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Abstract
In this study, we evaluated the predictability of the two flavors of the El Niño Southern Oscillation (ENSO) based on a long-
term retrospective prediction from 1881 to 2017 with the Community Earth System Model. Specifically, the Central-Pacific 
(CP) ENSO has a more obvious Spring Predictability Barrier and lower deterministic prediction skill than the Eastern-Pacific 
(EP) ENSO. The potential predictability declines with lead time for both the two flavors of ENSO, and the EP ENSO has 
a higher upper limit of the prediction skill as compared with the CP ENSO. The predictability of the two flavors of ENSO 
shows distinct interdecadal variation for both actual skill and potential predictability; however, their trends in the predict-
ability are not synchronized. The signal component controls the seasonal and interdecadal variations of predictability for 
the two flavors of ENSO, and has larger contribution to the CP ENSO than the EP ENSO. There is significant scope for 
improvement in predicting the two flavors of ENSO, especially for the CP ENSO.
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1 Introduction

The El Niño Southern Oscillation (ENSO) is an impor-
tant air-sea interaction mode in the tropical Pacific region, 
which has attracted extensive attention in the past few dec-
ades. The ENSO events can be classified as Eastern-Pacific 
(EP) ENSO or Central-Pacific (CP) ENSO according to the 
location of the maximum sea surface temperature anomaly 
(SSTA). The EP ENSO is also referred to as the canonical 
ENSO or Cold Tongue ENSO (Kug et al. 2009; Yeh et al. 
2009), with the center of maximum SSTAs located in the 
eastern Pacific. The CP ENSO is also known as the “ENSO 

Modoki” (Ashok et al. 2007) or Warm Pool ENSO (Kug 
et al. 2009; Yeh et al. 2009), and has the largest SSTAs vari-
ability in the central Pacific (Ashok et al. 2007; Kao and Yu 
2009; Kug et al. 2009; Yu and Kao 2007; Yu et al. 2010; 
Zheng et al. 2014). Compared with the canonical ENSO, 
ENSO Modoki can generates different teleconnections 
(Taschetto and England 2009; Zhang et al. 2015), and has 
different effects on the precipitation (Ashok et al. 2009; Feng 
and Li 2011; Feng et al. 2016a; Jiang et al. 2019; Zhang 
et al. 2013, 2014), the Hadley circulation (Feng and Li 
2013), the stratosphere (Xie et al 2012, 2014a, b, c), aero-
sol concentrations (Feng et al. 2016b, 2017), and tropical 
cyclone activity (Kim et al. 2009; Wang et al. 2013; Magee 
et al. 2017). As the ENSO has a worldwide climatic effect, 
the prediction of ENSO can provide a predictability source 
for short range climate prediction. Given the obviously dif-
ferent climatic effects of the two flavors of ENSO events, it 
is necessary to comprehensively explore the predictability 
of the two flavors of ENSO.

The study of ENSO predictability involves two aspects: 
actual prediction skill and potential predictability. The 
former focuses on the accuracy of the model in predict-
ing ENSO events against observations, whereas the latter 
quantitatively measures the upper limit of ENSO prediction 
skill under a perfect model assumption (Tang et al. 2018). 
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It should be noted that the model is not perfect in reality. 
Therefore, the measured potential predictability is partly 
model dependent. However, a useful strategy to explore 
ENSO predictability is to conduct retrospective forecast 
experiment using numerical models with varying degrees 
of complexity. For the canonical ENSO events, many ret-
rospective forecasts with complicated coupled general 
circulation models (CGCMs) have only been conducted 
20–60 years (Luo et al. 2008; Qiao et al. 2013; Kirtman et al. 
2014; MacLachlan et al. 2015; Huang et al. 2017; Takaya 
et al. 2017; Zhu et al. 2017; Zhang et al. 2018; Barnston 
et al. 2019; Ding et al. 2019; Johnson et al. 2019; Lin et al. 
2020). The relatively short retrospective forecast periods 
only contain a few ENSO cycles, which are inadequate for 
us to achieve statistically robust cognize for the ENSO pre-
dictability, particularly with respect to the interdecadal vari-
ation. The existing long-term ENSO retrospective predic-
tions have been mainly conducted with intermediate (Chen 
et al. 2004; Zheng et al. 2009; Cheng et al. 2010; Liu et al. 
2019; Gao et al. 2020) and hybrid coupled models (Tang 
et al. 2008a; Deng and Tang 2009; Tang and Deng 2011). 
These efforts revealed the interdecadal variation of the actual 
prediction skill for the canonical ENSO and the possible 
reasons accounting for this phenomenon.

