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Abstract
In year 2006, Räisänen and Ruokolainen proposed a resampling ensemble technique for probabilistic forecasts of near-term 
climate change. Here, the resulting forecasts of temperature and precipitation change from years 1971–2000 to 2011–2020 
are verified. The forecasts of temperature change are found to be encouraginly reliable, with just 9% and 10% of the local 
annual and monthly mean changes falling outside the 5–95% forecast range. The verification statistics for temperature change 
represent a large improvement over the statistics for a surrogate no-forced-change forecast, and they are largely insensitive 
to the observational data used. The improvement for precipitation changes is much smaller, to a large extent due to the much 
lower signal-to-noise ratio of precipitation than temperature changes. In addition, uncertainty in observations is a major 
complication in verification of precipitation changes. For the main source of precipitation data chosen in the study, 20% and 
15% of the local annual and monthly mean precipitation changes fall outside the 5–95% forecast range.
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1  Introduction

The typical accuracy of weather forecasts is easy to assess 
using verification data collected from past forecasts (Nurmi 
2003; Jolliffe and Stephenson 2011). However, such an 
assessment for projections of climate change is far more 
difficult, due to at least three reasons:

1.	 The time scale of the projections limits the number of 
meaningful verification cases. Century-scale projections 
of the effect that large increases in greenhouse gas con-
centrations might have on climate (Collins et al. 2013) 
are not directly verifiable at all, since the target period 
of these projections has not been reached.

2.	 For climate change projections on shorter (decadal-to-
multidecadal) time scales and therefore weaker anthro-
pogenic forcing, the forced change might still be heavily 

masked by internal variability (e.g., Deser et al. 2012). 
Thus, an imperfect simulation of the observed climate 
change would be expected even in a perfect model with 
perfectly specified forcing.

3.	 The forcing, comprising anthropogenic changes in the 
atmospheric composition and land use as well as solar 
variability and volcanic eruptions, may differ between 
the simulations and the real world. This is both due 
to the scientific uncertainty and technical difficulty in 
describing some types of forcing in climate models (e.g., 
aerosols and land use change) and because the time 
evolution of both anthropogenic and natural forcing is 
only partly predictable in advance. Therefore, a climate 
model with poorly specified forcing might produce a bad 
projection of climate change even if its sensitivity to the 
forcing were correct. Conversely, error compensation 
between the specification of the forcing and the model 
response to the forcing might result in a good simulation 
of climate change for the wrong reasons (Knutti 2008).

Due to the signal-to-noise issue in the verification of 
short-term climate change projections, climate models have 
traditionally been evaluated in hindcast mode, by compar-
ing simulated and observed climate changes during the late 
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nineteenth to early twenty-first century instrumental era 
(Räisänen 2007; Flato et al. 2013; van Oldenborgh et al. 
2013). However, the knowledge of the observed climate 
change may affect the choices that the modelers make when 
developing their models and specifying, for example, the 
aerosol forcing in the simulations (Knutti 2008; Schmidt 
et al. 2017; Gettelman et al. 2019; Mauritsen et al. 2019). 
Therefore, hindcast verification is not equivalent to forecast 
verification.

Nevertheless, the continuing increase of atmospheric 
greenhouse gas concentrations together with the aging of 
the earliest climate model projections is gradually mak-
ing a forecast mode verification of these projections more 
meaningful. Rahmstorf et al. (2007) compared the observed 
evolution of global mean temperature, global sea level and 
atmospheric CO2 concentration in years 1990–2007 with the 
projections presented in the third Intergovernmental Panel 
on Climate Change assessment (IPCC 2001). They found 
the increase in CO2 concentration to closely track the central 
IPCC estimate, whereas the observed warming since 1990 
was in the upper half, and the increase in sea level close 
to the upper bound of the projections. By contrast, Frame 
and Stone (2013) found the central business-as-usual (Sce-
nario A) temperature projection in IPCC (1990) to exceed 
the observed warming in 1990–2010 by approximately 
50%, although this overestimate was affected by a too rapid 
increase in radiative forcing. More recently, Hausfather et al. 
(2020) reviewed 17 projections of global mean temperature 
change, published between 1970 and 2007 and representing 
projection periods varying from 1970–2000 to 2007–2017. 
Ten of these projections were consistent with observations, 
in the sense that the 95% confidence interval for the differ-
ence between the observed and projected warming included 
zero. Of the remaining seven projections, four overestimated 
and three underestimated the warming. When accounting 
for the differences between the assumed and realized radia-
tive forcing, 14 out of the 17 projections were judged to be 
consistent with observations.

