e.g., Chen et al. 2021].

It is likely that the Z20 estimate of the thermocline depth 
(h) is causing a problem. Vijayeta [2020] analysed how dif-
ferences in the estimation of h affects the ReOsc model pre-
sentation. The study found that a more accurate estimation 
of h, by a maximum temperature gradient approach, finds 
a nearly perfect out-of-phase correlation between T and h. 
This suggests that a better estimate of h would improve the 
ENSO phase space presentation.

The ReOsc model with a non-linear growth rate for T 
can explain most of the asymmetries in the observed phase 
space that can otherwise not be explained by the linear 
ReOsc model. A non-linear growth rate for T reproduces 
the observed shift in the likelihoods for large ENSO anoma-
lies away from quarter Q4 and towards the quarter Q1-Q3. 
It further reproduces the strongly reduced phase transition 
speed in quarter Q3 (discharge to La Nina state) and the 
enhanced phase transition speed in quarter Q2 (El Nino to 
discharge state).

The variations in ENSO phase transition speed, as cap-
tured by the non-linear ReOsc model, lead to a more real-
istic power spectrum, with a broader interannual peak and 
enhanced decadal variability. The latter is consistent with 
earlier studies suggesting that ENSO non-linearity causes 
decadal ENSO variability [Rodgers et al. 2004; Wittenberg 
et al. 2014; An 2004]. Here it is important to note that the 
mean ENSO period is primarily controlled by the coupling 
parameters [Lu et al. 2018], which have been kept linear in 
this model.

However, the ReOsc model with a non-linear growth rate 
for T cannot explain all aspects of the observed ENSO phase 
space. In particular, the observed lag-lead cross-correlation 
between T and h, with enhanced cross-correlation when T 
leads h are not well captured by the model.

The phase-depending ENSO characteristics should affect 
the predictability of ENSO. The non-linear ReOsc model 
suggests that ENSO predictability changes along the phases 
depending on the lead-time of the prediction. It affects the 
amplitude and phase transition differently, whilst also being 
different for T and h, respectively. In particular, h is most 
predictable in quarter Q2.

The ENSO phase space presentation introduced here pro-
vides many opportunities for further studies. A key aspect 
that needs to be addressed in future studies is the in-phase 

ENSO phase space showed several interesting asymme-
tries that reflect important aspects of ENSO dynamics. In 
agreement with Kessler [2002], we find that the probability 
distribution of ENSO phases has some clear asymmetries 
for large ENSO amplitudes, with lower probabilities to be 
within the Q4 quarter (La Nina to recharge state).

An important aspect of the ENSO phase diagram is that it 
allows the analyses of ENSO tendencies as a function of the 
ENSO phase. The spherical coordinate system of the ENSO 
phase space diagram allows us to define tendencies in the 
radial and tangential direction. A normalization of the radial 
tendencies defines the ENSO system growth rate as a func-
tion of the phase. While by construction, the mean growth 
rate in this definition must be zero, the growth rate at differ-
ent phases shows clear deviations from zero, with positive 
growth rates around and after the recharge state (330o  to 45o

) and negative growth rates around the El Nino (70o  to 120o

) and La Nina states (210o  to 270).
A normalization of the tangential tendencies defines an 

ENSO system phase transition speed, which, if integrated 
over the whole cycle, gives an estimate of the ENSO period. 
The mean observed phase transition speed varies substan-
tially as a function of the ENSO phase; with fast transitions 
in quarter Q2 (after the El Nino state) and slowest around 
the La Nina state (220o  to 260). This is somewhat consistent 
with the argument put forward in Kessler [2002] that ENSO 
is more event-like rather than a cycle, where it remains in a 
weak La Nina-like states for longer periods of time. How-
ever, the phase transition speed is significantly positive for 
all phase of the ENSO cycle, also supporting the idea that 
ENSO is indeed cyclic, though the speed or “clearness” of 
the phase transitions vary substantially in the ENSO cycle.

The underlying dynamical cause for the observed struc-
tures in the ENSO phase space is best analysed with a lin-
ear or non-linear ReOsc model. We illustrated that a linear 
model can explain some of the observed structures in the 
ENSO phase space and a non-linear ReOsc model can 
explain most of the remaining asymmetries.

A fit of a linear ReOsc model to the observed data and 
a normalization of the units reveal an asymmetry in the 
growth rate of T and h; with a negative growth rate for T and 
a weakly positive growth rate of h. The coupling parameters 
and strength of the noise forcing show no asymmetries. The 
asymmetry in the growth rates reflects a positive in-phase 
(lag zero) correlation between T and h. This positive cor-
relation explains the observed characteristics in the ENSO 
phase space that are symmetric for opposing phases (shift by 
180o ); including enhanced growth rates at phases around 0o

and 180o , and reduced growth rates at phases around 90oand 
270o . This explains the enhanced phase transition speeds in 
the quarters Q2 and Q4 and reduced phase transition speeds 
in the quarters Q1 and Q3.
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correlation between T and h, which dominates the ENSO 
phase space characteristics and therefore potentially hides 
more interesting aspects to phase-depending ENSO dynam-
ics. This is most likely related to how h is estimated by Z20 
rather than true vertical profile gradient methods. More gen-
erally, other aspects of estimating of h, such as the meridi-
onal or zonal range, may affect the ENSO phase space 
representation.

A further aspect that has not been discussed here is the 
seasonal changes in ENSO dynamics [e.g., Li 1997; Tziper-
man et al. 1998; McGregor et al. 2013; Zhu et al. 2015; 
Dommenget and Yu 2016]. It needs to be considered that 
each quarter of the ENSO phase space should be transit-
ing through all four seasons of the year. We therefore would 
expect seasonal variations in the ENSO phase space in all 
four quarters.

The discussion presented here for the dynamical phase 
of ENSO can also be applied for other climate modes. The 
Madden–Julian oscillation (MJO), for instance, has a well-
defined dynamical phase space [e.g., Wheeler and Hendon 
2004; Oliver and Thompson 2016]. The discussion, pre-
sented here for ENSO, could be applied for the MJO or 
other climate modes in a similar way.
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