However, predictability of the two flavors of ENSO in a 
long period retrospective forecast has received limited atten-
tion. Based on 30–60 years hindcasts using various models, 
previous studies have reached conflicting conclusions. Some 
studies have reported that the CP ENSO is more predict-
able than the EP ENSO due to its high persistence and low 
“Spring Predictability Barrier” (SPB) (Kim et al. 2009; 
Yang and Jiang 2014). Other studies have found that the 
models had better performance in predicting the EP ENSO 
as compared with the CP ENSO (Hendon et al. 2009; Jeong 
et al. 2012; Imada et al. 2015; Lee et al. 2018; Zheng and 
Yu 2017). Such divergent results may be due to the limited 
hindcast durations. In addition, the previous studies focused 
only on the actual prediction skill and the variation of the 
potential predictability for both the EP ENSO and CP ENSO 
remains unclear. Yao et al. (2019) reported that the Com-
munity Earth System Model (CESM) can fairly well simu-
late the two flavors of ENSO. Therefore, we conducted an 
ensemble long-term retrospective forecast with CESM from 
1881 to 2017. This study focuses on the following issues: 
(1) how about the performance of the actual skill for the two 
flavors of ENSO in the CESM; (2) what are the features of 
the potential predictability for the two flavors of ENSO; (3) 
whether actual skill and potential predictability also undergo 
seasonal and interdecadal variations for the two flavors of 
ENSO, particularly for the CP ENSO. If so, which factor 
dominates the variation in the predictability for the two 
flavors of ENSO? These essential questions have not been 
well explored in previous studies. This paper is organized as 

follows. The description of the model, ensemble construc-
tion and evaluation metrics are introduced in Sect. 2. The 
characteristics of the actual skill of the two flavors of ENSO 
are presented in Sect. 3. In Sect. 4, we explore the possible 
reason accounting for the variation in the predictability of 
the two flavors of ENSO. Finally, the conclusions and dis-
cussion are summarized in Sect. 5.

2  Model and methodology

2.1  Model information

In this study, we used the CESM version 1.2.1 to formu-
late the atmosphere, ocean, land, land-ice, and sea-ice 
components. It is one of the most popular fully CGCM and 
has been involved in many seasonal forecast studies (Hur-
rell et al. 2013; Bellenger et al. 2014; Hu and Duan 2016; 
Bellomo et al. 2018; Hu et al. 2019; Xu et al. 2021). The 
atmospheric component is the Community Atmosphere 
Model version 4 (CAM4; Neale et  al. 2013; horizontal 
resolution 0.9° × 1.25° with 26-layer hybrid sigma-pressure 
vertical coordinate). The oceanic component is the Parallel 
Ocean Program ocean model version 2 (POP 2; Smith et al. 
2010; horizontal resolution 1.1° × 0.54–1° with60 layers in 
the vertical direction). It has been reported that the CESM 
can reasonably portray the characteristic of the two flavors 
of ENSO with the above model configuration (Yao et al. 
2019). It is also employed as the operational model of the 
National Marine Environmental Forecasting Center in China 
(Li et al. 2015a, b; Zhang et al. 2018, 2019), and we modi-
fied its nudging scheme by adjusting the nudging weight of 
the subsurface ocean temperature at depths above 500 m and 
adding wind data assimilation below 500 hPa to improve the 
simulation and prediction skill for ENSO (Song et al. 2021).

