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Abstract
The Arctic Coordinated Regional Downscaling Experiment (Arctic-CORDEX) uses regional climate models (RCMs) to 
downscale selected Fifth Coupled Model Intercomparison Project simulations, allowing trend validation and projection on 
subregional scales. For 1986–2015, the CORDEX seasonal-average near-surface temperature (tas), wind speed (sfcWind), 
precipitation (pr) and snowfall (prsn) trends are generally consistent with analyses/observations for the Arctic Ocean regions 
considered. The projected Representative Concentration Pathway 8.5 (RCP8.5) 2016–2100 subregional annual tas trends 
range from 0.03 to 0.18 K/year. Projected annual pr and prsn trends have a large inter-model spread centered around approxi-
mately 5.0 ×  10–8 mm/s/year and −5.0 ×  10–8 mm/s/year, respectively, while projected sfcWind summer and winter trends 
range between 0.0 and 0.4 m/s/year. For all variables except prsn, and sometimes total precipitation, the driving general 
circulation model (GCM) dominates the trends, however there is a tendency for the GCMs to underestimate the sfcWind 
trends compared to the RCMs. Subtracting the Arctic-Ocean mean from subregional trends reveals a consistent, qualitative 
anomaly pattern in several variables and seasons characterized by greater-than or average trends in the central and Siberian 
Arctic Ocean and lesser or average trends in the Atlantic Sector and the Bering Sea, related to summer sea-ice trends. In 
particular, a strong proportional relationship exists between the summer sea-ice concentration and fall tas and sfcWind trend 
anomalies. The RCP4.5 annual, multi-model mean trends are 35–55% of the corresponding RCP8.5 trends for most vari-
ables and subregions.
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1 Introduction

Significant near-surface temperature changes have occurred 
earlier in the Arctic than elsewhere on the globe and are 
expected to be more dramatic in the future (IPCC 2019, 
2021; Post et al. 2019). Jansen et al. (2020) have compared 
modern trends with previous abrupt Arctic warmings and 

argue that climate models may even underestimate Arctic 
warming. Enhanced Arctic warming, referred to as “Arctic 
amplification” (e.g Manabe and Stouffer 1980; Koenigk et al. 
2020) or more general “polar amplification” (e.g., Goosse 
et al. 2018) is linked to ice albedo and temperature feed-
backs in addition to water vapor and cloud feedbacks (Cao 
et al. 2017), changes in atmospheric (Clark and Lee 2019) 
and oceanic (Beer et al. 2020; Koenigk and Brodeau 2014; 
Nummelin et al. 2017) heat transport and potential phyto-
plankton feedbacks (Park et al. 2015). Recent reviews and 
model analyses aimed at identifying the relative importance 
of Arctic amplification processes and feedbacks (Goose 
et al. 2018; Pithan and Mauritsen 2014; Stuecker et al. 
2018; Zhang et al. 2018; Zhang et al. 2020) decompose the 
temperature feedback into separate contributions including 
a Planck feedback due to radiation changes caused by verti-
cally uniform warming of the surface and troposphere and a 
lapse rate feedback due to vertically non-uniform warming. 
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These studies identified a relatively large and positive lapse 
rate feedback as the largest contributor to Arctic amplifica-
tion, followed by a large positive surface albedo feedback 
and a smaller Planck feedback. However, the studies also 
highlight the difficulty of quantifying the feedback strength 
due to the non-linearity of many polar feedbacks and the 
dependence of feedback magnitude on location, season and 
climate state. This indicates that associated trends may vary 
significantly across regions. Satellite records of the recent 
warming in the Arctic also show a large and increasing spa-
tial variation (Post et al. 2019), and Shu et al. (2020) suggest 
a link between the summer tendencies after 2000—includ-
ing a faster decline in Arctic sea-ice extent—and spatially-
constrained acceleration in the pace of melt which CMIP6 
models had difficulty reproducing. Moreover, the Arctic cli-
mate appears to have entered an uncharacteristically steady 
anticyclonic regime since 1996 so that some climate indices 
no longer appear to be correlated as they were in the past 
(Proshutinsky et al. 2015).

Analysis of atmospheric trends over Arctic Ocean sub-
regions is particularly relevant to ocean and ecosystem 
research. One of the key messages of recent Arctic ocean 
climate change and ecosystem assessments is the need for 
higher resolution basin-scale ocean-biogeochemistry mod-
els to provide locally applicable projections relevant for 
Arctic communities and management units (Steiner et al. 
2015a; AMAP 2017, 2018a, b). These models require higher 
resolution atmospheric forcing such as is provided through 
the Coordinated Regional Downscaling Experiment (COR-
DEX) project (Giorgi et al. 2009; Jones et al. 2011) to accu-
rately simulate the impacts of climate change on the Arctic 
Ocean, sea ice and associated ecosystems. This is particu-
larly important for coastal regions, where local communities 
access marine resources. The ocean and sea ice are highly 
responsive to the trends and patterns of key atmospheric 
forcing variables, air temperature, total precipitation, snow-
fall and wind speed through warming, stratification changes 
and radiation and momentum transfer, for example. These 
changes are expected to have important direct and indirect 
effects on the associated ecosystems. Hence, a large part of 
the uncertainty in the ocean and ecosystem model response 
is driven by uncertainties in atmospheric forcing. A thor-
ough analysis of these uncertainties is therefore paramount 
in assessing the trends and projections of the Arctic marine 
environment and ecosystem.

The human population in the Arctic depends strongly 
on the natural environment for subsistence, and, along with 
the flora and fauna are very vulnerable to climate-related 
changes such as strong warming, sea-ice loss and extreme 
weather events (AMAP 2017, 2018a; IPCC 2019; ICC-
Alaska 2015; ICC-Canada 2008). Recent large changes in 
temperature and sea ice have already been suggested to cause 
transformations in local ecosystems (e.g., Huntington et al. 

2020) and shifts in the distribution of key Arctic marine spe-
cies (e.g., Steiner et al. 2019) mammal feeding and migration 
habits (Harwood et al. 2015; Lotze et al. 2019). Projected 
changes into the future will likely further impact sea-ice 
(Tedesco et al. 2019; Lannuzel et al. 2020), pelagic (Kortch 
et al. 2012) and benthic (Renault et al. 2019) ecosystems 
and fisheries potential (Cheung et al. 2009; Tai et al. 2019). 
Changes in the Arctic climate may also strongly influence 
climate at lower latitudes (Koenigk et al. 2020 and refer-
ences therein). Hence, a better understanding of the expected 
changes through historical simulations and climate projec-
tions is crucial.

Global climate models provide a general idea of large-
scale trends, however, their relatively coarse horizontal and 
vertical resolution restricts the ability to resolve atmospheric 
and ocean processes on a scale of regional relevance. Conse-
quently, the reports listed above contain very little informa-
tion on subregional differences in trends within the Arctic. 
The strong dependence of the polar climate on sea ice, which 
is challenging for coarse-resolution climate models, also 
adds considerable uncertainty to model projections in the 
region (e.g., Karlsson et al. 2013). In addition, poor obser-
vational data coverage in the Arctic, combined with large 
natural variability, makes validation of models challenging, 
particularly on a subregional scale. So, while Arctic climate 
change is undoubtedly complex, there is a pressing need for 
more detailed climate projections with realistic uncertain-
ties to inform policy decisions and drive localized process 
models. As this change is not uniform across the Arctic, 
an evaluation of subregional trends allows assessment of 
potentially different impacts and/or response time scales for 
different communities around the Arctic. It is also important 
to understand the degree to which the subregional trend pat-
terns simulated in the driving global models are retained in 
the regional downscaling. Such consistency would allow us 
to assess the uncertainty in trend projections from global 
models while using individual downscaling models to 
force basin-scale ocean ecosystem models and assess local 
changes of importance to communities.

The Arctic-CORDEX project includes nine atmospheric 
regional climate model (RCM) configurations that were 
run for the historical period and the Intergovernmental 
Panel on Climate Change (IPCC) RCP8.5 scenario [little-
to-no action to curb greenhouse gas (GHG) emissions, 
IPCC (2014)] on high-resolution Arctic domains (ARC-
22 and ARC-44, with resolution 0.22 and 0.44 degrees, 
respectively). Six of these were also run for an interme-
diate scenario, RCP4.5 and an additional configuration 
has data available for RCP8.5 only. These simulations, 
summarized in Table 1, are particularly well-suited to a 
detailed investigation of Arctic climate change and uncer-
tainty because they include cases of a single RCM driven 
by several global general circulation models (GCMs), as 
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well as different RCMs driven by the same GCM, allow-
ing the effects of the driving simulation and downscaling 
model to be compared.

Daily precipitation and temperature indices from the 
CORDEX historical Arctic simulations for 1980–2004 
have been assessed over Canadian land by Diaconescu et al. 
(2018) who found that the RCMs generally simulated mean 
temperatures and warm extremes well, but were less suc-
cessful at simulating indices related to cold extremes and 
precipitation. They also found that the ARC-22 version of 
CanRCM4 performed somewhat better over land than the 
lower-resolution configuration. The four RCA4 configu-
rations have been analyzed by Koenigk et al. (2015) who 
found that while, unsurprisingly, the RCM simulations were 
strongly influenced by the driving GCM, the projected tas 
changes were significantly different over most of the Arctic 
Ocean and there were some interesting differences such as a 
reduced winter 2 m temperature bias over the Arctic Ocean 
for the RCM ensemble mean compared to that of the GCMs 
(with respect to ERA-Interim) and an opposite future cloud 
cover response under RCP8.5. They also reported that the 
Arctic average precipitation and temperature response under 
RCP8.5 and RCP4.5 are linearly related. Future projections 
of Arctic cyclone frequency and properties were investigated 
using a similar set of simulations by Akperov et al (2019). 
They found that, while the lateral boundary conditions from 
the driving GCM had a stronger influence on the projec-
tions than the RCMs, the RCM simulations showed opposite 
changes in cyclone frequency to the driving GCMs over the 
central Arctic Ocean and East Siberian Sea in winter and 
most of the central Arctic in summer.