Nearly all forecast mode comparisons between pro-
jected and observed climate change have focused on the 
global mean temperature, which has a higher signal-to-
noise ratio between the forced change and internal varia-
bility than local climate changes. As an exception, Stouffer 
and Manabe (2017) compared the geographical and sea-
sonal patterns of temperature change from 1961–1990 to 
1991–2015 with the idealized CO2-only climate change 
simulations first published by Stouffer et al. (1989). Their 
study revealed a good agreement on many large-scale 
features, such as generally larger warming over land than 
ocean, a maximum of warming in high northern latitudes 
with much less warming over the Southern Ocean, and 
a general although not detailed consistency in the distri-
bution of zonally averaged monthly mean temperature 

changes. The simulation also included a pronounced 
minimum of warming over the northern North Atlantic, 
attributed in part to the weakening of the Atlantic thermo-
haline circulation. This minimum was less pronounced in 
the observed temperature difference between 1961–1990 
and 1991–2015, but it stands out clearly in trends calcu-
lated for the longer 1901–2012 period (Hartmann et al. 
2013, Fig. 2.21). Still, the comparison in Stouffer and 
Manabe (2017) was qualitative only, as dictated by the 
much stronger radiative forcing in the idealized model 
simulation than in the real world.

The impacts of climate change are not determined by 
the global mean warming alone. Therefore, more research 
is needed on how well models have been able to predict 
recently observed local-to-regional climate changes. To 
this end, this study verifies the grid box scale climate 
change forecasts of Räisänen and Ruokolainen (2006, 
hereafter RR06) for changes in annual and monthly mean 
temperature and precipitation from the years 1971–2000 to 
2011–2020. Importantly, these forecasts were formulated 
in probabilistic terms, considering the uncertainties asso-
ciated with both climate model response to anthropogenic 
forcing and internal climate variability. Such a probabilis-
tic verification remains meaningful even when the signal-
to-noise ratio of the observed changes is relatively low. 
The use of the word “forecast” here follows the wording in 
RR06. However, unlike weather forecasts and seasonal-to-
decadal climate predictions (Kirtman et al. 2013; Suckling 
2018), these projections do not use information on the 
initial state of the climate system.

In the following, the methods used to generate the 
probabilistic climate change forecasts of RR06 are first 
outlined and the data sets and statistics applied in their 
verification are introduced (Sect. 2). After this, the veri-
fication results for temperature (Sect. 3) and precipitation 
change (Sect. 4) are described. The results for temperature 
change are particularly encouraging, the forecast being 
both reliable in a probabilistic sense and much better than 
a surrogate forecast assuming no forced climate change. 
The conclusions are given in Sect. 5. Some additional 
information is included in the Supplementary material.

2 � Data and methods

This section first summarizes the resampling ensemble 
technique developed by RR06. After this, the observa-
tional data sets used for estimating the temperature and 
precipitation changes from 1971–2000 to 2011–2020 are 
introduced. Finally, the verification statistics used for 
evaluating the probabilistic climate change forecasts are 
described.
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2.1 � The resampling ensemble technique

The resampling esnsemble technique was developed by 
RR06 to generate probabilistic climate change forecasts 
that include the two main uncertainties in near-term climate 
change: (i) uncertainty in climate models and (ii) internal 
climate variability (Hawkins and Sutton 2009, 2010). The 
effects of the emission scenario uncertainty can be explored 
by making probabilistic forecasts separately for different sce-
narios. However, following the main focus in RR06, only 
the Special Report on Emission Scenarios (Nakićenović and 
Swart 2000) A1B scenario (SRES A1B) is used in this study.

Climate modelling uncertainty was represented in RR06 
using 21 models in the third phase of the Coupled Model 
Intercomparison Project, CMIP3 (Meehl et al. 2007). Fol-
lowing the indistinguishable ensemble paragdim (Annan and 
Hargreaves 2010), which assumes that climate changes in 
the real world belong to the same population as those in the 
model simulations, the same weight was given to all 21 mod-
els. For each model, only one realization of the simulated 
twentieth-to-twenty-first century climate was used.

Simulated climate changes between two periods of time 
represent a combination of forced response and internal 
variability. Thus, the distribution of climate changes from 
(e.g.) 1971–2000 to 2011–2020 among 21 simulations from 
different models implicitly represents both the modelling 
uncertainty and internal climate variability. Still, a sample 
of 21 would be too small for meaningful probabilistic fore-
casts. Therefore, RR06 used resampling in time to increase 
the sample size. The resampling algorithm is detailed below 
and is further motivated in RR06.

1.	 The change in the 21-model mean global mean tem-
perature G between the actual baseline and projection 
periods was calculated. For the SRES A1B scenario, 
the average warming from 1971–2000 to 2011–2020 is 
ΔG = 0.622 ℃.

2.	 Running 30-year (G30) and 10-year means (G10) were 
calculated from the time series of G from 1901 to 2098.

3.	 Starting from 1931 to 1940, a 10-year period (P10) was 
stepped forward with 5-year steps. For each choice of 
P10, that earlier 30-year period (P30) was identified for 
which the corresponding multi-model mean global mean 
temperature difference G10–G30 was the closest to the 
target value ΔG.

4.	 If the found minimum of |G10 − G30 − ΔG| was smaller 
than 0.03 ºC, P30 and P10 were added to the list of ana-
logue periods. The resulting list includes 20 pairs P30/
P10, ranging from 1906–1935/1991–2000 to 2051–
2080/2086–2095 (Table S1). Among these 20 pairs, the 
multi-model global mean warming from P30 to P10 var-
ies from 0.608 to 0.636 ºC.