Before 1983, the monthly mean upper ocean tempera-
ture and 6-hourly mean wind variables were extracted from 
the monthly Simple Ocean Data Assimilation version 2.2.4 
(SODA 2.2.4; Carton and Giese 2008) and European Centre 
for Medium–Range Weather Forecasts (ECMWF) twentieth 
century reanalysis (ERA-20C; Stickler et al. 2014) to ini-
tialize the retrospective forecast. We then used the Global 
Ocean Data Assimilation System (GODAS; Behringer and 
Xue 2004) and ECMWF interim reanalysis (ERA-interim; 
Berrisford et al. 2011) as the oceanic and wind assimila-
tion data from 1983 to 2017. The validation SST data were 
extracted from the SODA and GODAS datasets before and 
after 1983, respectively. To eliminate the effect of the low-
frequency variation, the anomalies in this study were identi-
fied by subtracting the corresponding climatology of the run-
ning 20-year window both for the forecast and observational 
data as in Deng and Tang (2009).



3345The predictability study of the two flavors of ENSO in the CESM model from 1881 to 2017  

1 3

2.2  Methodology

2.2.1  Ensemble construction strategy

To perturb the initial conditions, we employ the climatically 
relevant singular vector (CSV, Kleeman et al. 2003; Tang 
et al. 2006) method to obtain the singular vectors of the sea 
temperature above 200 m, which can consider the influence 
of the uncertainties of the upper sea temperature on SST 
prediction. The CSV method can capture the climatically 
relevant optimal error growth like the traditional SV but 
avoids using tangent linear and adjoint models. The CSV 
has also been used in various CGCMs to investigate climate 
predictability (Hawkins and Sutton 2011; Islam et al. 2016; 
Li et al. 2020). More details of the CSV algorithm may be 
found in the relevant literature (Kleeman et al. 2003; Tang 
et al. 2006). In this study, a random linear combination of the 
first three CSVs is employed to perturb the initial conditions 
and form 20 ensemble members. The ensemble retrospective 
forecast starts on January 1st, April 1st, July 1st and October 
1st each calendar year from 1881 to 2017, with 12 month 
integrations for the initial conditions.

2.2.2  Predictability skill measures

In the current study, we employ the anomaly correlation 
coefficient (ACC) to measure the deterministic prediction 
skill, defined as:

The contribution of the prediction of the i th initial condi-
tion to the ACC (denoted as C) can be expressed as (Tang 
et al. 2008c):

where ao
i
(t) and ap

i
(t) indicate the ensemble mean prediction 

and corresponding observation of the i th initial condition at 
t th lead time, respectively. The overbar indicates the mean 
of the total initial conditions. M represents the total number 
of predictions. The symbol [] represents the standardization 
variable.

To measure the potential predictability, we used infor-
mation-based measure (Tang et al. 2008b) and variance-
based metric (Kumar et  al. 2016). Compared with the 
actual prediction skill metric, both two types of measures 
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ENSO prediction), the climatological variance �2
v
 can be 

decomposed into a sum of noise variance (ensemble pre-
diction variance) and signal (ensemble mean) variance 
(DelSole and Tippett 2007; Tippett et al. 2010):

The information-based measure mutual information 
(MI) and variance-based metric signal to total variance 
ratio (STR) are defined as (DelSole and Tippett 2007; 
Tang et al. 2013):

where the symbol ⟨⋯⟩ denotes the mean over all initial con-
ditions. p(v) , p(i) and p(v, i) indicate the climatological dis-
tribution, probability distribution for the initial condition i 
and forecast distribution of the i th initial condition, respec-
tively. �

v|i and �2

v|i denote the ensemble mean and ensemble 
prediction variance of the i th initial condition, respectively. 
In the perfect model framework, the potential correlation 
(denoted as R) is the ACC between the prediction (ensemble 
mean) and “perfect observation” (an arbitrarily predicted 
ensemble member). R has the following theoretical relation-
ship with the STR as (Kumar 2009; Tang et al. 2013):
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(Yang et al. 2012; Tang et al. 2013):
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Relative entropy (RE) is another information-based meas-
ure to quantify the potential predictability of each prediction, 
and the mean RE for all individual predictions is equal to 
MI (DelSole 2004; DelSole and Tippett 2007; Yang et al. 
2012; Tang et al. 2013), which can be defined as:

where �2

v|i , and �2
v
 are the ensemble and climatological vari-

ances, respectively. And �v|i and �v indicate the ensemble 
and climatological means, respectively. The RE represents 
the extra information from the difference between the clima-
tological distribution and ensemble predicted distribution 
(Cover and Thomas 1991), which can be decomposed into 
the signal component (SC; the first term) and dispersion 
component (DC; the last three terms). The SC indicates 
additional information between the climatological and pre-
diction means, while the DC represents a reduction in cli-
matological uncertainty from the prediction.

