Skip to main content

Advertisement

Log in

Characteristic changes in climate projections over Indus Basin using the bias corrected CMIP6 simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Indus Basin is one of the most vulnerable regions due to climate change. This article presents the mean precipitation and temperature changes along with their extremes over the Indus Basin (IB). Here we used the statistically downscaled, bias-corrected, high-resolution data from the newly emerged Coupled Model Intercomparison Project Phase 6 (CMIP6) of two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5) in response to global warming. The spatial variations of precipitation, maximum and minimum temperature obtained from the Multi-Model Mean (MMM) of CMIP6 models showed a good agreement with APHRODITE (precipitation) and CPC (temperature) for the base period (1995–2014) over the basin. Results suggest that the precipitation may increase as high as 40% from June to September (JJAS) and 25% from December to February (DJF) in the SSP5-8.5 scenario by the end of the century. Future temperature projections show that warming may continue over the basin. A significant warming was noticed in the SSP5-8.5 scenario than the SSP2-4.5 scenario, with a maximum increase of more than 4 °C towards the end of the twenty-first century. Analysis of spatiotemporal variations of future extreme precipitation indices viz RD, SDII, RX1DAY, RX5DAY, R10MM, R20MM except CDD are high in number over Upper Indus Basin (UIB) compared to Lower Indus Basin (LIB). Extreme temperature indices such as TXx, SU, CSU, TNn, FD, CFD, TR except for ID show an increase of 40% to more than 75% under the SSP5-8.5 scenario compared to the baseline period over the basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adler R, Sapiano M, Huffman G, Bolvin D, Wang J, Gu G, Nelkin E, Xie P, Chiu L, Ferraro R, Schneider U, Becker A (2016) New Global Precipitation Climatology Project monthly analysis product corrects satellite data shifts. GEWEX News 26:7–9

    Google Scholar 

  • Akhter M, Ahanger MA (2015) Impact of climate change on Jhelum River basin. Elixir Civil Eng 84:33746–33752

    Google Scholar 

  • Ali S, Li D, Congbin F, Khan F (2015) Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan. Environ Res Lett 10:14007

    Article  Google Scholar 

  • Almazroui M, Saeed S, Saeed F et al (2020a) Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst Environ 4:297–320. https://doi.org/10.1007/s41748-020-00157-7

    Article  Google Scholar 

  • Almazroui M, Saeed F, Saeed S et al (2020b) Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst Environ 4:455–475. https://doi.org/10.1007/s41748-020-00161-x

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed S et al (2020c) Future changes in climate over the Arabian Peninsula based on CMIP6 multimodel simulations. Earth Syst Environ 4:611–630. https://doi.org/10.1007/s41748-020-00183-5

    Article  Google Scholar 

  • Almazroui M, Ashfaq M, Islam MN et al (2020d) Assessment of CMIP6 performance and projected temperature and precipitation changes over South America. Earth Syst Environ 5:155–183. https://doi.org/10.1007/s41748-021-00233-6

    Article  Google Scholar 

  • Almazroui M, Islam MN, Saeed F et al (2021) Projected changes in temperature and precipitation over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Syst Environ 5:1–24. https://doi.org/10.1007/s41748-021-00199-5

    Article  Google Scholar 

  • Baudouin J-P, Herzog M, Petire CA (2020) Cross-validating precipitation datasets in the Indus River Basin. Hydrol Earth Syst Sci 24:427–450. https://doi.org/10.5194/hess-24-427-2020

    Article  Google Scholar 

  • Burn DH, Hag-Elnur MA (2002) Detection of hydrologic trends and variability. J Hydrol 255:107–122

    Article  Google Scholar 

  • Cannon AJ (2011) Quantile regression neural networks: implementation in R and application to precipitation downscaling. Comput Geosci 37:1277–1284

    Article  Google Scholar 

  • Chen CA, Hsu HH, Liang HC (2021) Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the Western North Pacific and East Asia. Weather Clim Extrem 31:100303

  • Chhetri R, Pandey VP, Talchabhadel R et al (2021) How do CMIP6 models project changes in precipitation extremes over seasons and locations across the mid hills of Nepal? Theor Appl Climatol. https://doi.org/10.1007/s00704-021-03698-7

    Article  Google Scholar 

  • Dahri ZH, Ludwig F, Moors E, Ahmad B, Khan A, Kabat P (2016) An appraisal of precipitation distribution in the high-altitude catchments of the Indus Basin. Sci Total Environ 548–549:289–306. https://doi.org/10.1016/j.scitotenv.2016.01.001