5.	 It was assumed that the probability distribution of cli-
mate changes only depends on the multi-model global 
mean warming. Under this assumption, the changes 
between all the 20 found pairs of periods belong to the 
same statistical population as those from 1971–2000 
to 2011–2020. This allowed increasing the nominal 
sample size for the probabilistic forecast from 21 to 
21 × 20 = 420.

The assumption named in step 5 is a variant of the widely 
used pattern scaling assumption, which states that local cli-
mate changes should scale linearly with the global mean 
warming (Tebaldi and Arblaster 2014). This assumption is 
not precise. The regional patterns of forced climate change 
depend on the mixture of forcing agents that collectively 
cause the global mean temperature change (Shiogama et al. 
2013), and they may also change with time as the state of the 
climate system evolves (Hawkins et al. 2014; see also Fig. 2 
in RR06). Assumption 5 also presupposes that the uncer-
tainty in climate change between two periods of time is inde-
pendent of the timing of these periods as far as the multi-
model global mean warming between them is the same. The 
rationale is that (i) under the pattern scaling assumption, 
intermodel differences in forced climate change should also 
be proportional to the global warming between these two 
periods, and (ii) as far the mean climate does not change too 
much, internal climate variability should broadly retain its 
magnitude. At least the latter assumption may sometimes 
fail, particularly for scenarios with strong greenhouse gas 
forcing and (considering temperature) specifically in sea 
areas where melting of ice curtails the variability of air tem-
perature (e.g., LaJoie and DelSole 2016). Nonetheless, cross 
verification between the 21 CMIP models indicated that the 
resampling should clearly improve the resulting probabilistic 
climate change forecasts over those obtained by just using 
the changes between the nominal baseline and forecast peri-
ods (Table 2 in RR06).

For comparison with the actual forecasts, surrogate “no-
forced-change” forecasts were constructed by re-centering 
the actual 420-member forecast ensemble to zero.1 These 
forecasts thus have zero mean but the same width as the 
actual forecast distributions. In fact, the width of these dis-
tributions should have been slightly reduced, because inter-
model differences in the forced response (which would be 
absent for constant forcing) widen the actual forecast dis-
tributions from what results from internal variability alone. 
However, for the time periods considered in this study, 
the variance in the probabilistic forecasts is dominated by 

1  RR06 used the CMIP3 preindustrial control simulations for the 
same purpose, but the data from these simulations were lost before 
the present study.
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internal variability. The estimated, globally averaged con-
tribution of intermodel differences to this variance ranges 
from only 5% for monthly mean precipitation changes to 
29% for annual mean temperature changes (Supplementary 
material, Sect. S2).

2.2 � Data sets

For evaluating real-world climate changes from 1971–2000 
to 2011–2020, five different data sets were considered for 
both temperature and precipitation. These data sets, together 
with their main references, spatial coverage and shorthand 
notations are listed in Table 1. Further details are given in 
Supplementary Tables S3–S4. All the observational data 
were regridded to the 2.5° × 2.5° latitude–longitude grid of 
RR06 by using conservative remapping.

The main findings for temperature change turned out to 
be robust to the choice of the data set. The European Centre 
for Medium Range Weather Forecasts ERA5 reanalysis is 
used as the main data source for temperature in this article.

For precipitation change, observational uncertainty is a 
much larger issue. The gauge-based GPCC and CRU data 
sets were judged to be more reliable than the three reanaly-
ses listed in Table 1, but they only cover land areas and 
exclude Antarctica. Therefore, for most of the analysis in 
this article, GPCC was used over land at 60° S–90° N and 
ERA5 elsewhere. GPCC was preferred over CRU because 
it includes a larger number of rain gauge observations since 
the 1990s (Dai and Zhao 2017).

The analyzed or reanalyzed temperature and precipitation 
changes will be referred to as observed changes in this arti-
cle, except where it is necessary to stress which data set is 
used. This wording is used for simplicity, not to undermine 
the uncertainty in especially precipitation change.

2.3 � Verification statistics

In addition to pointwise comparison with observed climate 
changes, percent rank histograms and the continuous ranked 
probability score (CRPS) together with the corresponding 
skill score (CRPSS) are used to characterize the quality of 
the probabilistic forecasts. For the percent rank histograms, 
the local cumulative probabilities of the observed changes 
are first calculated as the fraction of realizations in the fore-
cast ensemble (out of 420) for which the change is smaller 
than observed. Then these probabilities are assigned to 5% 
classes (0–5%, 5–10% … 95–100%) and the frequencies in 
each class are averaged over the global area and (for monthly 
changes) over the 12 months. Probability values falling at 
the class boundaries (e.g., 21/420 = 0.05) are counted with 
half-weight in both the lower and the upper class.