Following the previous studies (Hendon et al. 2009; Jeong 
et al. 2012; Yang and Jiang 2014; Ren et al. 2016; Lee et al. 
2018; Zheng and Yu 2017), we employed the Niño 3 index 
to depict the variability of the canonical ENSO or EP ENSO 
events, which is defined as the averaged SSTAs from 5° S–5° 
N and 90°–150° W. For the CP ENSO events, we adopt the 
ENSO Modoki index (EMI) defined by Ashok et al. (2007) 
as:

Here SSTAA , SSTAB and SSTAC represent the averaged 
SSTAs over region A (10° S–10° N, 165° E–140° W), B (15° 
S–5° N, 110° W–70° W), and C (10° S–20° N, 125° E–145° 
E), respectively. These two indexes (with a correlation coef-
ficient of − 0.34) in the CESM can basically represent the 
slightly negative correlation between the observational Niño 
3 index and EMI (with a correlation coefficient of − 0.33).

3  Deterministic prediction skill of the two 
flavors of ENSO

Figure 1 presents the ACC (solid lines) and persistence 
(dashed lines) skills of the forecast ensemble mean Niño 
3 index (blue lines) and EMI (red lines) from 1881 to 2017 
as a function of lead time. Generally, the ACC skills for 
the two flavors of ENSO drop with increasing lead time 
as expected. Our ensemble system has considerable high 
prediction skill for both EP ENSO and CP ENSO. The 
effective predictive skill (ACC > 0.5) extends for 7 and 6 
months for the EP ENSO and CP ENSO, respectively. The 
ACC skill of the Niño 3 index is almost always higher than 
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that of the EMI at all lead times. This indicates that the EP 
ENSO is more predictable than the CP ENSO in the CESM 
model, which is consistent with the results based on an 
intermediate model (Zheng and Yu 2017). For the EP 
ENSO, the model forecast is obviously superior to the per-
sistence forecast. Whereas the ACC is more skillful than 
the persistence skill for lead times longer than 3 months 
for the CP ENSO, while the model forecast is worse than 
the persistence skill at lead times of 1, 2 and 12 month. 
The possible reason for this is that the CP ENSO is more 
sensitive to the initial shock and has a lower prediction 
skill than persistence skill at the beginning of the fore-
cast. In addition, model bias may also affect the predic-
tion for the two flavors of ENSO. Figure 2a presents the 
difference of the climatic SST between the control run of 
the CESM and the observations. There are notable warm 
SST bias in the tropical Pacific Ocean, which indicates 
a weaker west–east SST gradient along the equator, and 
results in a weaker strength of Niño 3 index and EMI than 
the corresponding observations. The difference in the 
variances between the simulated and observational Niño 
3 index (DMI) is − 0.21 (− 0.22). The warm SST bias also 
affect the smaller predicted variances of the Niño 3 index 
(Fig. 2b) and EMI (Fig. 2c) as compared with the observa-
tion for all lead times, especially for the long lead times 
and CP ENSO. The CP ENSO suffers from more model 
bias may also be reflected by its higher persistence skill 
than prediction skill at long lead time, which also indicates 
that there are more improvements to be made for the pre-
diction of the CP ENSO with the CESM. More interest-
ingly, the persistence skill of the EMI is higher than that 
of the Niño 3 index after 4 months lead. These results 
are consistent with those of Yang and Jiang (2014) based 

Fig. 1  ACC of the Niño 3 index (blue solid line) and EMI (red solid 
line) plotted against the observations. The blue and red dashed lines 
indicate the corresponding persistence skill, respectively
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on version 2 of the National Centers for Environmental 
Prediction, which showed that the EMI is more persistent 
than the Niño 3 index.