    Article  Google Scholar 

  • Dahri ZH, Ludwig F, Moors E, Ahmad S, Ahmad B, Ahmad S, Riaz M, Kabat P (2021) Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios. Sci Total Environ 768:144467. https://doi.org/10.1016/j.scitotenv.2020.144467

    Article  Google Scholar 

  • Dimri AP, Kumar D, Chopra S, Choudhary A (2019) Indus River Basin: future climate and water budget. Int J Climatol 39:395–406

    Article  Google Scholar 

  • Dix M, Bi D, Dobrohotoff P, Fiedler R, Harman I, Law R, Yang R (2019) CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6 CMIP historical. Earth Syst Grid Fed. https://doi.org/10.22033/ESGF/CMIP6.4271

  • EC Earth (2019a) EC-Earth-Consortium EC-Earth3 model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.4700

  • EC Earth (2019b) EC-Earth-Consortium EC-Earth3-Veg model output prepared for CMIP6 CMIP historical. https://doi.org/10.22033/ESGF/CMIP6.4706

  • Eyring V, Bony S, Meehl GA, Senior Catherine A, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

  • Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. J Geophys Res Atmos 113:1–18. https://doi.org/10.1029/2007JD008470

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2011) Description of four transboundary river basins

  • Fowler HJ, Archer DR (2010) Conflicting signals of climatic change in the Upper Indus Basin. J Clim 19(17):4276–4293

    Article  Google Scholar 

  • Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066. https://doi.org/10.1038/sdata.2015.66

    Article  Google Scholar 

  • Gao XJ, Shi Y, Han ZY, Wang ML, Wu J, Zhang DF, Xu Y, Giorgi F (2017) Performance of RegCM4 over major river basins in China. Adv Atmos Sci 34:441–455

    Article  Google Scholar 

  • Ghajarnia NAL, Arasteh PD (2015) Comparison and evaluation of high-resolution precipitation estimation products in Urmia Basin-Iran. Atmos Res 158–159:50–65. https://doi.org/10.1016/j.atmosres.2015.02.010

    Article  Google Scholar 

  • Gutjahr O, Putrasahan D, Lohmann K, Jungclaus JH, von Storch J-S, Brüggemann N, Haak H, Stössel A (2019) Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci Model Dev 12:3241–3281. https://doi.org/10.5194/gmd-12-3241-2019

    Article  Google Scholar 

  • Hartmann H, Andresky L (2013) Flooding in the Indus River basin: a spatiotemporal analysis of precipitation records. Global Planet Change 10:25–35

  • Hasson S, Böhner J, Chishtie F (2019) Low fidelity of CORDEX and their driving experiments indicates future climatic uncertainty over Himalayan watersheds of Indus basin. Clim Dyn 52:777–798. https://doi.org/10.1007/s00382-018-4160-0

    Article  Google Scholar 

  • Immerzeel WW, Wanders N, Lutz AF, Shea JM, Bierkens MFP (2015) Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol Earth Syst Sci 19:4673–4687. https://doi.org/10.5194/hess-19-4673-2015

    Article  Google Scholar 

  • Immerzeel WW, Lutz AF, Andrade M et al (2020) Importance and vulnerability of the world’s water towers. Nature 577:364–369. https://doi.org/10.1038/s41586-019-1822-y

    Article  Google Scholar 

  • Iqbal Z, Shahid S, Ahmed K et al (2021) Evaluation of CMIP6 GCM in mainland Southeast Asia. Atmos Res 254:105525. https://doi.org/10.1016/j.atmosres.2021.105525

    Article  Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5:487–503

    Article  Google Scholar 

  • Katzenberger A, Schewe J, Pongratz J, Levermann A (2021) Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP-6 models. Earth Syst Dyn Discuss [preprint]. https://doi.org/10.5194/esd-2020-80

  • Khan AJ, Koch M, Tahir AA (2020) Impacts of climate change on the water availability, seasonality and extremes in the Upper Indus Basin (UIB). Sustainability 12:1283. https://doi.org/10.3390/su12041283

    Article  Google Scholar 

  • Kim YH, Min SK, Zhang X, Sillmann J, Sandstad M (2020) Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim Extrem 29:100269

  • Krishnan R, Sabin TP, Madhura RK, Vellore R, Mujumdar M, Sanjay J, Nayak S, Rajeevan M (2019) Non-monsoonal precipitation response over the Western Himalayas to climate change. Clim Dyn. https://doi.org/10.1007/s00382-018-4357-2