Linear trends of key variables provide a compact rep-
resentation of the lowest-order subregional climate change 
and variability on a multi-decadal time scale. This is useful 
for validation of the performance of this suite of simula-
tions over the recent past, as well as to summarize future 
projections, though sensitivity to choice of endpoints must 
be considered. While the linear approximation becomes less 
valid with increasing timescale, the confounding influence 
of natural internal variability decreases, allowing the forced 
component of the climate-change pattern to dominate. Here, 
the recent historical trends for 2 m air temperature (tas), 
total precipitation (pr), snowfall (prsn) and 10 m wind speed 
(sfcWind) over Arctic ocean basin subregions for the COR-
DEX models and their driving GCM simulations are vali-
dated with respect to selected analyses and observations. The 
relative influence of downscaling and boundary conditions 
on these trends is also explored. Future projected trends and 
uncertainty for these subregions, according to scenarios 
RCP8.5 and RCP4.5, is presented, as well as their relation-
ship to trends in projected sea-ice concentration, and possi-
ble implications for Arctic Ocean ecosystems are discussed.

2  Methods

2.1  Models and data

The Arctic CORDEX simulations use various atmospheric 
RCMs with lateral and surface (ocean, sea-ice and land) 
boundary conditions provided by selected GCMs. The his-
torical, RCP4.5 and RCP8.5 scenario CanRCM4 simulations 

Table 1  The CORDEX simulations used in this paper with data 
accessible via https:// cordex. org/ data- access/, corresponding driving 
GCM ensemble members, available at https:// esgf- node. llnl. gov/ proje 

cts/ cmip5/ and CORDEX model references, given the first time the 
model appears

Labelled herein RCM Driving GCM, ensemble member Institute Comments

CanRCM4 CanRCM4 (Scinocca et al. 2016) CCCma-CanESM2, r1i1p1 (Arora 
et al. 2011)

CCCma

RCA4_CanESM2 RCA4-v1 (Samuelsson et al. 2011) CCCma-CanESM2, r1i1p1 SMHI
RCA4_EC-EARTH -r12 RCA4-v1 ICHEC-EC-EARTH, r12i1p1 (Hazel-

eger et al. 2012)
SMHI

RCA4-SN_EC-EARTH-r12 RCA4-SN-v1 ICHEC-EC-EARTH, r12i1p1 SMHI RCP4.5 not available
RCA4_ESM-LR RCA4-v1 MPI-ESM-LR, r1i1p1

(Giorgetta et al. 2013)
SMHI

RCA4-SN_ESM-LR RCA4-SN-v1 MPI-ESM-LR, r1i1p1 SMHI RCP4.5 not available
RCA4_NorESM1 RCA4-v1 NCC-NORESM1-M, r1i1p1 (Bentsen 

et al. 2013)
SMHI

HIRHAM5-v1_EC-EARTH-r3 HIRHAM5-v1 (Christensen et al. 
2007)

ICHEC-EC-EARTH, r3i1p1 DMI bad data in RCP8.5 
Dec. 2085—
removed

HIRHAM5_ESM-LR HIRHAM5-v2 MPI-ESM-LR, r1i1p1 AWI only RCP8.5 available
RRCM_ESM-LR MGO-RRCM-v1 (Shkolnik and 

Efimov 2013)
MPI-ESM-LR, r1i1p1 MGO RCP4.5 not available

https://cordex.org/data-access/
https://esgf-node.llnl.gov/projects/cmip5/
https://esgf-node.llnl.gov/projects/cmip5/
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for the high-resolution Arctic CORDEX domain (ARC-22) 
as well as other CORDEX simulations run on the lower-
resolution ARC-44 domain were used in this analysis. These 
include four contributions that use the same RCM (RCA4), 
two RCMs, CanRCM4 and RCA4, that are driven by the 
same CanESM2 ensemble member as well as three RCMs, 
RCA4, RCA4-SN (version with spectral nudging) and 
RRCM that are driven by the same EC-EARTH ensemble 
member. The 2 m temperature, precipitation, snowfall and 
10 m wind speed regional trends were calculated for the 
recent past (1986–2015) using 1986–2005 from the histori-
cal simulations and 2001–2015 from the RCP8.5 runs for 
the CORDEX simulations and their driving GCM ensem-
ble member, where available. The spread among multiple 
ensemble members of the same model provides the best esti-
mate of the natural variability around the mean trends. As 
multiple ensemble members were not available for the RCM 
simulations, the large ensemble of the driving GCM for Can-
RCM4, CanESM2, was used to obtain an independent esti-
mate of the natural variability for the historical annual tas, 
pr and sfcWind trends, for the purpose of validation.

The observation-based ERA5 (C3S 2017), MERRA-2 
(Gelaro et al. 2017) and JRA-55 (Japan Meteorological 
Agency 2013) reanalyses were used in the validation of 
recent historical trends for all the variables considered. In 
addition, for tas validation, the Drakkar Forcing Set (DFS) 
(Brodeau et al. 2009; Dussin et al. 2016) and GISTEMP 
v4 (GISTEMP Team 2020; Lenssen et al. 2019) data were 
included and for pr, the GPCP data set (Adler et al. 2003) 
was also used. The reanalyses and GISTEMP data are com-
plementary, the former using model assimilation to produce 
a high-resolution (especially in the case of ERA5) global 
data set from sparse atmospheric data, and the latter estimat-
ing surface air temperatures from relatively well-measured 
sea-surface temperatures and combining them with near-
surface air temperatures from land stations using binning 
by equal-area squares and sophisticated quality control pro-
cedures (Hansen et al. 2010). ERA5’s much higher reso-
lution makes it more suitable for validation of RCMs, but 
GISTEMP is more directly tied to the observations. Since 
this work is partially motivated by the desire to optimize 
the transition between historical and future atmospheric 
forcing of ocean/ice models, temperature trends from the 
ERA-Interim (Berrisford et al. 2011) based ocean-forcing 
data set, DFS, which includes bias-corrections in the Arctic 
to accommodate more realistic sea ice, were also included.

Performance of ERA5, the highest-resolution data set 
available, and thus most suitable for comparison with COR-
DEX simulations, is mixed over the Arctic Ocean; it outper-
formed the ERA-Interim, JRA-55, CFSv2 and MERRA-2 
analyses when compared to temperature, wind speed and 
specific humidity buoy data from the Fram Strait, late-sum-
mer 2017 (Graham et al. 2019b) and had the best spring and 

summer downward radiative fluxes over sea ice but worst 
temperature biases during the Norwegian Young Sea Ice 
Campaign (N-ICE2015) (Graham et al. 2019a); in Wang 
et al. (2019) ERA5 was seen to correct the known Arctic 
snowfall/total-precipitation ratio bias of ERA-Interim but 
showed larger temperature biases than ERA-Interim com-
pared to Arctic sea ice buoy data for 2010–2016. The inclu-
sion of DFS and GISTEMP, as well as the other analyses, in 
our tas validation provides some confidence in our conclu-
sions regarding the trends. Likewise, while calculation of 
trends from observational data should be treated with cau-
tion in data-sparse areas, the inclusion of GPCP in our pre-
cipitation validation as well as other reanalyses for all vari-
ables gives an indication of the robustness of these results.

2.2  Analysis

The subregions considered in this report, shown in Fig. 1, 
are based on the Arctic Ocean basins 1–14 (Carmack and 
Wassmann 2006; Matrai et al. 2013). The masks for these 
regions, as well as the ARC-44 CORDEX simulations, 
CanESM2 data and analyses/observations were all remapped 
onto the CORDEX ARC-22 grid. For the masks, nearest 
neighbor interpolation was used, followed by manual editing 
for consistency with the CORDEX ARC-22 land-sea mask 
(Online Resource 1). For the model and observation-based 
data, bilinear interpolation was used.

Seasonal and annual linear tas, pr, prsn and sfcWind 
trends for the historical period, 1986–2015, were calculated 
for each subregion from the RCM simulations and compared 

Fig. 1  The subareas considered in this paper on the CORDEX ARC-
22 grid: 1. Arctic Basin 2. Greenland Shelf 3. Baffin Bay 4. Canadian 
Archipelago 5. S. Beaufort Sea 6. N. Beaufort Sea 7. Bering Sea 8. S. 
Chuckchi Sea 9. N. Chuckchi Sea 10. S. East Siberian Sea 11. N. East 
Siberian Sea 12. Kara Sea 13 Barents Sea 14. Nordic Sea
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with corresponding trends from the analyses and observa-
tions, as well as available GCM drivers. Estimates of the 
effect of natural variability on the historical tas, pr and 
sfcWind annual trends, as well as RCP85 tas trends, were 
obtained as 95% confidence intervals, computed as twice 
the standard deviation of the corresponding trends from the 
50-member large ensemble of the CanESM2 GCM, in addi-
tion to those computed from the CORDEX suite. Spatial tas 
trend patterns over the Arctic Ocean were also compared 
with ERA5 using Taylor diagrams.

Projected 2016–2100 subregional linear trends were then 
calculated for the CORDEX and driving models with avail-
able RCP8.5 simulations, including HIRHAM5-v2, ESM-
LR which missed the validation step, and RCP4.5 simula-
tions. Trend anomalies for the subregions were defined for 
each simulation as the residual when its Arctic-Ocean mean 
trend is subtracted, i.e., for each model, m , and subregion, s , 
the trend anomaly, Ams , is given by Ams = Tms − Pm , where 
Tms is the raw subregional trend and Pm is the pan-Arctic-
Ocean trend, defined as the trend of the variable averaged 
over all subregions in Fig. 1. Confidence intervals for the 
corresponding driving-model trends were calculated based 
on the residual variance of the single ensemble members, 
since their purpose is to evaluate the statistical significance 
of trend differences between the driving models and those 
of the downscaling RCMs for a given realization.

Two types of multi-model mean trends were calculated, 
representing the two extreme sets of assumptions regard-
ing the importance of the driving GCM in determining the 
trends. The straight multi-model average weights the trend 
of each model equally, based on the unlikely assumption 
that models with the same driving GCM contribute equally 
to the trend variability. The “weighted mean” weights each 
model inversely by how many models share its driving GCM 
according to the extreme assumption that the driving model 
is entirely responsible for the trend variation. The best pos-
sible estimate of the mean available from these simulations 
should lie between these values.

For insight into the geographic variation of the long-term 
trends, least-squares fits to simple linear models of the trend 
patterns were also performed.