For a reliable probabilistic forecast system, the percent 
rank histograms should be flat, with an equal frequency of 
verification cases in all parts of the forecast distribution. 
However, of two forecast systems producing equally flat 
histograms, the one with narrower (or, sharper) forecast 
distributions would be more useful (Gneiting et al. 2007). 
CRPS (Candille and Talagrand 2005) is a summary meas-
ure affected by both the reliability and the sharpness of the 
probabilistic forecasts. It can be written as

where δ is the observed change, F is the cumulative prob-
ability from the forecast and the overbar indicates averaging 
over all relevant cases—here over the global area and (for 
the monthly changes) over the 12 months. For a determinis-
tic forecast, F would jump from 0 to 1 at the forecast value, 

(1)CRPS = ∫
�

−∞

F2dx + ∫
∞

�

(1 − F)2dx

Table 1   The observational data sets used in this study

NCEP-NCAR​ National Centers for Environmental Prediction—National Center for Atmospheric Research, GPCC Global Precipitation Climatol-
ogy Centre, CRU TS Climatic Research Unit gridded Time Series

Temperature References Coverage Shorthand

ERA5 reanalysis Hersbach et al. (2020) Global ERA5
HadCRUT5.0.1.0 Morice et al. (2021) 99.6% HadCRUT​
GISTEMP v4 Lenssen et al. (2019) 99.6% GISTEMP
NOAAGlobalTemp v5 Zhang et al. (2019) 92.6% NOAA
Berkeley Earth land/ocean temperature 

record
Rohde and Hausfather (2020) Global Berkeley Earth

Precipitation Reference Coverage Shorthand

ERA5 reanalysis Hersbach et al. (2020) Global ERA5
JRA-55 reanalysis Kobayashi et al. (2015) Global JRA-55
NCEP-NCAR reanalysis 1 Kalnay et al. (1996) Global NCEP
GPCC full data monthly product version Schneider et al. (2020) Land at 60° S–90° N GPCC
CRU TS v4.05 Harris et al. (2020) Land at 60° S–90° N CRU​
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making CRPS equal to the mean absolute difference between 
the forecast and the verifying observation.

The continuous ranked probability skill score

requires a reference forecast. Here, CRPS
ref

 is CRPS for the 
surrogate no-forced-change probabilistic forecast. Thus, 
CRPSS serves to quantify how much better or worse the 
actual forecast was than the no-forced-change forecast.

CRPS and CRPSS were also computed in cross-verifi-
cation mode, in which climate changes in each of the 21 
CMIP3 models were compared, in turn, with the probabil-
istic forecasts obtained from the other 20 models. Then, 
the number of CMIP3 models was calculated for which the 
cross-verification scores were better (that is, CRPS lower 
and CPRSS higher) than the real-world ones. These num-
bers are denoted as n-CRPS and n-CRPSS, and their pos-
sible values range from 0 (real-world forecasts better than 
all forecasts in cross verification) to 21 (real-world forecasts 
worse than all forecasts in cross verification).

3 � Results for temperature

As an introductory example, monthly and annual mean 
temperature changes in the grid box (60° N, 25° E) (same 
as used for illustration in RR06) are shown in Fig. 1. In 
this case, two observational estimates are given, one based 
on local measurements at station Helsinki Kaisaniemi 
(60° 11′ N, 24° 57′ E; data available from https://​en.​ilmat​
ietee​nlait​os.​fi/​downl​oad-​obser​vatio​ns) and the other on the 
ERA5 reanalysis. The figure highlights several points of 
interest:

(2)CRPSS = 1 −
CRPS

CRPS
ref

1.	 The local station observations and the ERA5 reanalysis 
agree well with each other. This reflects the large spatial 
scale of temperature variability (Hansen and Lebedeff 
1987) and the assimilation of near-surface temperature 
observations in ERA5 (Hersbach et al. 2020).

2.	 The observed annual mean warming at this location 
(station observations 1.6 °C, ERA5 1.5 °C) exceeds the 
median of the probabilistic forecast (0.9 °C) but is still 
well within the forecast distribution (at the 89th percen-
tile for the station observations).

3.	 Following the statistical expectation for a reliable prob-
abilistic forecast system, the temperature changes in 
11 months out of 12 fall in the 5–95% forecast range. 
In September, the observed warming exceeds the 95th 
percentile of the forecast.

4.	 The forecast distributions for the monthly mean tempera-
ture changes are wide, allowing for at least a 10% chance 
of cooling in the individual months. Furthermore, as 
is typical for Northern Hemisphere high-latitude areas, 
both the median warming and the width of the distribu-
tion are larger in winter than in summer. The forecast 
distribution for the annual mean temperature change is 
narrower than those for the monthly changes, leading to 
a larger forecasted probability of warming (in this case, 
95%). This mainly reflects the smaller internal variabil-
ity in annual than monthly mean temperatures.

A global comparison between the observed (ERA5) and 
forecasted annual mean temperature changes is provided in 
Fig. 2; selected results for the individual months are included 
in Figs. S1-S2. The globally averaged temperature change 
in ERA5 is the same as the mean warming in the probabil-
istic forecast (0.62 °C), but there are substantial differences 
between the geographical details of the observed and the 
forecasted change (Fig. 2a, b). The observed warming is 