    Article  Google Scholar 

  • Latif Y, Yaoming M, Yaseen M (2018) Spatial analysis of precipitation time series over the Upper Indus Basin. Theor Appl Climatol 131:761–775. https://doi.org/10.1007/s00704-016-2007-3

    Article  Google Scholar 

  • Latif Y, Yaoming M, Yaseen M et al (2020) Spatial analysis of temperature time series over the Upper Indus Basin (UIB) Pakistan. Theor Appl Climatol 139:741–758. https://doi.org/10.1007/s00704-019-02993-8

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Kraaijenbrink PDA, Shrestha AB, Bierkens MFP (2016) Climate change impacts on the Upper Indus hydrology: sources, shifts and extremes. PLoS One 11(11):e0165630. https://doi.org/10.1371/journal.pone.0165630

    Article  Google Scholar 

  • Mali SS, Shirsath PB, Islam A (2021) A high-resolution assessment of climate change impact on water footprints of cereal production in India. Sci Rep 11:8715

    Article  Google Scholar 

  • Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R et al (2019) Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J Adv Model Earth Syst 11:998–1038. https://doi.org/10.1029/2018MS001400

    Article  Google Scholar 

  • Minallah S, Ivanov VY (2019) Interannual variability and seasonality of precipitation in the Indus River basin. J Hydrometeorol 20:379–395

    Article  Google Scholar 

  • Mishra V, Bhatia U, Tiwari AD (2020a) Bias corrected climate projections from CMIP6 models for Indian sub-continental river basins. Zenodo. https://doi.org/10.5281/zenodo.3874046

    Article  Google Scholar 

  • Mishra V, Bhatia U, Tiwari AD (2020b) Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Sci Data 7:338. https://doi.org/10.1038/s41597-020-00681-1

    Article  Google Scholar 

  • Müller WA, Jungclaus JH, Mauritsen T, Baehr J, Bittner M, Budich R, Bunzel F, Esch M, Ghosh R, Haak H, Ilyina T, Kleine T, Kornblueh L, Li H, Modali K, Notz D, Pohlmann H, Roeckner E, Stemmler I, Tian F, Marotzke J (2018) A higher-resolution version of the Max Planck Institute Earth System Model (MPIESM1.2-HR). J Adv Model Earth Syst 10:1383–1413. https://doi.org/10.1029/2017MS001217

    Article  Google Scholar 

  • Nepal S, Shrestha AB (2015a) Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra River basins: a review of the literature. Int J Water Resour Dev 32:1–18

  • Nepal S, Shrestha AB (2015b) Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: a review of the literature. Int J Water Resour Dev 31(2):201–218. https://doi.org/10.1080/07900627.2015.1030494

    Article  Google Scholar 

  • Pang H, Hou S, Kaspari S, Mayewski PA (2014) Influence of regional precipitation patterns on stable isotopes in ice cores from the central Himalayas. Cryosphere 8:289–301. https://doi.org/10.5194/tc-8-289-2014

    Article  Google Scholar 

  • Pepin N, Lundquist J (2008) Temperature trends at high elevations: patterns across the globe. Geophys Res Lett 35:1-L14701

    Article  Google Scholar 

  • Pepin N et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430

    Article  Google Scholar 

  • Pomee MS, Hertig E (2021a) Temperature projections over the Indus River Basin of Pakistan using statistical downscaling. Atmosphere 12:195. https://doi.org/10.3390/atmos12020195

  • Pomee MS, Hertig E (2021b) Precipitation projections over the Indus River Basin of Pakistan for the 21st century using a statistical downscaling framework. Int J Climatol. https://doi.org/10.1002/joc.7244

    Article  Google Scholar 

  • Pomee MS, Ashfaq M, Ahmad B, Hertig E (2020) Modeling regional precipitation over the Indus River basin of Pakistan using statistical downscaling. Theor Appl Climatol 142:29–57

    Article  Google Scholar 

  • Pritchard DM, Forsythe N, Fowler HJ, O’Donnell GM, Li X-F (2019) Evaluation of Upper Indus near-surface climate representation by WRF in the High Asia Refined analysis. J Hydrometeorol 20(3):467–487

    Article  Google Scholar 

  • Qamar MU, Azmat M, Claps P (2019) Pitfalls in transboundary Indus Water Treaty: a perspective to prevent unattended threats to the global security. npj Clean Water 2:22. https://doi.org/10.1038/s41545-019-0046-x