3  Results

The annual average recent simulated historical and RCP85 
projected regional linear trends from the CORDEX suite 
for tas, pr, prsn and sfcWind are presented below. Selected 
seasons are also shown for some variables, along with sub-
regional trend anomaly patterns and a comparison between 
RCP8.5 and RCP4.5 annual average trends as well as some 
corresponding trends for the driving GCMs. The mean 
and uncertainty of all of the seasonal tas, pr and sfcWind 

seasonal linear trends for 1986–2015, as well as RCP8.5 
and RCP4.5 future projections are given in Table S1 of the 
supplementary material.

3.1  Historical trends

3.1.1  2 m air temperature

Figure 2 shows the regional linear trends in annual aver-
age tas for 1986–2015 for the Arctic CORDEX historical 
(1986–2005) + RCP8.5 (2006–2015) simulations. The trends 
from the GCM ensemble members used to drive the COR-
DEX models (except EC-Earth_r3, which was not available 
on the Earth System Grid Federation (ESGF) server) and 
the observation-based data sets are also shown. Note that 
the RCPs are very similar in the early part of this century, 
so these results should not depend strongly on the choice of 
the RCP8.5 scenario for the last decade. Also shown are the 
mean of the CORDEX models and 95% confidence interval 
error bars estimated (as double the sample standard devia-
tion, 2σ) from the CanESM2 50-member large ensemble in 
black, and the CORDEX suite, in grey. The two error bars 
are usually similar, suggesting that natural variability likely 
dominates the inter-model spread in most subregions, except 
possibly 5, 12 and 13.

The CORDEX models show 1986–2015 annual tas trends 
ranging from about 0.0 to 0.3 K/year over the Arctic Ocean 
subregions. The straight model means are slightly larger than 
the weighted means, in most cases, but both are between 
approximately 0.05 and 0.15 K/year. In most subregions the 
observation-based trends are not significantly different from 
the CORDEX mean at the 5% level using either set of error 
bars. The “observational trends” are generally within the 
95% confidence intervals of the simulated trends and there 
are no cases where all observational estimates lie outside 
them. This suggests that the trends from the suite of simula-
tions are reasonably consistent with those of the observa-
tion-based data sets for the recent past. It is unsurprising 
that the magnitudes of the trends from models driven by 
the same GCM ensemble member (indicated with the same 
color) tend to be quite close, while the simulations using the 
same RCM driven by different GCMs (indicated with the 
same shape) tend to differ more. As a further illustration of 
the dominance of the driving models, the CORDEX trends 
are quite close to the corresponding driving-model trends. 
For example, CanRCM4 (which is spectrally nudged), and 
to a lesser extent, RCA4 (with no nudging) subregional 
trends are very close to the corresponding values from the 
CanESM2 driving ensemble member. There is also very 
little effect of downscaling on the pan-Arctic Ocean mean 
trend. The RCA4_NORESM1 and HIRHAM5-v1_EC-
EARTH-r3 simulations are generally low outliers while 
the simulations driven by CanESM2 and EC-EARTH-r12 
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tend to be on the higher side. The subregional variation is 
considerably less than the variation among models for this 
time period and there does not appear to be a significant 
qualitative pattern. All observation-based data sets (except 
MERRA-2 in the Canadian Archipelago) and all but one of 
the models (RCA4_NorESM1 in the Southern Beaufort Sea) 
give a positive trend for all regions.

Figure 3 shows the corresponding seasonal trends for the 
CORDEX simulations and observation-based data. Winter 
(DJF) was computed using the December of the previous 
year. Summer (JJA) generally has the weakest trends for 
both models and observation-based data. Autumn and winter 
have generally strong trends and large inter-model spread, 
with several models exhibiting negative trends in Baffin Bay 
(region 3) and one model, RCA4_NorESM1, exhibiting neg-
ative trends in all three subregions covering the Canadian 
Arctic Archipelago (3,4 and 5) in winter. In all seasons the 
“observed” trends are within, or close to, the spread of the 
CORDEX trends, in most cases. Note that since the free 
historical simulations were used, rather than those forced by 
reanalysis data, as were analyzed in Glisan et al. (2019) and 
Akperov et al. (2018) they are not expected to reproduce the 
“realization” represented by the observations.

The spatial correlation of the tas trends over the Arc-
tic Ocean with ERA5 is between 0.3 and 0.7 for all mod-
els in both DJF and JJA (Online Resource 2, Figure S1). 
Interestingly, the RCA4 and RCA4-SN simulations driven 
by EC-EARTH_r12 display an approximately 50% larger 
standard deviation of the trend pattern than ERA5, while 

HIRHAM5-v1, driven by EC-EARTH_r3 displays close 
to a 50% smaller standard deviation in both seasons. Care 
must be taken not to over-interpret the correlations as they 
are much more susceptible to natural variability than those 
of the climatologies, which have much larger correlations 
with ERA5 (Online Resource 2, Figure S2). For example, 
the correlation between the ERA5 annual trend pattern and 
that of the very similar DFS data is only 0.7. As another 
illustration of this sensitivity, Figure S3 in Online Resource 
2 shows winter and summer Taylor diagrams of ERA-5 with 
time-shifted versions of itself. It takes only a shift of eight to 
ten years, which should retain most of the forced trend pat-
tern but change the representation of the natural variability, 
for the spatial correlations to be reduced to approximately 
0.5. The main message to take from the correlations in these 
plots is that all models have spatial correlations of the trend 
patterns with ERA5 over the Arctic Ocean consistent with 
having a similar forced trend pattern, as they correlate as 
well with ERA5 as approximately 10-year shifted versions 
of ERA5.

3.1.2  Precipitation

The 1986–2015 historical + RCP8.5 subregional total pre-
cipitation (rain and snow) annual linear trends are shown in 
Fig. 4. The multi-model means are small and positive for all 
subregions with both methods, straight and weighted (not 
shown), of calculating the multi-model mean giving simi-
lar results. The trends are not likely significantly different 

Fig. 2  The subregional (see 
Fig. 1) 1986–2015 annual 
average tas trends (K/y) for the 
CORDEX historical (1986–
2005) + RCP8.5 (2006–2015) 
simulations (open shapes) and 
comparison data sets (asterisks) 
with the mean of the CORDEX 
models (large filled circles), the 
driving GCM ensemble mem-
bers (small filled circles) and 
2σ error bars estimated from 
the CanESM2 historical large 
ensemble (black) and CORDEX 
suite (grey)
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Fig. 3  The subregional (see Fig.  1) seasonal 1986–2015 tas trends 
(K/y) for the CORDEX historical + RCP8.5 simulations, the mean 
and weighted mean (described in Sect. 2.2) of the CORDEX models 

(filled circles), 2σ error bars estimated from the CORDEX suite and 
comparison data sets with the DJF time series running from Decem-
ber 1985 to February 2015

Fig. 4  The subregional (see 
Fig. 1) 1986–2015 annual aver-
age pr trends (mm/s/y) for the 
CORDEX historical (1986–
2005) + RCP8.5 (2006–2015) 
simulations (open shapes) 
and observations/analyses 
(asterisks) with the mean of the 
CORDEX models (large filled 
circles), the driving CanESM2 
ensemble member (small filled 
circles) and 2σ error bars esti-
mated from the CanESM2 his-
torical large ensemble (black) 
and CORDEX suite (grey)
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from zero for most subregions, based on the CORDEX and 
CanESM2 large-ensemble error bars. As with temperature, 
the CORDEX error bars are generally comparable to the nat-
ural variability estimated from the CanESM2 large ensemble 
and the majority of observations and analyses are within 
both sets of error bars, in most cases, except for the northern 
Beaufort Sea. There is a general tendency for the simulated 
trends to be larger than the “observed” trends. The driving 
GCM appears to be a major factor in the trends, with some 
exceptions. In particular, there is a relatively large spread in 
the ESM-LR-driven model pr trends in subregions 2 and 3, 
surrounding Greenland. The downscaling RCMs have very 
little effect on the pan-Arctic-Ocean mean trends.

The spread in simulated pr trends is generally greater in 
summer, where the ERA5 trend is consistently lower than 
the majority of the models (Figure S4). In the other sea-
sons, the ERA5 pr trends generally fall within the model 
95% confidence intervals, which encompasses zero for most 
subregions and seasons. Note that, since precipitation rates 
in the Arctic are very low, even small trends can have impor-
tant impacts.

The 1986–2015 snowfall trends (Fig. 5) are small, with 
the mean trends generally negative or close to zero and 
surprisingly, given the complicated interplay of variables 
involved in determining snowfall, close to the “observed” 
trends, especially ERA5, in most cases. The negative 
trends are generally due to an increase in the pr fraction 
falling as rain, rather than a decrease in precipitation, since 

total precipitation trends are generally positive (Fig. 4). In 
all subareas, the ERA5 trends are within the model spread 
error bars, while JRA-55 and MERRA-2 are sometimes 
below. In the case of MERRA-2, there is a general positive 
bias with respect to GPCP in total precipitation over high-
latitude oceans (Gelaro et al. 2017) which would translate 
into a stronger negative trend in prsn with warming. The 
error bars encompass zero for all subregions except the 
Bering Sea, the most southerly subregion considered. The 
CORDEX trends are often close to those of their driving 
GCM, especially for those driven by CanESM2. There are 
some exceptions, such as EC-Earth_r12-driven trends in 
subregions 2, 13 and 14 and ESM-LR-driven RRCM in 
subregion 2. The possible significance of downscaling 
effects on snowfall trends in these regions is investigated 
further in Sect. 3.2.2 using the future RCP8.5 projections, 
which have a stronger “signal to noise” ratio.

Zhang et  al (2019) find that over the Arctic ocean, 
reductions in snow cover fraction over sea ice, and sea ice 
extent appear to contribute equally to the Arctic albedo 
decline with each of similar magnitude to reductions in 
terrestrial snow cover north of 60 N. The decrease in snow 
cover fraction is attributed primarily to the increase in 
surface air temperature, followed by declining snowfall. 
Consistent with our pan-Arctic reanalysis and most model 
results, Zhang et al (2019) indicate that, although total 
precipitation has increased, Arctic snowfall is reduced in 
all of their analyzed data sets due to warming.