Fig. 1   Changes in monthly and 
annual mean temperature from 
1971–2000 to 2011–2020 at 
station Helsinki Kaisaniemi 
(red dots) and in the ERA5 
reanalysis at (60° N, 25° E) 
(blue crosses), together with the 
1st, 5th, 10th, 25th, 50th, 75th, 
90th, 95th and 99th percentiles 
of the forecast distribution (box 
plots). The numbers in the two 
bottom rows give the observed 
temperature change at Helsinki 
Kaisaniemi and its percent rank 
in the forecast distribution

https://en.ilmatieteenlaitos.fi/download-observations
https://en.ilmatieteenlaitos.fi/download-observations
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more strongly focused in the Northern Hemisphere and has 
much larger spatial variability than the mean projection. The 
observed change varies from local cooling of 0.7 °C over 
the Southern Ocean to a warming of 5.2 °C over the Barents 
Sea, whereas the projected warming only varies within the 
range 0.2–1.9 °C. There are, however, many qualitative simi-
larities in the geographical patterns, such as the maximum 
of warming in the Arctic and the minima in the Southern 
Ocean and northern North Atlantic. Therefore, the spatial 
correlation between the two fields is high (r = 0.82).

Proceeding to a probabilistic view on verification, the per-
cent rank of the observed temperature changes within the 
forecast distribution is shown in Fig. 2c. For example, over 
the eastern tropical Pacific that has received attention for its 
role in the recent “global warming hiatus” (Kosaka and Xie 
2013; England et al. 2014; Stolpe et al. 2020), the observed 
change is in the lower end of the forecast distribution. On 
the other hand, in northern Siberia and in individual grid 
boxes in a few other regions, the observed warming exceeds 
the 99th percentile of the forecast. Despite these specific 
areas where the observed change was poorly anticipated 

by the probabilistic forecast, the distribution of the percent 
ranks as a whole is reasonably well-balanced (as quanti-
fied below). This is clearly not the case when the observed 
changes are compared with the no-forced-change forecast 
(Fig. 2d). In large parts of the world, the observed tempera-
ture change exceeds the 95th or even the 99th percentile of 
this distribution.

To evaluate the reliability of the forecasts, percent rank 
histograms for annual (Fig. 3a) and monthly (Fig. 3b) tem-
perature changes were constructed as described in Sect. 2.3. 
For comparison, the same analysis was repeated in cross-
verification mode, comparing the changes in each of the 
21 CMIP3 models against the forecasts obtained from the 
remaining 20 models. In Fig. 3a, b, the approximate 25th 
and 75th percentiles of the cross-verified rank fractions are 
shown with dashed red lines, whereas the dashed purple 
lines show the lowest and highest fractions.

The percent rank histograms for temperature change are 
slightly bottom-heavy, with the observed annual (monthly) 
mean warming falling below the median forecast in 57% 
(56%) of cases (Fig. 3a, b). The apparent discrepancy with 

Fig. 2   Top: changes in annual mean temperature from 1971–2000 to 
2011–2020 a in ERA5 and b from the mean of the forecast distribu-
tion. Bottom: percent rank of the ERA5 temperature change within 

(c) the actual forecast distribution (d) and the surrogate no-forced-
change distribution
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the mentioned close agreement in global average warming 
between ERA5 and the mean forecast is explained by the 
asymmetric distribution of the observed changes. There are 
many areas where the observed warming is slightly smaller 
than the mean or the median forecast, but in terms of the 
global mean temperature change, this is compensated by the 
much stronger Arctic maximum in the observed warming. 
Accordingly, the fraction of changes in the bottom 5% of 
the forecast distribution is larger than that in the top 5% 
(see the numbers in Fig. 3a, b), but the combined fraction 
of these cases (9% for annual and 10% for monthly mean 
changes) follows the statistical expectation. This is the case 
even for the 1st and 100th percentile of the forecast distribu-
tion, which are together populated by 2.1% and 2.3% of the 
annual and monthly mean changes (not shown). Compared 
with the cross-verification results, the actual percent rank 

histograms are by no means unusual. The actual frequencies 
fall in most cases between the 25th and 75th percentiles of 
those found in the cross verification.

The percent rank histograms become dramatically dif-
ferent when comparing the observed temperature changes 
against the no-forced-change forecast, with a strong overpre-
sentation of the uppermost bins (Fig. 3c, d). However, this 
is slightly less pronounced for the monthly (Fig. 3d) than 
annual mean (Fig. 3c) temperature changes, due to the wider 
forecast distributions on the monthly time scale.

Similar results were obtained when using four alternative 
observational data sets. Just as for ERA5, a slight majority 
of the annual and monthly mean temperature changes in the 
HadCRUT, GISTEMP, NOAA and Berkeley Earth analyses 
fall in the lower half of the forecast distribution (row 1 in 
Table 2). The fraction of temperature changes within either 

Fig. 3   Frequency histogram of the percent rank of the ERA5 annual 
(left) and monthly (right) mean temperature changes within the actual 
forecast distribution (top) and the surrogate no-forced-change distri-
bution (bottom), using 5% bin width. Selected statistics are given in 

the top-left corner of the figure panels. In a, b, the red lines indicate 
the approximate 25–75% range in cross verification between CMIP3 
models, and the purple lines the minimum and maximum among the 
21 models
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the bottom or top 5% of the forecast distribution is otherwise 
close to 10%, but lower for HadCRUT (5.6% for annual and 
6.7% for monthly changes; row 2). The distribution of tem-
perature changes is smoother in HadCRUT than in the other 
data sets, with less extreme local minima and maxima (Fig. 
S3). Accordingly, the changes in this data set fall less com-
monly in the tails of the forecast distribution.