  • Rajbhandari R, Shrestha AB, Kulkarni A et al (2015) Projected changes in climate over the Indus River basin using a high-resolution regional climate model (PRECIS). Clim Dyn 44:339–357. https://doi.org/10.1007/s00382-014-2183-8

    Article  Google Scholar 

  • Rao KK, Patwardhan SK, Kulkarni A, Kamala K, Sabade SS, Kumar KK (2014) Projected changes in mean and extreme precipitation indices over India using PRECIS. Glob Planet Change 113:77–90

    Article  Google Scholar 

  • Rao KK, Kulkarni A, Patwardhan S et al (2020) Future changes in precipitation extremes during northeast monsoon over south peninsular India. Theor Appl Climatol 142:205–217. https://doi.org/10.1007/s00704-020-03308-y

    Article  Google Scholar 

  • Ricke K, Drouet L, Caldeira K et al (2018) Country-level social cost of carbon. Nat Clim Change 8:895–900. https://doi.org/10.1038/s41558-018-0282-y

    Article  Google Scholar 

  • Sabin TP et al (2020) Climate change over the Himalayas. In: Krishnan R, Sanjay J, Gnanaseelan C, Mujumdar M, Kulkarni A, Chakraborty S (eds) Assessment of climate change over the Indian Region. Springer, Singapore. https://doi.org/10.1007/978-981-15-4327-211

  • Saddique N, Khaliq A, Bernhofer C (2020) Trends in temperature and precipitation extremes in historical (1961–1990) and projected (2061–2090) periods in a data scarce mountain basin, northern Pakistan. Stoch Environ Res Risk Assess 34:1441–1455. https://doi.org/10.1007/s00477-020-01829-6

    Article  Google Scholar 

  • Saeed F, Hagemann S, Saeed S et al (2013) (2013) Influence of mid-latitude circulation on upper Indus basin precipitation: the explicit role of irrigation. Clim Dyn 40:21–38. https://doi.org/10.1007/s00382-012-1480-3

    Article  Google Scholar 

  • Seland Ø, Bentsen M, Seland Graf L, Olivié D, Toniazzo T, Gjermundsen A, Debernard JB, Gupta AK, He Y, Kirkevåg A, Schwinger J, Tjiputra J, Schancke Aas K, Bethke I, Fan Y, Griesfeller J, Grini A, Guo C, Ilicak M, Hafsahl Karset IH, Landgren O, Liakka J, Onsum Moseid K, Nummelin A, Spensberger C, Tang H, Zhang Z, Heinze C, Iverson T, Schulz M (2020) The Norwegian Earth System Model, NorESM2—evaluation of theCMIP6 DECK and historical simulations. Geosci Model Dev Discuss

  • Shreshta AB, Wagla N, Rajbhandari R (2019) A review on the projected changes in climate over the Indus Basin. In: Khan SI, Adams TE (eds) Indus River Basin: water security and sustainability. Elsevier, pp 145–157. https://doi.org/10.1016/B978-0-12-812782-7.00007-2

  • Soncini A, Bocchiola D, Confortola G, Bianchi A, Rosso R, Mayer C, Lambrecht A, Palazzi E, Smiraglia C, Diolaiuti G (2015) Future hydrological regimes in the upper Indus Basin: a case study from a high-altitude glacierized catchment. J Hydrometeorol 16:306–326

    Article  Google Scholar 

  • Swart NC, Cole JNS, Kharin VV, Lazare M, Scinocca JF, Gillett NP, Anstey J, Arora V, Christian JR, Hanna S, Jiao Y, Lee WG, Majaess F, Saenko OA, Seiler C, Seinen C, Shao A, Sigmond M, Solheim L, von Salzen K, Yang D, Winter B (2019) The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci Model Dev 12:4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

    Article  Google Scholar 

  • Trasher B, Maurer EP, McKellar C, Dufy PB (2012) Technical Note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16:3309–3314

    Article  Google Scholar 

  • Vinca A, Parkinson S, Riahi K et al (2020) Transboundary cooperation a potential route to sustainable development in the Indus basin. Nat Sustain. https://doi.org/10.1038/s41893-020-00654-7

    Article  Google Scholar 

  • Volodin EM, Mortikov EV, Kostrykin SV, Galin VY, Lykossov VN, Gritsun AS, Diansky NA, Gusev AV, Iakovlev NG, Shestakova AA, Emelina SV (2018) Simulation of the modern climate using the INM-CM48 climate model. Russ J Numer Anal Math Model 33(6):367–374. https://doi.org/10.1515/rnam-2018-0032