Fig. 5  The 1986–2015 annual 
average prsn subregional trends 
in mm/s/y water equivalent, 
symbols as in Fig. 4
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3.1.3  Winds

The historical simulated annual wind-speed trends, shown 
in Fig. 6, are generally small and span zero for all subre-
gions except 12 and 13, where they are all positive and, in 
the case of simulations driven by EC-EARTH, quite large 
(up to 0.05 m/s/year). ERA5 and JRA-55 are also positive 
for those subregions, but Merra-2 displays slightly nega-
tive trends there. As with the other variables, the trends 
from the analyses are within the 95% confidence intervals 
around the multi-model means based on the CanESM2 
large ensemble for most subregions, with MERRA-2 and 
JRA-55 as large negative outliers in subregions 4 and 5,10, 
respectively. Subregions 4 and 5 are likely particularly 
affected by the lower resolution of these data sets, as they 
lack large areas of open ocean. The 2σ error bars from 
the CORDEX suite are similar to those from CanESM2 
in most cases. Exceptions are the East Siberian Sea, with 
CORDEX standard deviation about half that of CanESM, 
and the Kara and Barents where the EC-EARTH-r12 
driven model trends (purple) are high outliers, contribut-
ing to a much larger standard deviation for the CORDEX 
simulations. The straight and weighted multi-model means 
are very close to each other and positive or near zero for 
all subregions. While the sfcWind trends tend to group 
quite closely by driving model, the actual driving model 
trends are often much farther from the corresponding 
RCM trends, suggesting a systematic effect of downscaling 
alone, even over ocean areas. This is further investigated 
using the RCP8.5 simulations in Sect. 3.2.3.

3.2  Future projections based on the RCP8.5 
scenario simulations

Table 2a shows the tas, pr and sfcWind winter and summer 
and prsn annual subregional trends for the RCP8.5 “high-
emission” scenario Arctic CORDEX simulations. Particu-
lar features are discussed below. Since all simulations were 
close-to or within the estimated natural variability of the 
ERA5 trends and there were no consistently strong outliers 
in the Taylor diagrams, all simulations were included in the 
calculations for the future projections. An additional simu-
lation available for RCP8.5, HIRHAM5-v2_ESM-LR, was 
also included. While that configuration could not be assessed 
in the validation step, its components (a different version 
in the case of the RCM, HIRHAM5-v1_EC-EARTH) were 
both represented there in different configurations.

3.2.1  Near‑surface air temperature

Figure  7 (top) shows the annual average near-surface 
temperature trends for the period 2016–2100 for all of 
the RCP8.5 CORDEX simulations, indicating a range of 
trends from 0.03 to 0.18 K/year and the appearance of a 
consistent subregional pattern. (Symbol colors correspond 
to the driving GCM and the shapes indicate the downscal-
ing RCM). It is not surprising that the tas trends are tightly 
controlled by the driving model for this time period as the 
sea-surface temperatures (SSTs) and sea ice cover boundary 
conditions are prescribed by the driving GCM. The model 
spread is larger than the natural variability estimate from 

Fig. 6  The 1986–2015 annual 
average sfcWind subregional 
trends in m/s/y, symbols as in 
Fig. 4
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the CanESM2 large ensemble, indicating the likelihood of 
systematic trend differences between models. The colored 
lines give the means of trends in tas averaged over all the 
ocean subregions. For subregions 2, 13 and 14, representing 
the Atlantic in and outflow, and subregion 7, the Bering Sea 
(Pacific inflow) the subregional trends in all simulations are 
less than the mean trend of “Arctic-Ocean average” tas, a 

fairly robust indication that, in spite of the large uncertainty 
in the absolute trends, these areas experience weaker than 
average tas trends under this scenario. Similarly, subregion 
1 (central Arctic) and subregions 6, 8, 9, 11 and 12 (Cana-
dian Basin, Chukchi and Kara Seas) have consistently larger 
than average tas trends under RCP8.5. Taking anomalies of 
the subregional trends with respect to their Arctic Ocean 

Table 2  a Mean and standard 
deviation of absolute RCP8.5 
2016–2100 trends, dark orange 
(blue) shading indicates 
positive (negative) trends for all 
simulations and light orange/
blue indicates that at least 
eight of ten simulations have 
positive/negative trends. b 
Mean and standard deviation of 
the corresponding subregional 
trend anomalies for the RCP8.5 
simulations, with subregions 
where trend anomalies are 
positive (negative) for all 
simulations indicated by dark 
orange (blue) shading and for at 
least eight of ten simulations, by 
light orange/blue

10 19.7±5.9 6.3±2.4 13.2±8.3 -0.2±0.9 4.0±1.8 4.1±1.4 9.2±3.0

11 22.0±6.6 7.7±3.5 17.6±10.8 -0.5±1.3 3.7±2.1 4.3±2.3 12 .9±5.0

12 21.0±4.3 10.4±2.8 22.1±7.2 -2.9±2.1 7.3±1.6 4.5±1.8 8.9±2.8

13 11.3±3.3 6.3±3.3 5.6±7.2 -4.7±2.5 6.4±1.5 4.3±1.4 4.6±2.6

14 6.8±2.7 4.5±4.5 -0.2±5.6 -3.7±3.2 4.6±1.6 3.8±2.4 1.3±3.5

(b) Subregional Anomalies

1 5.0±3.2 0.7±1.4 3.6±4.5 1.8±1.3 -1.5±0.6 0.2±1.6 6.2±3.7

2 -4.9±2.4 -2.5±4.6 -3.7±3.5 -4.1±1.3 -0.2±0.7 0.9±3.6 -4.0±2.9

3 -2.5±4.2 -1.8±5.0 -4.6±6.4 0.8±1.2 -0.3±1.2 1.6±6.1 -5.2±3.0

4 1.9±2.6 -1.7±2.0 -4.0±4.8 2.2±0.7 -0.7±1.1 0.6±1.4 -1.5±2.0

5 3.1±3.5 -1.3±2.3 2.2±3.9 1.0±0.9 1.4±1.1 0.5±1.7 1.2±2.7

6 4.1±1.9 -1.1±1.9 3.1±4.4 1.4±0.8 -0.6±0.3 0.6±1.8 6.4±3.3

7 -4.1±4.9 2.4±4.8 0.1±12.8 -3.9±2.1 1.5±1.0 3.0±4.6 -7.1±4.3

8 6.0±0.9 3.4±1.6 14.4±3.4 0.9±1.3 0.7±0.7 0.5±1.9 2.8±1.6

9 6.1±1.5 6.8±1.5 8.2±3.9 1.6±1.2 -1.3±0.4 0.6±1.5 8.0±4.5

10 2.5±2.6 -0.3±1.0 1.2±4.0 1.8±1.1 -0.5±0.9 -1.1±1.9 0.7±2.0

11 4.8±3.3 1.1±1.6 5.5±6.8 1.6±1.3 -0.8±0.8 -0.9±2.8 4.4±2.7

12 3.8±1.7 3.8±1.9 10.1±3.3 -0.8±2.1 2.8±0.6 -0.7±1.9 0.3±2.8

13 -5.9±1.9 -0.3±1.3 -6.4±4.4 -2.6±2.4 1.9±0.5 -0.9±1.3 -3.5±2.8

14 -10.4±2.4 -2.2±2.4 -12.3±3.5 -1.7±2.9 0.0±0.9 -1.4±1.9 -6.7±2.6

(a) Absolute linear trends

DJF ANN JJA

tas
(10-2 K/y)

pr
(10-8mm/s/y)

sfcWind
(10-3m/s/y)

prsn
(10-8kg/m2/y)

tas
(10-2 K/y)

pr
(10-8mm/s/y)

sfcWind
(10-3m/s/y)

1 22.3±6.6 7.3±2.9 15.7±9.2 -0.3±1.6 3.0±1.7 5.4±1.8 14.7±6.4

2 12.3±4.1 4.1±6.5 8.3±5.1 -6.2±1.8 4.8±1.1 6.1±4.1 3.9±4.1

3 14.8±2.3 4.8±4.9 7.4±2.8 -1.2±0.9 4.2±0.7 6.8±6.4 3.1±2.4

4 19.1±3.1 4.9±1.1 8.0±3.2 0.1±0.5 3.8±1.0 5.8±2.4 7.0±2.0

5 20.3±2.0 5.3±1.4 14.2±3.8 -1.0±0.6 5.9±0.7 5.7±2.1 9.8±2.5

6 21.3±3.0 5.5±1.0 15.1±5.7 -0.7±0.8 3.9±1.3 5.8±2.6 14.7±5.9

7 13.2±2.3 9.0±4.0 12.6±9.0 -6.0±2.0 6.1±0.7 8.2±5.0 1.4±1.9

8 23.2±3.1 10.0±1.9 26.4±5.8 -1.1±1.1 5.2±1.5 5.7±2.4 11.6±3.1

9 23.3±4.6 7.3±1.6 20.2±6.8 -0.5±1.3 3.2±1.6 5.8±2.3 16.2±7.2
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averages to remove the influence of the pan-Arctic mean on 
the variation, as shown in the bottom plot of Fig. 7, reveals 
the consistency of the spatial trend pattern mentioned above 
more clearly. It also highlights the relatively small effect 
of the downscaling RCMs on the tas trend pattern at this 
scale. In most cases, the inter-model spread of the anomalies 
taken this way is a fraction of the spread of the raw trends, 
confirming that the pan-Arctic difference in the particular 
driving GCM simulation is a major contributor to the spread. 
For subregion 7, the Bering Sea, the trend anomaly spread 
is double that of the raw trend, a notable exception to this.

The seasonal RCP8.5 tas trends in Fig. 8 indicate that 
the future DJF trends tend to be at least 3 × higher than 
the corresponding JJA trends with a much larger spread, 
similar to the historical trends. The subregional anomaly 
pattern in SON and DJF indicates generally smaller trends 
in the Atlantic sector, where there is less sea-ice cover, 

as well as the more southerly Bering Sea (region 7) and 
larger than average trends in the central and Siberian Arc-
tic Ocean, similar to the annual average trends. In summer, 
the raw trends appear fairly uniform. The anomaly pattern, 
however, has several subregions where all models give 
trends above (12 and 13) or below (1, 6 and 9) the Arctic 
Ocean average. The spring and fall trends are generally 
intermediate in magnitude between those of summer and 
winter, but while the former has no discernible subregional 
trend anomaly pattern, the latter has, arguably, the clearest 
pattern of all. It is also interesting that, for SON, the over-
all pattern is amplified more in some models than others. 
In fact, the high degree to which the raw trends can be 
expressed as the sum of the pan-Arctic-Ocean trend and a 
scaled version of the weighted mean subregional anomaly 
pattern, As, is given by the small symbols in Fig. 8d, which 
represent the residuals,Rms = Ams − fmAs , for model m and 

Fig. 7  The 2016–2100 RCP8.5 
annual linear tas trends (upper), 
symbols and error bars as in 
Fig. 2, with horizontal lines 
indicating trends averaged over 
all subareas and subregional 
trend anomalies obtained by 
subtracting the respective 
Arctic-Ocean multi-model 
means from the absolute trends, 
as in Sect. 2.2 (lower)
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subregion s . fm is the scaling factor determined by a least 
squares fit of As to the model’s trend anomaly pattern,Ams . 
The largest residual magnitude is less than 33% of the cor-
responding raw trend and the vast majority are less than 
20% of the corresponding raw trends. The tendency, noted 
in the annual average plots, for the spread in the anomalies 
to be smaller than in the raw trends generally holds for the 
individual seasons as well. As with the annual average, 
the Bering Sea (7) is an exception to this in all seasons. In 
particular, in fall the models agree amazingly well on the 
absolute trend in that subregion but disagree strongly on 
how much weaker it is than the Arctic-Ocean average. The 
winter anomaly trend spread for Baffin Bay is also some-
what larger than that of the absolute trends. The tendency, 
noted in the annual average plots, for the spread in the 
anomalies to be smaller than in the raw trends generally 
holds for the individual seasons as well.