Figure 3 presents the ACC skill for the Niño 3 index 
(Fig. 3a) and EMI (Fig. 3b) as a function of the target 
month for different initial conditions, in order to examine 
the seasonal variations of the prediction skills for the two 
flavors of ENSO. There are pronounced SPB phenomena 
for both the EP ENSO and CP ENSO, with an obvious 
decay in the prediction skill across the spring season for 
all start months. The predictions started in January and 
October exhibit a more marked decline in their skills than 
the skill of the predictions initiated in April and July for 
the two flavors of ENSO. However, the SPB is more obvi-
ous for the CP ENSO than the EP ENSO. In detail, the 
effective predictive skill (ACC > 0.5) is 6 months for the 
EP ENSO and 5 months for the CP ENSO for predictions 
starting in January. When the predictions start in April, the 
effective prediction skills for the EP ENSO and CP ENSO 
are 11 and 10 months, respectively.

Previous studies have shown that the predictability of the 
EP ENSO has undergone a significant interdecadal varia-
tion in intermediate (Chen et al. 2004; Zheng et al. 2009; 
Cheng et al. 2010) and hybrid coupled models (Tang et al. 
2008a; Deng and Tang 2009; Tang and Deng 2011). This is 
also the case for the CGCM ensemble prediction system, as 
shown in Fig. 4. There is relatively higher prediction skill 
from 1961 to 2017 and lower prediction skill occurs before 
1960 for both flavors of ENSO. These periods of high and 
low prediction skills for the EP ENSO are generally consist-
ent with previous results from the intermediate and hybrid 
coupled modes. However, the periods of the highest and 
lowest prediction skills are different for the two flavors of 
ENSO. Specifically, the highest (lowest) prediction skills 
occur during 1981–2000 (1921–1940) for the EP ENSO, but 
during 2001–2017 (1941–1960) for the CP ENSO. Figure 5 
presents the ACC skills for the Niño 3 index and EMI (blue 
lines) with running window of 20 years, averaged over 1–12 
lead month. The ACC skill of the EP ENSO is generally high 
than that of the CP ENSO, indicating that the EP ENSO is 

(a)

(b) (c)

Fig. 2  a Difference between the climatic SST for the control run and observations. The ratio of the predicted b Niño 3 index and c EMI to the 
corresponding observations as a function of lead time
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more predictable than the CP ENSO in the CESM ensemble 
forecast system during the past 137 years. The higher ACC 
skills occur after 1960 for both flavors of ENSO. However, 
there are some differences in the variations of ACC skills 
between the EP ENSO and CP ENSO. The ACC of the EP 
ENSO decreases from 1890 to 1930 and increase after 1930. 
In contrast, the ACC of the CP ENSO exhibits decreasing 
trends in 1881–1930 and 1940–1960, and increasing trends 
in 1930–1940 and after 1960. Figures 3 and 4 indicate 
that the prediction skills for the two flavors of ENSO both 
undergo remarkable interdecadal variations in the CESM, 
with relatively higher (lower) predictability before (after) 
the 1960s. Apparently, this can not be simply explained by 
the improvement in data quality or growing number of ocean 
observations in recent years. For the EP ENSO, there is rela-
tive high skill during 1881–1920 (ACC > 0.5), which actu-
ally has insufficient observations.

As reported in previous studies (Chen et al. 2004; Tang 
et al. 2008a, b, c; Kumar and Chen 2015), one possible 
reason for the high skill may be the variation of the ENSO 
signal intensity (red lines in Fig. 5), as these variances 
mimic the low-frequency variability of the prediction skill 
for both types of ENSO. For the EP ENSO (Fig. 5a), the 
variation of its signal strength is significantly correlated 
with the variation in the depth of the thermocline in the 
eastern Pacific Ocean (green line, with a correlation coeffi-
cient of 0.89), which represents the strength of the thermo-
cline feedback and plays the leading role for the EP ENSO. 
Strong variations of the thermocline in the eastern Pacific 

(a) (b)