The results for CRPS and CRPSS (Eqs. 1–2) are given in 
the lower half of Table 2. Regardless of the data set, CRPSS 
is higher for annual (0.658–0.691) than monthly mean tem-
perature changes (0.495–0.551), reflecting the higher signal-
to-noise ratio of the former. The lowest CRPS and highest 
CPRSS are found when using HadCRUT for verification, 
apparently because of the muted variability in this data set. 
Moreover, n-CRPS (1–11 depending on data set and time 
resolution) and n-CRPSS (6–10) are both in the midrange 
or lower half of their possible values. Thus, in addition to 
being far more accurate than the surrogate no-forced-change 

forecasts, the probabilistic forecasts for temperature change 
are about as accurate as expected from the variation between 
the CMIP3 models.

The good verification statistics for temperature change 
reflect, in part, the close agreement in global mean warm-
ing between the mean forecast (0.62 °C) and the observa-
tions (also 0.62 °C for ERA5). For comparison, the global 
mean temperature changes in the 21 individual CMIP3 
models vary from 0.34 °C to 1.01 °C. To check how well 
the probabilistic forecast performs for the geographical pat-
terns of temperature change, the forecasted and ERA5 tem-
perature changes were normalized by their global annual 
mean. Unsurprisingly, this suppresses the variability in the 
probabilistic forecast, thus slightly increasing the frequency 
of verification cases in the tails of the distribution (Fig. 4). 
Still, the fraction of annual (monthly) mean changes that 
fall outside the 5–95% forecast range only increases from 
9 to 13% (10–11%). These findings concur qualitatively, 

Table 2   Verification statistics 
for temperature change

Data sets: E ERA5, H HadCRUT, G GISTEMP, N NOAA, B Berkeley Earth. The first two data rows give 
the frequency of verification cases below the median and in either the bottom or top 5% of the forecast dis-
tribution. See the text for the definition of the other statistics. CRPS for NOAA is biased low due to lack of 
data in polar areas

Data set Annual Monthly

E H G N B E H G N B

Coverage (%) 100 99.6 99.6 92.6 100 100 99.6 99.6 92.6 100
Lower 50% (%) 57.4 57.7 52.8 55.8 58.3 55.9 55.4 54.2 56.8 55.3
Outside 5–95% (%) 9.2 5.6 11.9 11.6 7.6 10.1 6.7 9.4 9.0 8.9
CRPS (°C) 0.170 0.148 0.167 0.150 0.159 0.257 0.212 0.231 0.225 0.235
n-CRPS 11 4 11 7 5 11 1 5 8 6
CRPSS (0.001) 658 691 661 674 671 495 551 526 518 516
n-CRPSS 9 6 9 9 8 10 8 9 10 10

Fig. 4   As Fig. 3a, b, but for temperature changes normalized by the global annual mean warming
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but not quantitatively, with those of van Oldenborgh et al. 
(2013). When comparing CMIP5 hindcasts against observa-
tions in years 1950–2011, they found the CMIP5 ensemble 
to produce a nearly flat rank histogram for absolute tem-
perature trends. However, in their study, there was a much 
larger increase in the fraction of trends falling in the extreme 
ends of the CMIP5-based distribution when the variations 
in global warming were factored out. This difference may 
reflect both the different periods and different data sets used 
in the two studies.

4 � Results for precipitation

Figure 5 repeats the analysis of Fig. 1 for precipitation 
changes in the grid box (60° N, 25° E). Just as for tempera-
ture, the changes inferred from the local station observa-
tions fall in most cases well within the forecast distribution, 
although the 19% decrease in March is at the 5th percen-
tile and the 40% increase in June at the 97th percentile of 
the forecast. However, there are two important differences 
between the two variables:

1.	 The signal-to-noise ratio is lower for precipitation than 
temperature changes. The annual mean forecast indi-
cates an 80% probability of increasing precipitation, 
compared with 95% probability of warming (see also 
Fig. 4 in RR06). Furthermore, although the median 
forecast is positive throughout the year, the forecasted 
probability of increasing monthly precipitation reaches, 
at most, 65% in January and December.

2.	 There is a major discrepancy between the local sta-
tion observations and the second observational esti-
mate (GPCC) included in Fig. 5, with systematically 
more negative changes in the latter. This appears to be 

a local anomaly in the GPCC data set, contrasting with 
an increase in annual precipitation in most of northern 
Europe (Fig. 6a). Nevertheless, this example illustrates 
the complication that arises from observational uncer-
tainty when evaluating forecasts of precipitation change.