3.2.2  Precipitation

Figure 9a shows the annual linear total precipitation trends 
under RCP8.5 for the Arctic CORDEX simulations and 
available driving ensemble members, indicating a general, 
small increase across all subregions and seasons in this sce-
nario except for a few instances in the RCA4, RCA4-SN and 
HIRHAM5-v2 simulations forced by ESM-LR. There is con-
siderable inter-model spread in the projected total precipita-
tion trends. In particular, the RRCM_ESM-LR simulation 
has very different behavior than all of the other simulations 
and ERA5. It is often an outlier in total precipitation with, 
most notably, an approximately five times stronger trend in 
Baffin Bay (3). It is interesting to note that the RCM simula-
tions forced by the same ESM-LR ensemble member give 
quite different precipitation trends for some subregions, even 
more marked for the seasonal trends. There is, however, a 

Fig. 8  The 2016–2100 RCP8.5 
seasonal linear tas trends and 
subregional trend anomalies 
(see Sect. 2.2) and residuals left 
when the Arctic-Ocean mean 
trends and least-squares fit of 
the weighted mean anomaly 
trend pattern are subtracted 
from the corresponding raw 
trends for SON (small symbols)
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general tendency for RCM total precipitation trends to be 
close to those of their driving models. The relatively large 
difference between EC-Earth_r12 pr annual historical trends 
and those of the corresponding RCMs are not reflected in 
the annual-average RCP8.5 case, though there are relatively 
large differences in the seasonal trends (not shown) for a 
number of subregions. Also, the JJA RCA4 precipitation 
trends (not shown) are often considerably higher than those 
of CanRCM4, forced by the same CanESM2 ensemble mem-
ber and CanESM2, itself. This suggests, that downscaling 
models could have a relatively large effect on precipitation 
trends at a local and seasonal level, even though the annual 
CORDEX precipitation trends are generally within the 95% 
confidence interval of the corresponding GCM trends.

Considering the subregional trend anomalies, calculated 
with respect to the respective Arctic-Ocean average trends as 
was done for tas, we note that, in contrast to tas, the spread 
is similar to that of the absolute trends for many areas. 
This suggests that the overall variation in the pan-Arctic 
trend influences the spread very little in those subregions. 
There are also no Arctic Ocean subregions with all anoma-
lies larger or smaller than zero, so there is no consensus on 
subregions likely to experience greater or less than average 
annual pr trends as there was for tas.

The snowfall trends in Fig. 9b illustrate the competing 
effects of increasing temperature (leading to snow-rain 

conversion) and increasing total precipitation. As a result, 
the decadal-scale behavior of the timeseries are not as lin-
ear for prsn as they are for other variables. In particular, 
HIRHAM5-v1_EC-EARTH shows an initial increase, 
related to increased total precipitation, followed by a 
decrease, as rising temperatures cause less precipitation 
to fall as snow, for many subregions. Unsurprisingly, the 
models tend to show decreases in snowfall for the subre-
gions with larger fractions of their area farther south, as 
snow turns to rain, and trends close to zero for the more 
northerly subregions. Note, however, that the subregions 
with strong negative snowfall trends, the Greenland shelf 
(2) and Bering Sea (7) are not those with larger-than-aver-
age temperature trends. The multi-model mean trends are 
negative or near zero for all subregions. The CORDEX 
prsn trends are often significantly different from their driv-
ing-model trends. They are associated rather more by their 
downscaling RCM which appears to have a systematic 
influence. For example, the HIRHAM5-based simulations 
are near the top edge of the spread for all ocean subregions 
except moderate trends in the Bering Sea and east coast 
of Greenland and strong negative trends in 13 and 14 off 
Scandinavia. Looking at the subregional trend anomalies, 
in addition to the HIRHAM5-v2 and HIRHAM5-v1 simu-
lations generally having similar values, the simulations 
using RCA4 and RCA4-SN tend to be clustered.

Fig. 9  The 2016–2100 RCP8.5 annual linear a pr and b prsn (in mm/s water equivalent) trends and subregional trend anomalies (see Sect. 2.2) 
with filled symbols in the anomaly plots indicating negative absolute trends
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3.2.3  Winds

The winter and summer RCP8.5 sfcWind trends in Fig. 10 
(top) are generally small and positive, with the exception of 
some, mostly ESM-LR-driven, simulations, which have very 
small negative trends in subregions 2, 3, 7, 13 and/or 14. The 
CORDEX trends are usually closely associated according to 
driving model, however, the driving model trends are often 
significantly lower than the corresponding CORDEX trends, 
further evidence of a systematic qualitative effect of down-
scaling alone. The annual monthly mean daily maximum 
wind speed (sfcWindmax) mean trends (not shown) are very 
similar to those of sfcWind, suggesting that brief high-wind 
events are not strongly preferentially affected by the simu-
lated climate change. Unsurprisingly, the sfcWindmax trends 
have a greater spread.

The similarity between the RCP8.5 sfcWind trend patterns 
and some seasonal tas patterns is particularly apparent in 
the subregional trend anomaly plots (Figs. 10 and 8, bot-
tom). In particular, the similarity between the SON tas trend 
anomaly pattern and that of sfcWind in JJA is uncanny. It is, 
at first glance, surprising that, in contrast to tas, for sfcWind 
this characteristic pattern is more evident in the JJA trends 
than in the DJF trends. The inter-model spread in the trend 
anomalies is generally less in summer than in winter, but 
the difference is less than that of tas. Also, as with tas, the 

inter-model spread in the anomalies is generally similar-to or 
smaller-than that of the absolute trends except for the Bering 
Sea (7) and Baffin Bay (3) in the winter.

3.3  Comparison of the RCP4.5 and RCP8.5 scenario 
simulations

Figures 11a–c show the subregional trends for 2016–2100 of 
the RCP4.5 simulations for tas, pr and sfcWind, respectively, 
as well as the corresponding RCP8.5 multi-model means 
for comparison. Note that the RCP4.5 means are based on a 
smaller number of simulations. For all three variables, the 
qualitative trend pattern is similar to, with about half the 
magnitude of the RCP8.5 pattern. The large degree to which 
the subregional trends scale linearly between scenarios is 
highlighted in Fig. 11d which shows the ratio of RCP4.5 
multi-model means to the means of the RCP8.5 trends taken 
over the same subset of models (i.e., only model configura-
tions that include both RCP4.5 and RCP 8.5 simulations are 
included) for tas, pr and sfcWind. For tas, the individual 
trend ratios for individual models are also plotted. These 
ratios are all between approximately 0.35 and 0.55 for tas 
and pr multi-model means. In fact, even the individual 
model ratios for tas only range from about 0.25 to 0.6 and 
the relative ratios of the different models are quite consist-
ent, e.g., RCA4, ESM-LR has the smallest RCP4.5/RCP8.5 

Fig. 10  The 2016–2100 RCP85 linear sfcWind a winter (DJF) and b summer (JJA) trends and subregional trend anomalies with filled symbols in 
the anomaly plots indicating negative absolute trends
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tas ratio for most subregions and RCA-4, NorESM1 and 
HIRHAM5-EC-EARTH r3 are usually in the high end of 
the range. Note, the relatively high ratios for subregion 13, 
where the strong changes seen in the historical period persist 
farther into the future projections. The tas and pr multi-
model mean ratios are uncannily similar, differing by less 
than 0.1, usually much less, indicating that the linear rela-
tionship between total Arctic pr and tas change in the RCA4 
models shown by Koenigk et al. (2015) also holds for the 
Arctic Ocean subregions, individually. The sfcWind ratios 
are also similar to those of tas and pr in subregions where 
the trends are not small compared to the spread. It would be 
interesting to see the degree to which this scaling remains 
in fully-coupled high-resolution models.

4  Discussion

4.1  Historical trends and validation

For tas, the historical subregional trends are largely retained 
in the downscaling process, even for the simulations without 
spectral nudging. For pr, prsn and sfcWind, there are cases 
where downscaling introduces differences comparable to 

the differences between driving model trends, though for pr 
and sfcWind, the downscaled trends still tend to be closely 
grouped by driving models, suggesting that it is the downs-
caling itself, rather than the details of the RCM physics that 
is responsible, in most cases.

Determining the consistency of the suite of free-running 
historical CORDEX simulations with observation-based 
data is an important step in evaluating the future trends pro-
jected by the models. Unfortunately, this cannot be done 
rigorously without sizable ensembles with which to estimate 
the natural variability of each model as, even for a perfect 
model, the observations would only be expected to represent 
one possible realization. In addition, the observation-based 
data currently provide only weak constraints on the histori-
cal trends because of the relatively short period of wide-
spread Arctic measurements and high natural variability. To 
give some indication of the overall consistency between the 
subregional trends from this group of simulations and the 
recent historical observed trends, the natural variability was 
estimated from the CanESM2 historical large ensemble. It 
is not unlikely that this is a conservative estimate of the 
variability, as the necessary resolution limits and parametri-
zations of a GCM reduce the complexity of the system. As 
the historical CORDEX and observation-based trends are 

Fig. 11  The 2016–2100 RCP45 a tas, b pr and c sfcWind annual linear trends. d RCP4.5/RCP8.5 ratios of mean tas (red), pr, and sfcWind trends 
for model configurations with both scenarios available, as well as the individual model ratios for tas 
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generally within or close to the estimated “error bars” of the 
straight and weighted multi-model means for all variables, 
the simulations and observations appear roughly consist-
ent. It is also important to keep in mind that the analyses 
have relatively little observational constraint in the Arctic. 
In fact, Diaconescu et al. (2017) found that, compared to tas 
and pr indices computed from land station data, CanRCM4 
outperformed ERA-Interim, though the lower resolution of 
ERA-Interim likely degraded its performance relative to 
station data more than would be expected of ERA5. Thus, 
the degree to which outliers may be less reliable cannot be 
determined with the analysis presented here, so all models 
were used for the future trend calculations.