Fig. 3  ACC of the a Niño 3 index and b EMI as compared with the observations for different start months. The dashed green lines indicate the 
boreal spring

(a)

(b)

Fig. 4  ACC of the ensemble mean Niño 3 index (a) and EMI (b) as 
compared with the observations for seven consecutive 20-year peri-
ods since 1881
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Ocean are associated with a strong thermocline feedback, 
which results in strong EP ENSO signal variability and its 
high prediction skill. For the CP ENSO (Fig. 5b), the vari-
ation of its signal strength is highly negatively correlated 
with the warm water volume (WWV; volume of water with 
temperatures > 20 °C from 5° S–5° N and 120°–280° E) in 
the tropical Pacific Ocean (green line), with a correlation 
coefficient of − 0.78. The background SST in the tropical 
Pacific Ocean presents an increasing cold tongue mode 
due to global warming (Zhang et al. 2010; Li et al. 2015a, 
b, 2017, 2019, 2021), which is characterized by cooling 
in the eastern equatorial Pacific and warming elsewhere 
in the tropical Pacific (Cane et al. 1997; Karnauskas et al. 
2009; Compo and Sardeshmukh 2010; Zhang et al. 2010; 
Solomon and Newman 2012; Funk and Hoell 2015). This 
corresponds to vigorous upwelling of cold water in the 
eastern equatorial Pacific and a decrease in the WWV and 
after 1950 (green line in Fig. 4b). This background state 
change reflects a weakened Bjerknes feedback intensity 
that suppresses the growth of SSTAs in the eastern equa-
torial Pacific, which finally lead to more frequent of CP 
ENSO events (Li et al. 2017). The increased occurrence 
of the CP ENSO indicates a strong variation of its signal, 

which favors its high prediction skill. In summary, the 
increased frequency of the two flavors of ENSO events 
provide strong additional information compared with the 
climatological prediction, which lead to larger predictabil-
ity and high prediction skill. We further investigate this in 
the next section.

4  Potential predictability of the two flavors 
of ENSO

Potential predictability can reveal the upper limitation of 
the prediction skill, and qualitatively measuring the pos-
sible improvement room of the skill in an ensemble pre-
diction system. Figure 6a presents the information-based 
( RMI ) and variance-based ( RSTR ) potential predictability 
measures as functions of lead time for the Niño 3 index 
(red line) and EMI (blue line). Both potential predictabil-
ity metrics decrease with lead time for the two flavors of 
ENSO, indicating that the predictability declines with lead 
time for both the EP ENSO and CP ENSO. However, the 
potential predictability of the EP ENSO is always higher 
than that of the CP ENSO at all lead times, irrespective of 

Fig. 5  a ACC (blue line), 
standardized variance (red line), 
and variance of the depth of the 
20 °C isotherm in the tropical 
eastern Pacific Ocean (5° S–5° 
N, 250°–280° E; green line) 
of the ensemble mean Niño 3 
index. b ACC (blue line), stand-
ardized variance (red line) of 
the EMI, and WWV (green 
line) in the tropical Pacific 
Ocean. Both plots are averaged 
from 1 to 12 lead months with 
a 20-year running window. The 
labels on the x-axis indicate the 
middle year of each 20-year 
window
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the predictability metric. This explains why the EP ENSO 
is more predictable than the CP ENSO as shown in Fig. 1. 
Figure 6a shows that the information-based potential pre-
dictability measure is higher than the variance-based met-
ric for both flavors of ENSO, especially for long lead times 
and the CP ENSO. This difference may be the consequence 
of the latter only measures the linear statistical depend-
ence between the ensemble mean prediction and the perfect 
observation, whereas the former includes more information 
than the later according to Eqs. (7)–(8). (Yang et al. 2012; 
Tang et al. 2013). Therefore, the variance-based potential 
predictability somewhat underestimates the intrinsic limit 

of predictability, especially for the CP ENSO, and the 
information-based potential predictability is more suitable 
for evaluating the predictability in an ensemble prediction 
system. Unless otherwise stated, the potential correlation 
(R) used thereinafter is RMI . Given that the averaged RE for 
all the individual predictions is equal to MI (DelSole 2004; 
DelSole and Tippett 2007; Tang et al. 2013) and the RE 
includes the SC and DC, the potential predictability RMI can 
also be derived from these two components. The SC has a 
greater contribution to the potential predictability than the 
DC for both flavors of ENSO, particularly for the CP ENSO 
and long lead times (Fig. 6b).