The observed (GPCC over land at 60°S-90°N and ERA5 
elsewhere) and forecasted annual mean precipitation change 
are compared in Fig. 6; some results for the individual 
months are shown in Figs. S4–S5. The observed change 
(Fig. 6a) is much more spatially variable than the mean 
forecast (Fig. 6b). Some common features still stand out, 
inluding for example drying in southern Africa and southern 
North America as well as a general increase in precipitation 
in high latitudes. The Pearson product-moment correlation 
between the two fields is 0.19 and the Spearman rank corre-
lation (which is less sensitive to large percent changes in arid 
areas) is 0.29. Figure 6c suggests an excess of areas where 
the observed change falls in the upper tail of the forecast 
distribution, particularly over the oceans where ERA5 data 
are used. This tendency becomes more pronounced when 
comparing the observed change with the no-forced-change 
distribution (Fig. 6d), which excludes the mostly positive 
mean changes in the actual forecast. However, the contrast 
between the percent rank fields in Fig. 6c, d is much smaller 
than that for temperature change (Fig. 2c, d).

Figure 7a confirms that larger than expected fractions of 
the observed annual mean precipitation changes fall above 
the median (61%) and the 95th percentile (15%) of the fore-
cast distribution. The fraction of changes in the lower tail 
(5% below the 5th percentile) follows the expectation. For 
the monthly precipitation changes (Fig. 7b), for which the 
forecast distributions are wider than for the annual mean 
change, the excess of upper-end values is smaller. On the 

Fig. 5   As Fig. 1, but for 
changes in precipitation. The 
blue crosses represent the 
precipitation changes at (60° N, 
25° E) in the GPCC analysis
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other hand, the excess of upper-end values is exacerbated 
when replacing the actual forecast with the no-forced-change 
forecast (Fig. 7c, d), although the difference is small for the 
monthly changes.

However, the results in Figs. 6, 7 must be put in the con-
text of observational uncertainty. ERA5 suggests a 4.8% 
increase in ocean mean precipitation from 1971–2000 to 
2011–2020, far above the range of − 0.1 to 1.6% in the 21 
CMIP3 models (Table S5). Hersbach et al. (2020) likewise 
report an apparently excessive increase in ocean precipita-
tion in ERA5 beginning in the 1990s. Over land, the mean 
change in GPCC (0.5%) is well within the range of the 
CMIP3 simulations (− 0.7 to 3.5%) and in good agreement 
with CRU (0.6%) (Table S5, the quoted land means exclude 
Antarctica). The land area rank correlation between GPCC 
and CRU (0.59) is also higher than those for other pairs 
of data sets (Table S6), but many differences in the geo-
graphical details of precipitation change occur even between 
GPCC and CRU (Fig. S6).

Verification statistics of precipitation change against 
different observational data sets are reported for the global 

area in Table 3 and separately for land at 60° S–90° N in 
Table 4. In the global domain, more than 50% of the changes 
in all three reanalyses exceed the median forecast (row 1 
in Table 3). Yet, the fraction of changes falling outside the 
5–95% forecast range is much larger for JRA-55 and NCEP 
than for ERA5 (row 2 in Table 3), which most likely reflects 
larger inhomogeneities in these older reanalyses. In NCEP, 
in particular, spuriously large positive and negative precipi-
tation changes are widespread (Fig. S6e) and the changes 
are poorly correlated with ERA5 and JRA-55 (Table S6). 
Similar conclusions for the fraction of reanalysed precipita-
tion changes in the tails of the forecast distribution also hold 
for land areas (row 2 in Table 4). However, excluding the 
annual mean in NCEP, the reanalyzed precipitation changes 
over land fall more commonly below than above the median 
forecast (row 1 in Table 4). This is most striking for ERA5, 
in which the annual mean precipitation change is below the 
median forecast in 66% of the non-Antarctic land area, and 
the area mean change for this domain is − 3.4% (Table S5). 
The reasons for this apparently unrealistic decrease in land 
precipitation in ERA5 are not clear (Hersbach et al. 2020).

Fig. 6   As Fig. 2 but for changes in mean annual precipitation. The observational estimate a combines GPCC (land areas at 60° S–90° N) with 
ERA5 (oceans and Antarctica). In a, b, contours are drawn at 0, ± 10% and ± 30%
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Verification against the gauge-based GPCC and CRU 
data sets gives a more positive impression of the forecast 
performance for precipitation in land areas. Only 14.2% 
(13.2%) of the annual and 10.3% (7.4%) of the monthly 
precipitation changes in GPCC (CRU) fall outside the 

5–95% forecast range (row 2 in Table 4). However, the 
magnitude of precipitation changes in these gauge-based 
analyses might be reduced by relaxation to climatology 
in areas with insufficient station coverage (Becker et al. 
2013; New et al. 2000; Harris et al. 2020). This issue is 

Fig. 7   As Fig. 3, but for changes in precipitation

Table 3   Global verification 
statistics for precipitation 
change

Data sets: E + G GPCC over land at 60° S–90° N and ERA5 elsewhere, E ERA5, J JRA-55, N NCEP. In the 
calculation of CRPS, an upper limit of 200% was applied to precipitation changes