4.2  Projected subregional trend patterns

The future subregional trends tend to group together much 
more by forcing GCM than downscaling RCM for all vari-
ables except snowfall and, in some cases, total precipita-
tion. This grouping indicates that even though there can be 
statistically significant differences in climate-change signals 
between RCM simulations and their driving GCMs over the 
Arctic Ocean (Koenigk et al. 2015), the subregional trends 
are largely determined by the driving simulation. The group-
ing further suggests that trend uncertainties determined from 
multi-model and multi-ensemble global modelling efforts 
might translate to the downscaling model, at least for tem-
perature, confirming the importance of considering the 
global-model natural variability when using atmospheric 
model data to force regional ocean or ecosystem models. 
However, it also suggests that systematic differences in 
downscaling RCM snowfall parametrizations may be a 
major source of uncertainty in that variable. The fact that 
the RCP8.5 tas trend standard deviation is generally much 
larger than the estimate of the 95% confidence limit of the 
estimated natural variability suggests that the systematic dif-
ferences between model configurations dominate the inter-
model spread in that case.

In the case of wind speed, even though the driving models 
appear to be the dominant influence, as demonstrated by the 
close grouping of CORDEX subregional trends by driving 
simulation, the sfcWind trends for the GCM simulations are 
generally lower than those of the corresponding CORDEX 
simulations. This suggests that smaller-scale wind features 
tend to increase or decrease along with the subregional-scale 
mean wind. It also indicates that mean wind speed-changes 
over the Arctic Ocean under climate change are likely under-
estimated by low-resolution general circulation models.

For total precipitation, the larger spread in the trends 
for different CORDEX simulations with the same driving 
ensemble member in some areas and seasons indicates, 
unsurprisingly, that precipitation trends are less tied to 
those of the driving model than those of temperature and 

wind speed. The larger RCP8.5 projected JJA precipitation 
increase in the RCA downscalings compared to the GCM 
simulations for the Arctic, in Koenigk et al. (2015) is gen-
erally reflected in our seasonal precipitation trends (not 
shown). CanRCM4 and RRCM tend to produce JJA pre-
cipitation trends closer to those of CanESM2 and ESM-LR, 
respectively, than the other CORDEX simulations, major 
exceptions to this being extremely large trends in RRCM 
around Greenland, which may be a topographical effect in 
the downscaling.

In spite of the large inter-model spread in individual 
trends, the consistency of the qualitative future Arctic 
subregional trend anomaly patterns between models, sce-
narios and, in some cases, even across different variables, 
is remarkable. This suggests that strong underlying mecha-
nisms, common to all models, determine the trend anomaly 
pattern. This is illustrated in Table 2b, which summarizes 
the multi-model mean subregional trend anomalies for the 
RCP8.5 simulations. Cases where all simulations give values 
larger or smaller than their respective Arctic-Ocean means 
are indicated by dark orange or blue cells, respectively, and 
cases where at least 8 of 10 simulations give positive/nega-
tive local trend anomalies are indicated by light orange/blue. 
Note that for all variables except prsn, the Arctic-Ocean 
mean trends are positive, so negative trend anomalies usually 
mean that the subregion experiences weaker-than-average 
positive trends. A similar trend anomaly pattern applies to 
all except JJA tas (and possibly JJA pr, which is trivially 
consistent with no discernible pattern). It is characterized by 
greater-than or approximately average trends in the central 
Arctic subregion (1), lesser or average trends in much of the 
Atlantic Sector (2, 13 and 14), greater or average trends in 
the Siberian Arctic Ocean (8, 9, 10, 11, 12) and lesser or 
average trends in the Bering Sea (7). For RCP8.5 tas and 
sfcWind, subtracting the pan-Arctic trends reduces the inter-
model spread considerably for most subregions, indicating 
that much of the subregional trend disagreement between 
models comes from their simulation of the overall Arctic 
response to the RCP8.5 forcing.

Recent analysis of the contributing feedback processes to 
the Arctic amplification signal indicate that the near-surface 
temperature trend pattern is strongly influenced by local 
sea-ice trends (Jansen et al. 2020; Dai et al. 2019; Boeke 
and Taylor 2018). For example, the switch of the Barents 
Sea from a relatively high winter tas trend subregion in the 
historical period to a relatively low trend subregion under 
RCP8.5 undoubtedly reflects the early loss of winter sea 
ice there in many model simulations (Koenigk et al. 2020). 
This is also reflected in the relatively high tas trend ratios 
for subregion 13 in Fig. 11d, likely due to the fact that the 
Barents Sea ice survives farther into the RCP4.5 simulation 
due to the weaker forcing. It also likely explains why the 
future RCP8.5 tas trend pattern presented here is markedly 
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different from the pattern obtained by Koenigk et al. (2015) 
from a comparison of the RCP8.5 tas changes between the 
periods 2080–2099 and 1980–1999, for the RCA4 subset 
of these simulations. In that case, the tas changes are very 
strong over the Barents Sea because of the large increases 
around the turn of the century that are not included in our 
“future” trend calculations. This illustrates a limitation of 
using linear trends to summarize transient climate change 
and the sensitivity of trend calculations to the choice of 
endpoints. It should be noted, however, that the CMIP5 
historical simulations tend to underestimate the observed 
Barents Sea ice decline, likely due to the observed Atlantic 
heat transport across the Barents Sea Opening being on the 
high end of the regional natural variability (Li et al. 2016). 
Hence, the simulated timing of the transition from relatively 
high to relatively low trend may be different from reality.

In cases where the characteristic trend anomaly pattern, 
noted above, is particularly clear, such as SON tas and JJA 
sfcWind, the pattern has a stronger amplitude for some 
model configurations than others. In these cases, and per-
haps to a lesser degree cases that exhibit the anomaly pattern 
less clearly, the subregional trends can be roughly thought of 
as the sum of the pan-Arctic-Ocean trend, which has a large 
inter-model spread, and a characteristic anomaly pattern, the 
amplitude of which varies between model configurations. 
In fact, for SON tas, as shown in Fig. 8d, most of the raw 
subregional trends can be reconstructed to within 80% this 
way, using the weighted mean anomaly pattern with scal-
ing factors ranging from 0.4 to 1.5. While there is some 
tendency for models with larger anomaly-pattern scaling 
factors to also have larger Arctic-Ocean means, scaling the 
raw weighted-mean subregional trends provides a noticeably 
poorer approximation.

The decomposition of the CMIP5 RCP8.5 surface tem-
perature signal into partial temperature responses, presented 
by Boeke and Taylor (2018), gives a good framework for 
discussing this conceptual division of the simulated tem-
perature response into a pan-Arctic component and subre-
gional pattern component, each of which vary in strength 
between models. While a direct comparison with our 
results is not possible due to the differing time intervals 
considered, their focus on surface temperature rather than 
tas and different seasonal definitions, their results inform 
a qualitative interpretation of the trend patterns presented 
here. Consistent with other idealized GCM-based Arctic 
amplification studies, such as Stuecker et al. (2018) and 
Pithan and Mauritsen (2014), their annual-average CMIP5 
multi-model mean of the partial temperature contributions 
show a dominant, widespread, positive contribution from 
clear-sky long-wave radiative effects (LWCS) which include 
air temperature, moisture and greenhouse gas effects: The 
spatial pattern of the annual average LWCS is qualitatively 
similar to the annual average warming pattern. Additionally, 

all models produce a very similar relationship between the 
local LWCS contribution and total winter warming. Surface 
albedo feedbacks (SAF) have the next largest positive con-
tribution, followed by cloud radiative effects. Short-wave 
clear-sky (SWCS) effects have a small, relatively uniform 
negative contribution while turbulent heat flux (HFLUX) 
and ocean heat storage (HSTOR) show strong subregional 
variation. The contribution with the greatest absolute and 
smallest relative inter-model standard deviation is LWCS, 
while HSTOR and HFLUX have a disproportionately large 
inter-model spread in the sea-ice retreat regions, compared 
to the sea-ice variation. Boeke and Taylor (2018) report 
that models that transfer more energy absorbed in summer 
(primarily through SAF) to fall (primarily through HFLUX) 
exhibit more Arctic amplification and moreover, those with 
more effective redistribution of the stored heat warm more 
overall. This supports the idea that processes determining 
the temperature trend anomaly pattern (the spatial pattern 
of LWCS and its relationship to warming and, to a lesser 
degree, the SAF pattern) are relatively consistent between 
models, but there is a large inter-model variation in heat 
dispersal and amplification of this pattern. In fact, Boeke and 
Taylor (2018) show by regression that, for the CMIP5 mod-
els, much of the widespread LWCS heating is related to the 
HFLUX in the Beaufort/Kara and, to a much lesser extent, 
Barents/Chukchi Seas. Interestingly, exceptions to this are 
the Bering Sea and Baffin Bay, which are influenced very 
little by these major winter ice-retreat regions. The fact that 
these subregions are relatively unaffected by the dominant 
cause of inter-model spread in the CMIP5 simulations may 
explain why they are the subregions in our study that exhibit 
significantly greater DJF tas trend inter-model spread when 
the pan-Arctic-Ocean mean is removed. This is not surpris-
ing, as both areas are strongly influenced by lower latitudes.