The discussion in Sect. 3 showed that the actual predic-
tion skills for the two flavors of ENSO have seasonal and 
interdecadal variations. Two important questions that arise 
from this are: how does the potential predictability behave? 
And what control those behaviors? To address these issues, 
we calculated another information-based potential predict-
ability measure (RE) for the Niño 3 index and EMI. Unlike 
R and MI that quantify the overall potential predictability, 
the RE measures the potential predictability of each predic-
tion. The averaged RE for all individual predictions is equal 
to the MI, and also related to R according to Eq. (8). The 
RE is derived from two components: SC and DC. There are 
significant linear relationships between the RE and SC for 
the two flavors of ENSO (Fig. 7a, b), with correlation coef-
ficients of 0.79 and 0.93 for the EP ENSO and CP ENSO, 
respectively. In contrast, the relationships between DC and 
RE are less significant whether for the EP ENSO or the CP 
ENSO (Fig. 7c, d). This indicates that the SC has a greater 
contribution to the variability of RE than the DC for two fla-
vors of ENSO. A larger SC usually provides more additional 
information and corresponds to a higher potential predict-
ability (RE), especially for the CP ENSO.

Figure 8 presents the relationships between RE and C for 
all lead times. Most predictions have a small contribution, 
or even a negative contribution to the ACC. Large values of 
RE typically correspond to large C, while the variability of C 
at low values of RE is no rules. This “triangle” relationship 
between potential predictability and the deterministic predic-
tion skill depends mainly on the SC contribution. This fur-
ther indicates that a prediction with larger SC corresponds to 
large potential predictability and makes high contribution to 
the deterministic prediction skill for both flavors of ENSO.

Furthermore, we examined the seasonal variability of 
the potential correlation (R), SC and DC. There is marked 
decline in R (Fig. 9a, d) during the boreal spring for both 
flavors of ENSO, and the rate of decline for the CP ENSO is 
sharper than that of the EP ENSO. This indicates that there 
are also SPB phenomena in potential predictability for both 
flavors of ENSO, and the CP ENSO has a more significant 

(a)

(b)

Fig. 6  a MI-and STR-based potential correlation of the Niño 3 index 
(red lines) and EMI (blue lines) as compared with the observations. 
The solid and dashed lines indicate the MI- and STR-based metrics, 
respectively. b The ratio of SC to DC for the Niño 3 index (red line) 
and EMI (blue line) as a function of lead time
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SPB than the EP ENSO. The cause of this barrier is primar-
ily due to the seasonal variability of the SC (Fig. 9b, e), 
which declines sharply in the boreal spring for both flavors 
of ENSO. However, the DC exhibits no obvious seasonal 
variability (Fig. 9c, f), especially for the CP ENSO. There-
fore, the SC controls the SPB in potential predictability and 
actual prediction skill for both flavors of ENSO.

In addition, there are also distinct interdecadal variations 
of the potential predictability for both flavors of ENSO 
(Figs. 10, 11), and the trends are generally consistent with 
those of the ACC skills. In general, the potential predict-
ability of the EP ENSO is higher than that of the CP ENSO 
for all decades. The relatively low predictability occurs 
from 1890 to 1930 for the EP ENSO (Fig. 10a), but before 
the 1960s for the CP ENSO (Fig. 11a). The SC variations 
also determine the interdecadal variations of potential pre-
dictability for both flavors of ENSO (Figs. 10b, 11b). The 
periods with more ENSO events provide large SC, which 
results in high predictability and good deterministic pre-
diction skill. Compared with the CP ENSO, the DC has a 

greater contribution to the potential predictability for the EP 
ENSO at short lead times. The above discussion indicates 
that the SC determines the variations of potential predict-
ability and deterministic skill on various time scales, espe-
cially for the CP ENSO. As such,, the potential predictability 
is also a suitable indicator of the actual deterministic skill 
in the CESM, which is consistent with the previous findings 
in other models (Tang et al. 2008b; Cheng et al. 2011; Xue 
et al. 2013; Kumar and Chen 2015; Liu et al. 2019).