Data set Annual Monthly

E + G E J N E + G E J N

Lower 50% (%) 39.0 43.7 46.7 43.0 46.3 49.1 49.3 47.5
Outside 5–95% (%) 20.3 22.2 32.8 52.7 14.7 14.8 21.2 29.6
CRPS (%) 5.80 5.89 9.79 12.74 13.50 13.23 17.00 19.56
n-CRPS 19 19 21 21 18 17 20 21
CRPSS (0.001) 80 61 44 5 19 11 12 6
n-CRPSS 9 11 13 18 9 13 13 20
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particularly pertinent to CRU, which is based on a smaller 
number of station records than GPCC in the most recent 
decades (Dai and Zhao 2017). Conversely, inhomogenei-
ties due to unaccounted-for changes in station network and 
instrumentation would have the opposite effect. Inhomo-
geneities that have a similar effect throughout the year 
should have a relatively larger impact on the distribution 
of annual than monthly precipitation changes, due to the 
smaller variability in annual precipitation. Consistent with 
this, the fraction of changes in the bottom and top 5% of 
the forecast distribution is larger for annual than monthly 
precipitation in all the observational data sets included in 
Tables 3and 4.

As expected from the excess of verification cases in 
the tails of the forecast distribution, the CRPS values 
for precipitation change are mostly larger than those 
found in cross verification between the CMIP3 models 
(n-CRPS = 17–21 in the global domain, row 4 in Table 3). 
As an exception, n-CRPS = 2 for monthly precipitation 
over land verified against CRU (row 4 in Table 4); how-
ever, as discussed above, this data set may underestimate 
the magnitude of precipitation changes. Nevertheless, the 
forecast appears to have some skill in comparison with 
the reference no-forced-change forecast. For the favored 
choice of data sets (GPCC over non-Antarctic land, 
ERA5 elsewhere) in the global domain, CRPSS = 0.080 
for annual and 0.019 for monthly precipitation, while the 
corresponding values in verification against GPCC over 
land are 0.070 and 0.022 (row 5 in Tables 3 and 4). While 
much lower than the corresponding values for temperature 
(Table 1), these values are in the upper half of those found 
in CMIP3 cross verification [bottom row of Tables 3 (col-
umns E + G) and 4 (columns G)]. From this perspective, 
the probabilistic forecast performs at its expected level of 
skill, although this level is modest particularly for monthly 
precipitation changes due to their very low signal-to-noise 
ratio.

5 � Conclusions

In RR06, probabilistic forecasts of temperature and pre-
cipitation change between the periods 1971–2000 and 
2011–2020 were presented. Here, these forecasts were 
verified against several observational data sets. Although 
several earlier studies have verified the ability of climate 
models to forecast changes in the global mean temperature 
in advance (Hausfather et al. 2020), this study is, to the 
best knowledge of the author, the first quantitative verifi-
cation of forecasts of grid box scale climate changes. Due 
to the relatively low signal-to-noise ratio of the local cli-
mate changes, such a verification is currently much more 
meaningful in probabilistic than in deterministic terms. 
The results were encouraging, but with a distinct contrast 
between temperature and precipitation:

1.	 The forecasts of temperature change were found to be 
statistically reliable, with just 9% (10%) of the annual 
(monthly) mean changes in ERA5 falling beyond the 
5–95% forecast range. The continuous ranked probabil-
ity skill score (CRPSS) against a surrogate no-forced-
change forecast was 0.658 for annual and 0.495 for 
monthly temperature changes when using ERA5 for 
verification. These results were largely insensitive to 
the choice of the verifying data set.

2.	 The forecasts of precipitation change are more difficult 
to verify due to the uncertainty in observations. The pri-
mary data sets selected in this study (GPCC over land at 
60° S–90° N, ERA5 elsewhere) suggest that 20% (15%) 
of annual (monthly) precipitation changes fell outside 
the 5–95% forecast range, but such a result might also 
reflect inhomogeneity in the verifying data. Regardless, 
the skill of local precipitation change forecasts is limited 
by the low signal-to-noise ratio between forced change 
and internal variability. Reflecting this, the CRPSS val-
ues found for annual (0.080) and monthly precipitation 
(0.019) were much lower than those for temperature, yet 

Table 4   Verification statistics 
for precipitation change, land at 
60°S–90°N

Data sets: E ERA5, J JRA-55, N NCEP, G GPCC, C CRU. In the calculation of CRPS, an upper limit of 
200% was applied to precipitation changes

Data set Annual Monthly

E J N G C E J N G C

Lower 50% (%) 66.1 55.2 47.4 46.9 47.7 60.5 54.5 50.3 49.0 47.3
Outside 5–95% (%) 27.7 39.2 52.3 14.2 13.2 15.5 20.7 28.8 10.3 7.4
CRPS (%) 7.28 14.15 16.76 5.77 4.91 17.15 21.36 26.07 15.41 12.56
n-CRPS 19 21 21 16 8 14 21 21 11 2
CRPSS (0.001) − 6 0 3 70 76 − 7 − 1 7 22 26
n-CRPSS 15 15 15 8 7 21 19 13 6 4
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consistent with the values obtained in cross verification 
between the CMIP3 models.

As noted in Sect. 2.1, the variance within the RR06 
probabilistic forecasts for the climate changes between 
1971–2000 and 2011–2020 is strongly dominated by internal 
variability. In forecasts for later future periods, intermodel 
differences become gradually more important. I hope to 
revisit the verification of these forecasts in the early 2030s, 
once observations for the decade 2021–2030 are available.
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