Some qualitative features of the seasonal differences 
in the tas trend patterns, such as the small JJA trends and 
larger inter-model spread in DJF than SON, can also be 
discussed in terms of the individual contributions to Arc-
tic warming. The surface albedo feedback is active only in 
sunlit months but results in relatively small, local increases 
in summer warming trends due to the high heat capacity of 
the ocean. The stored energy delays ice formation in fall 
and winter, causing strong local tas trends due to increased 
heat flux from the open water and more widespread posi-
tive trends due to temperature and cloud feedbacks, which, 
in turn, reduce ice formation (e.g., Bintanja and Van der 
Linden 2013; Boeke and Taylor 2018). This is consistent 
with our result showing the strongly proportional relation-
ship between summer sea-ice trend anomaly pattern and fall 
and winter temperature anomaly patterns. Boeke and Tay-
lor (2018) find that the inter-model standard deviation of 
both the RCP8.5 sea-ice concentration change and surface 
temperature change in the ice-retreat regions is much larger 
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in January and February than in October, November and 
December in their CMIP5 analysis. They also show particu-
larly large standard deviations for HFLUX and HSTOR in 
the ice-retreat regions, suggesting that this is a likely source 
of the large winter inter-model spread. It would be interest-
ing to see how much of this comes from greater winter natu-
ral variability and how much from systematic differences 
between models.

There is only a hint of this characteristic RCP8.5 trend 
anomaly pattern in DJF pr, which could be related to the tas 
pattern via the anticorrelation between clouds and sea ice 
(for example, Leibowicz et al. 2012). It would be interest-
ing to investigate possible feedbacks in fully-coupled high-
resolution models, which would benefit from the ability to 
resolve more realistic physical features than the CMIP5 
GCMs and include bi-directional surface-air interactions.

Figure 12 shows the DJF and JJA sea-ice concentration 
(sic) trends and trend anomalies for the driving models. 
Clearly the JJA trend anomaly pattern is very similar to the 
reverse of the characteristic anomaly pattern noted above. 
In fact, as shown in Fig. 13, there is a very strong lin-
ear relationship between the JJA driving-model sic trends 

and the corresponding CORDEX SON tas trends and, to a 
lesser degree, the DJF tas trends. The relationship between 
SON tas trend anomalies and JJA sea-ice concentration 
trend anomalies, illustrated in Fig. 13a, shows remark-
able consistency across all the simulations with best-fit 
proportionality constants close to -0.1 K in all cases, with 
68% to 96% of the SON tas trend variance explained by 
this linear relationship and a rather astounding ≥ 90% for 
all the ESM-LR- and EC-Earth_r12-driven simulations. 
The amplitude of the trend anomaly patterns related in 
Fig. 13a are larger for EC-Earth-driven simulations than 
the others. Figure 13b shows a wider range of proportion-
ality constants (− 0.06 to − 0.34 K) between the DJF tas 
trends and JJA sic trends, though they are very similar 
within driving-model families. Less variance is explained 
than in the SON case (41–85%), but still more than half 
for most simulations and at least 80% for those driven by 
CanESM2.

A simple linear model of the coupled driving GCM tem-
perature and sea-ice trends does a very good job of explain-
ing this relationship. We can write the tas seasonal trend, for 

Fig. 12  The 2016–2100 RCP85 linear sea-ice concentration a winter (DJF) and b summer (JJA) trends and subregional trend anomalies for the 
driving GCMs used in the CORDEX simulations
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region i and season SON, TSON
tas,i

 , in terms of the JJA and SON 
sic trends, TJJA

sic,i
 and TSON

sic,i
 as:

where PSON represents the approximately spatially uniform 
component of the warming due to direct radiative forcing, 
atmospheric feedbacks, etc., �SON represents the strength of 
the first order dependence on additional heat absorbed by the 
ocean and melt water production in JJA and �SON represents 
the dependence on the increase in open water in SON. RSON

i
 

is a residual representing everything that is left out of this 
simple description. Figure S5a shows the excellent agree-
ment between the actual and best-fit values based on Eq. 1, 
as well as the fit parameters and r2 value and Figure S5b 
shows the residuals, which are small and appear randomly 
distributed with respect to the trend values. The fact that 
the best-fit value of �SON is negative for NorESM1 might 
indicate that most of the heat absorbed in summer is stored 
below the surface melt-water during SON in that model. 
Similarly, we can represent the SON sic trends as:

where DSON represents the spatially uniform component of 
the stored heat redistribution, �SON represents the strength 
of the first order dependence on remaining heat absorbed by 
the ocean in summer and the reduced-ice starting point, �SON 
represents the effect of SON atmospheric heating and rSON

i
 is 

a residual. Figure S6 shows the modelled trends vs fit based 
on Eq. 2 and corresponding residuals, again, showing a good 
1:1 relationship and small, random residuals. Ignoring the 
residuals, Eqs. 1 and 2 can be combined to give the basis of 
approximate linear relationship observed in the CORDEX 
trend anomalies:

(1)TSON
tas,i

= PSON − �SONTJJA
sic,i

− �SONTSON
sic,i

+ RSON
j

,

(2)TSON
sic,i

= DSON + �SONTJJA
sic,i

− �SONTSON
tas,i

+ rSON
j

,

w h e r e  A =
(

�SON + �SON�SON
)

∕
(

1 − �SON�SON
)

 a n d 
C =

(

PSON − �SONDSON
)

∕
(

1 − �SON�SON
)

.

The results of a fit to Eq. (3) are shown in Figure S7. As 
a consistency check, the values of A calculated from the fit 
parameters of Eqs. (1) and (2) are the same as those calcu-
lated by fitting Eq. (3) directly for all models and the val-
ues of C are within a factor of ~ 2 except for Nor-ESM1-M. 
Since the CORDEX model near-surface temperature trends 
are very close to those of their driving models, this likely 
explains the observed linearity there as well. These results 
suggest that many of the complex interactions ignored in 
this picture average to a relatively small effect on the time 
and length scales considered here. It might also open up 
the possibility of characterizing models by the strength of 
these parameters as a step towards understanding differences 
in Arctic amplification. A linear relationship with JJA sea-
ice concentration trend anomalies is retained, to varying 
degrees in the DJF tas trend anomalies (Fig. 13b). For the 
CanESM2-driven simulations, the proportionality coefficient 
is -0.34, with 80% to 85% of the variance explained, while 
for those based on the other GCMs, the coefficient ranges 
from approximately -0.1 to -0.2 with 40% to 70% of the 
variance explained by the proportional relationship, sug-
gesting that perhaps the additional summer ocean heating 
remains more localized for longer in CanESM2 than in the 
other GCMs, and continues to dominate the near-surface 
temperature trend for longer. This highlights the importance 
of local feedbacks in ice-retreat regions. This simple model 
can be generalized to approximate DJF tas trends as a linear 
function of JJA sic trends:

(3)TSON
tas,i

≈ C − ATJJA
sic,i

,

(4)TDJF
tas,i

≈ C� − A�TJJA
sic,i

,

Fig. 13  Scatterplots with respect to JJA sea-ice concentration trend 
anomalies of a SON tas trend anomalies and b DJF tas trend anoma-
lies along with least-squares linear fits to a proportional relationship, 

with proportionality constant and  r2, respectively, for each model in 
brackets in the legend
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by writing the DJF tas and sic trends as linear combinations 
of JJA and SON trends and then using Eqs. (1) and (2) to 
remove the dependence on the SON trends. The scatterplots 
of DJF tas trends vs the best fits to the JJA sic trends and 
residuals for the driving models is given in Figure S8, show-
ing impressive linearity. Hence, the trends are strongest dur-
ing the most rapid phase of sea-ice decline, which varies by 
region/latitude, which limits the use of linear trends to sum-
marize transient climate change, especially on large spatial 
scales. A more detailed investigation of these relationships 
based on cleaner sunlit and dark seasons may give further 
insight into the relative strengths of the various feedbacks 
in the GCMs.

Given the similarity of the sfcWind trend anomaly pat-
terns to the inverse of that of JJA sea-ice in the COR-
DEX models, it is not surprising that there is also a strong 
apparent inverse relationship between JJA and SON (not 
shown for CORDEX) sfcWind seasonal trends and JJA sic 
trends in the CODEX models and driving GCMs. This 
can be, possibly more tenuously, explained in a similar 
manner as for tas by assuming that the sfcWind trend is 
most strongly influenced by the current season’s sic trend, 
since the atmospheric stability and surface roughness are 
very different over ice than open water. For example, we 
can write:

where WSON is the uniform component of the “atmospheric 
effect” and �j is the residual. Solving Eqs. 1 and 2 for the 
SON sic trend, assuming the residual is small and substitut-
ing into Eq. 5 gives:

where Ω = �SON
(

�SON + �SON�SON
)

∕
(

1 − �SON�SON
)

 and 
P� = PSON�SON�SON∕

(

1 − �SON�SON
)

+WSON . The results 
of a fit to Eq. 6 for the three driving models with available 
sfcWind, are shown in Fig S9. In fact, there is a strong linear 
relationship between the JJA and SON sic trends  (r2 between 
0.72 and 0.97) so it is not surprising that the JJA sic trend 
pattern is similar to that of SON sfcWind.

A similarly-strong inverse relationship between annual 
surface wind speed and sea-ice concentration trends for 
the CMIP5 models, attributed mainly to changes in sur-
face roughness and reduced atmospheric stability, has been 
reported in Vavrus and Alkama (2021) and their maps of 
multimodel-mean sfcWind trends are qualitatively simi-
lar to our subregional trend pattern, suggesting that our 
sfcWind pattern is not largely due to the subset of CMIP5 
models chosen to drive the CORDEX simulations. Also, 
Alkama et al. (2020) found, using reanalyses and CMIP5 
models, that there is a large-scale feedback of increasing 

(5)TSON
sfcWind,i

= −�SONTSON
sic,i

+WSON + �j,

(6)TSON
sfcWind,i

≈ P� − ΩTJJA
sic,i

,

surface winds on sea-ice loss. Likewise, the relationship 
between SON sfcWind and JJA sic patterns, found here, 
could could mainly indicate that the near-surface winds are 
responding to the local sea-ice trends, but it is also pos-
sible that they participate in modulating the subregional 
trend pattern. For example, there could be a positive feed-
back loop involving stronger summer surface wind trends 
allowing greater increases in ocean heat storage (Jackson 
et al. 2010; Timmermans et al. 2018) resulting in stronger 
negative trends in ice formation and thus positive trends in 
surface winds (Jakobson et al. 2019; Mioduszewski et al. 
2018) and atmospheric heating in fall and winter, followed 
by further-reduced summer sea ice and possibly strength-
ened winds (Stegall and Zhang 2012). Of course, in this 
study, any full feedback loop involving sea-ice can only 
be represented in the driving GCM, and some air/sea/ice 
processes are not accurately represented at that resolution. 
The downscaling models would just be responding to any 
larger-scale feedbacks in the GCM.