    Article  Google Scholar 

  • Volodin E, Mortikov E, Gritsun A, Lykossov V, Galin V, Diansky N, Gusev A, Kostrykin S, Iakovlev N, Shestakova A, Emelina S (2019) INM INM-CM5-0 model output prepared for CMIP6 CMIP piControl. Earth Syst Grid Fed. https://. https://doi.org/10.22033/ESGF/CMIP6.5081

    Article  Google Scholar 

  • Wang ZY, Yang S, Ke ZJ, Jiang XW (2014) Large-scale atmospheric and oceanic conditions for extensive and persistent icing events in China. J Appl Meteorol Climatol 53(12):2698–2709. https://doi.org/10.1175/JAMC-D-14-0062.1

    Article  Google Scholar 

  • Wang G, Wang D, Trenberth K et al (2017) The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat Clim Change 7:268–274. https://doi.org/10.1038/nclimate3239

    Article  Google Scholar 

  • Wijngaard RR, Lutz AF, Nepal S, Khanal S, Pradhananga S, Shrestha AB et al (2017) Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins. PLoS One 12(12):e0190224. https://doi.org/10.1371/journal.pone.0190224

    Article  Google Scholar 

  • Wu J, Gao XJ (2020) Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations. Clim Dyn 54(1):1113–1130

    Article  Google Scholar 

  • Wu J, Xu Y, Gao XJ (2017) Projected changes in mean and extreme climates over Hindu Kush Himalayan region by 21 CMIP5 models. Adv Clim Change Res 8(3):176–184. https://doi.org/10.1016/j.accre.2017.03.001

    Article  Google Scholar 

  • Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X (2019) The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600. https://doi.org/10.5194/gmd-12-1573-2019

  • Yaseen M, Ahmad I, Guo J, Azam MI, Latif Y (2020) Spatiotemporal variability in the hydrometeorological time-series over Upper Indus River Basin of Pakistan. Adv Meteorol. https://doi.org/10.1155/2020/5852760

    Article  Google Scholar 

  • Yatagai A, Kamiguchi K, Arakawa O, Hamada A, Yasutomi N, Kitoh A (2012) APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull Am Meteorol Soc 93:1401–1415

    Article  Google Scholar 

  • Yukimoto S, Kawai H, Koshiro T, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yabu S, Yoshimura H, Shindo E, Mizuta R, Obata A, Adachi Y, Ishii M (2019) The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J Meteorol Soc Jpn. https://doi.org/10.2151/jmsj.2019-051

  • Zhang X, Alexander L, Hegerl GC, Jones P, Klein Tank A, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wires Clim Change 2:851–870

    Article  Google Scholar 

  • Zhu Y, Yang S (2020) Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan plateau and its comparison with CMIP5. Adv Clim Change Res 11:239–251. https://doi.org/10.1016/j.accre.2020.08.001

    Article  Google Scholar 

  • Ziehn T, Chamberlain MA, Law RM, Lenton A, Bodman RW, Dix M et al (2020) The Australian earth system model: accessESM1. 5. J South Hemisphere Earth Syst Sci 70:193–214. https://doi.org/10.1071/ES19035

    Article  Google Scholar 

  • Ziese M, Rauthe-Schöch A, Becker A, Finger P, Meyer-Christoffer A, Schneider U (2018) GPCC full data daily version 2018 at 1.0°: daily land-surface precipitation from rain-gauges built on GTS-based and historic data

Download references

Acknowledgements

The authors are grateful to the newly emerged statistically downscaled, bias-corrected, and high-resolution CMIP6 data for Indus Basin and making such data available to carry out the present study (Mishra et al. 2020a). The authors are also grateful to the APHRODITE data providers for sharing their gridded precipitation datasets. Thanks to CPC Global Temperature data provided by the NOAA/OAR/ESRL PSL. We also thank four anonymous reviewers for their constructive comments, which helped to improve the paper considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Koteswara Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koteswara Rao, K., Lakshmi Kumar, T.V., Kulkarni, A. et al. Characteristic changes in climate projections over Indus Basin using the bias corrected CMIP6 simulations. Clim Dyn 58, 3471–3495 (2022). https://doi.org/10.1007/s00382-021-06108-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-06108-w

Keywords

Navigation