5  Discussion and conclusions

ENSO is the dominant interannual air–sea interaction cli-
matic mode in the tropical Pacific Ocean. It has worldwide 
effect as it modulates the atmospheric circulation.. A new 
type of ENSO, the CP ENSO, has maximum SSTAs in 
the central Pacific Ocean and is distinctly different from 
the canonical ENSO in terms of its formation mechanism 
and climatic effects. The predictability of the two flavors 

Fig. 7  Plots of RE versus SC 
and DC for the a, c Niño 3 
index and b, d EMI

(a) (b)

(c) (d)
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of ENSO is an interesting topic that has received less well 
attention. A long-term ensemble retrospective prediction 
provides a convenient way to evaluate the predictability 
of the ENSO in terms of both the actual prediction skill 
and potential predictability. In this study, we conducted an 
ensemble retrospective prediction from 1881 to 2017 with 
the CESM to evaluate the predictability of the two flavors of 
ENSO. The CP ENSO has a lower deterministic prediction 
skill than the EP ENSO. The potential predictability declines 
with lead time for both flavors of ENSO, and the EP ENSO 

has a higher upper limit for the prediction skill, and is more 
predictable than the CP ENSO. The information-based met-
ric is more suitable for evaluating the potential predictability 
because it measures both the linear and nonlinear statistical 
dependence between the ensemble mean and a hypothetical 
observation.

The predictability of both flavors of ENSO undergoes 
distinct seasonal and interdecadal variations whether in 
actual skill or potential predictability. The CP ENSO has a 
more obvious SPB than the EP ENSO. A relatively higher 

Fig. 8  Plots of the contribution 
of each ensemble mean predic-
tion to the ACC versus RE, 
SC, and DC for the a–c Niño 3 
index and d–f EMI, respectively

(a)

(b)

(c)

(d)

(e)

(f)
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predictability occurs after the1960s for the two flavors of 
ENSO, but the trends are not synchronized. The highest (low-
est) prediction skill occurs during 1981–2000 (1921–1940) for 
the EP ENSO, but during 2001–2017 (1941–1960) for the CP 

ENSO. In general, a larger SC corresponds to higher potential 
predictability, and determines the seasonal and interdecadal 
variations of predictability for both flavors of ENSO. The SC 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9  MI-based potential correlation, SC, and DC for the a–c Niño 3 index and d–f EMI for different start months. The dashed green lines indi-
cate the boreal spring
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makes more contribution to the predictability of the CP ENSO 
as compared with the EP ENSO.

To the best of our knowledge, this is the first study to 
explore the predictability of the two flavors of ENSO based 
on long-term retrospective forecasting with t CGCM both in 
terms of the actual skill and potential predictability. Given that 

the potential predictability measures the upper limit of the 
actual prediction, the difference between the ACC and poten-
tial correlation (R) indicates the margin improvement in the 
current prediction. The results of this study show that there is 
significant scope for improvement in the predictions of the two 
flavors of ENSO with the CESM, especially for the CP ENSO 

Fig. 10  Running a RE, b SC, 
and c DC for the ensemble Niño 
3 index with a 20 year running 
window. The labels on the 
x-axis indicates the middle year 
of each 20 year window

(a)

(b)

(c)
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(Fig. 12). But it should be noted that model-based estimate 
of predictability may be model dependent because of various 
model biases. In addition, the quality of the assimilated reanal-
ysis data may be limited by the sparse observations prior to the 
satellite era. Therefore, further in-depth analysis to validate the 
different aspects of the model predicted variability, especially 

for the CP ENSO, needs to be undertaken. The underlying 
reasons for the limits of the current prediction skill for the two 
flavors of ENSO also requires further study. Relevant improve-
ment to this limitation in the mode should also be considered 
in the future.

Fig. 11  Same as Fig. 10, but 
for EMI

(a)

(b)

(c)
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