4.3  Implications for marine ecosystems

The projected trends in the atmosphere have multi-fac-
eted impacts on the ocean, sea-ice and associated marine 
ecosystems in the various regions. Since one of the key 
motivations for this assessment is to evaluate driving mod-
els for basin-scale ocean ecosystem models, we highlight 
some key examples here: 1. Light transmission through 
the snow-ice system impacts both ice algae phenology 
and under-ice primary production (e.g., Leu et al. 2011; 
Lannuzel et al. 2020; Tedesco et al. 2019) and is predomi-
nantly driven by the presence of snow and, in spring, the 
formation of melt ponds. Changes in snow precipitation 
and particularly snow to rain conversion will have a major 
impact on light conditions. This is particularly relevant in 
spring/early summer. Transitions from snow to rain events 
on sea-ice during that time also enhance the flushing of 
ice algae and nutrients from the ice into the ocean. As 
such it is particularly relevant to recognize the impacts of 
downscaling on the prsn trends. In addition to precipita-
tion, the timing and extent of melt ponds is also impacted 
by increased and earlier warming (e.g., Light et al. 2008; 
Abraham et al. 2015) which, in turn, feeds back on both 
light transmission and flushing. 2. In regions where 
sea-ice is retreating and the open water area and time is 
increasing, enhanced warming and enhanced wind and 
momentum transfer impact phytoplankton growth, nutri-
ent upwelling and carbon uptake (e.g., Steiner et al. 2014; 
AMAP 2013, 2018b). The consistent subregional structure 
for trends in wind and atmospheric temperatures suggest 
regional differences. For example, we expect these impacts 
to be less in sub-Arctic seas, such as the Bering Sea, where 
the ice retreat is projected to be less pronounced in the 



3421Atmospheric trends over the Arctic Ocean in simulations from the Coordinated Regional…

1 3

future and the atmospheric trends are weaker, but par-
ticularly high for inflow shelf Seas where the projected 
trends are relatively strong (Beaufort and Chukchi). Par-
ticularly over the Chukchi Sea, wind patterns are sug-
gested to be directly linked to the Bering Strait inflow 
which impacts the marine ecosystem of the Chukchi and 
Beaufort Seas (Serreze et al. 2019) in addition to warming 
and sea ice retreat. These impacts filter through the trophic 
cascades with a capacity to modify the entire ecosystem 
of the region (Huntington et al. 2020). 3. A reduced and 
more mobile ice cover responds more quickly to wind pat-
terns and intensifies the impacts of storms and high winds 
on wave patterns and coastal flooding. This then affects 
whale movement (e.g. beluga, bowhead, narwhal), such 
as migration along the ice edge, areas of congregation and 
predator avoidance (e.g., Loseto et al. 2018; Scharffen-
berg et al. 2019; Mathews et al. 2020). In regions where 
winds show increasing trends in addition to the ice retreat 
these impacts will be intensified. 4. Wind affects sea-ice 
drift and deformation as well as upper-ocean mixing and 
upwelling which directly impacts associated biogeochem-
ical processes. Hence, underestimations in wind speed-
changes over the Arctic Ocean under climate change in 
low-resolution general circulation models can lead to inad-
equate representation of changes to these processes and the 
ecosystem as a whole. Often computational resources limit 
the ability to run ocean ecosystem models with multiple 
driving models. In such cases, the presented range and 
uncertainty estimates for atmospheric trends are essential 
in assessing the uncertainty in corresponding simulations 
of ecosystem responses.

4.4  Caveats

One large source of uncertainty in this analysis is the rel-
ative simplicity of the sea ice parametrizations and low 
resolution of the driving GCMs. The use of prescribed 
boundary conditions from GCMs, especially for the sea ice 
and sea surface, is a significant limitation of the CORDEX 
simulations. Fully-coupled downscaling or high-resolution 
global coupled models with sophisticated sea ice would 
be necessary to fully address questions related to sea-
ice feedbacks on a more local scale. These capabilities 
are on the horizon, with CMIP6 coupled-model transient 
contributions with a nominal 50 km resolution from one 
model, CNRM-CM6-1-HR (e.g., Voldoire 2019) and sev-
eral models contributing 100 km resolution global coupled 
simulations. Detailed analysis of Arctic climate change 
is also limited by the lack of spatially-dense, long term 
observations. Future Arctic observations may be much 
improved using satellite data, such as that of the planned 
Atmospheric Imaging Mission for Northern Regions 

(AIM-North) (Nassar et al. 2019). In addition, develop-
ments in statistical interpolation techniques promise added 
value to the limited observational data of the past (e.g., 
Newman et al. 2015, 2019).

5  Conclusions

The Coordinated Regional Downscaling Experiment (COR-
DEX) includes a particularly suitable suite of simulations 
for investigating detailed atmospheric trends in the Arctic. 
Nine contributions include historical and RCP8.5 scenario 
atmospheric simulations on the high-resolution ARC-22 
and ARC-44 domains. These simulations generally perform 
well for the recent historical period, 1986–2015 compared 
to ERA5 and other observations and analyses are mostly 
only significantly different in subregions 4 and 5, which may 
be more affected by resolution issues. Observation-based 
seasonal and annual averaged near-surface air temperature, 
precipitation and near-surface wind speed trends generally 
fall within, or near, the model spread, which is comparable 
to an estimate of the natural variability based on annual-
averaged trends in the CanESM2 large ensemble over the 
Arctic Ocean subregions considered. The analysis provides 
the following key messages:

1. The RCP8.5 “high-emission” future projections show 
annual averaged tas trends of between approximately 
0.03 and 0.18 K/year from 2016 to 2100, with much 
stronger trends (and inter-model spread) in winter (0.05 
and 0.30 K/year) than summer (0.01 and 0.10 K/year). 
For subregions representing the Atlantic in and outflow 
and the Pacific inflow, the subregional trends in all simu-
lations are less than the mean trend of “Arctic-Ocean 
average” tas, which is a fairly robust indication that 
these areas experience weaker than average future tas 
trends. Similarly, the central Arctic and the Canadian 
Basin, Chukchi and Kara Seas have consistently larger 
than average tas trends under RCP8.5. The clearest sub-
regional trend pattern can be found in fall.

2. Positive trends in pr and sfcWind are indicated by the 
majority of the simulations, with mixed results for 
snowfall trends resulting from the competing effects of 
warming-derived snow to rain conversion and increased 
total precipitation. As a result, the decadal-scale behav-
ior of the prsn timeseries are not as linear as for other 
variables.

3. For tas, pr and sfcWind the RCP4.5 simulations produce 
approximately 40% weaker trends than RCP8.5, with 
very similar subregional patterns. The tas and pr multi-
model mean ratios are very similar (differing by less 
than 0.1), indicating that a linear relationship between 
total Arctic pr and tas change in the RCA4 models 
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(Koenigk et al. 2015) also holds for the Arctic Ocean 
subregions, individually.

4. Comparing simulations that share driving GCMs or 
downscaling RCMs indicates that the regional tas 
trends as well as the inter-model spread are generally 
more strongly influenced by the driving GCM. This 
grouping suggests that trend uncertainties determined 
from multi-model and multi-ensemble global modelling 
efforts might translate to the downscaling model, at least 
for temperature. This GCM-RCM consistency holds to 
a limited extend also for the other variables. However, 
for snowfall and, in some cases, total precipitation, the 
downscaling RCM has a large effect on local trends and 
sfcWind trends appear to be systematically higher in the 
downscaled simulations, regardless of the RCM used. 
This suggests that downscaling models could have a 
relatively large effect on trends at a local and seasonal 
level. This is in addition to downscaling providing more 
realistic small-scale behavior which may not translate 
into significant area-averaged trend differences. These 
are important points to consider when using atmospheric 
models to provide boundary conditions for ocean and 
sea-ice models.

5. While the absolute projected trends are often not sig-
nificantly different between subregions, removing the 
uncertainty associated with the pan-Arctic trend often 
exhibits robust relative subregional differences. These 
qualitative future Arctic subregional trend anomaly 
patterns show a remarkable consistency among models, 
scenarios and, in some cases, across seasons and differ-
ent variables. This suggests that underlying mechanisms, 
with similar contributions in all models, determine the 
trend anomaly pattern.

6. There is a strong similarity between the JJA sic subre-
gional anomaly pattern and the SON and DJF tas trend 
anomaly patterns, as well as the JJA and SON sfcWind 
anomaly patterns. In fact, the driving-model absolute 
subregional trend patterns of tas and sfcWind in these 
seasons can be approximated to a high degree in terms 
of JJA sic using very simple physically-motivated linear 
models.

Evaluating the sub-regional variability in trends is 
important as Arctic climate change and ecosystem impacts 
cannot be characterized by the Arctic-mean changes alone 
and it is useful to know which regions are likely to expe-
rience consistently higher or lower trends than the still 
highly-uncertain mean. As indicated above, the qualitative 
pattern of these trend anomalies is often strikingly similar 
across variables and between scenarios, with winter tas, 
both winter and summer sfcWind (and pr, to the extent 
that the trends are significant) as well as annual snowfall 
all indicating trend anomalies that are negative or near 

zero for subregions of the Atlantic sector and in the Ber-
ing Sea, and positive in the Siberian and central Arctic 
Ocean. This pattern is closely tied to the summer sea-ice 
anomaly trends in the driving GCMs and may be related 
to feedbacks and connections between variables, such as 
ice-albedo feedbacks and possibly the anticorrelation of 
sea-ice with wind speed, and cloud cover, as well as com-
munication between seasons via ocean heat storage and 
transport. Simple linear models relating subregional sum-
mer sea-ice trends and fall and winter tas and sfcWind 
trends suggests that, to lowest order, much of the com-
plexity of ocean-ice-atmosphere interaction in GCMs has 
a relatively uniform effect on near-surface atmospheric 
trends on these time and space scales, and offers a sim-
pler interpretation of differences in Arctic amplification 
between models.

The trends analyzed here provide key measures for cli-
mate change and are associated with many other changes 
in the Arctic, such as sea-ice retreat, ocean warming and 
consequent impacts on biogeochemical processes and 
Arctic marine and coastal ecosystems. These results sug-
gest that Arctic changes already seen over the recent dec-
ades will likely continue or accelerate into the future in 
response to the atmospheric trends.
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