Skip to main content

Advertisement

Log in

Importance of ocean initial conditions of late autumn on winter seasonal prediction skill in atmosphere–land–ocean–sea ice coupled forecast system

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In coupled general circulation models, which are widely used to study weather and climate in subseasonal-to-seasonal timescales, forecast errors pertaining to the systematic model biases could occur. These errors can be overcome using initialization processes, but imperfections in these processes often lead to initialization shock. To investigate this issue, this study examines the impact of imbalanced ocean initial conditions (ICs) on seasonal prediction skills via an atmosphere–land–ocean–sea ice-coupled forecasting system. Three types of ensemble experiments were conducted from 1980 to 2016: (1) the noDA experiment with no data assimilation but with dynamic balance among oceanic variables through the ocean component model (MOM3); (2) the DA_IB experiment with data assimilation but with the dynamic imbalance between assimilated and non-assimilated variables in the IC; (3) the DA_B experiment with data assimilation and balanced states among the ICs. The results show that the prediction skill of DA_B is noticeably higher over most of the globe than the others in winter forecasts, particularly in the middle-high latitudes for ocean, sea ice, and atmospheric variables. The inferior performance of DA_IB compared to noDA at high latitudes, including the Arctic, indicates that the initialization shock caused by spatial discontinuity and dynamic imbalance among variables can cause low prediction skill. We present quantitative evidence via numerical experiments to indicate the negative impact of imbalanced oceanic ICs on other component systems, consequently limiting the seasonal prediction skills. The results of this study will contribute to the understanding of the shock effects on sub-seasonal- to seasonal-scale forecasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn JB, Lee JA (2001) Numerical study on the role of sea-ice using ocean gerneral cirulation model. J Kor Soc Ocea 6(4):225–233 (in Korean with English abstract)

    Google Scholar 

  • Ahn JB, Lee J (2016) A new multi-model ensemble method using nonlinear genetic algorithm: an application to boreal winter surface air temperature and precipitation prediction. J Geophys Res 121(16):9263–9277

    Article  Google Scholar 

  • Ahn JB, Yoon YH, Cho EH, Oh HR (2005) A study of global ocean data assimilation using VAF. J Kor Soc Ocea 10(1):69–78

    Google Scholar 

  • Ahn JB, Lee JL, Im ES (2012a) The reproducibility of surface air temperature over South Korea using dynamical downscaling and statistical correction. J Meteorol Soc Jpn 90(4):493–507

    Article  Google Scholar 

  • Ahn JB, Lee SB, Ryoo SB (2012b) Development of 12-month ensemble prediction system using PNU CGCM V11. Atm Kor Meteorol Soc 22(4):455–464

    Google Scholar 

  • Alves O, Balmaseda MA, Anderson D, Stockdale T (2004) Sensitivity of dynamical seasonal forecasts to ocean initial conditions. Q J R Meteorol Soc 130:647–667

    Article  Google Scholar 

  • Balmaseda MA, Anderson D (2009) Impact of initialization strategies and observations on seasonal forecast skill. Geophys Res Lett 36:L01701. https://doi.org/10.1029/2008GL035561

    Article  Google Scholar 

  • Balmaseda MA, Vidard A, Anderson DL (2008) The ECMWF ocean analysis system: ORA-S3. Mon Wea Rev 136(8):3018–3034

    Article  Google Scholar 

  • Balmaseda MA et al (2009) Ocean initialization for seasonal forecasts. Oceanography 22:154–159

    Article  Google Scholar 

  • Balmaseda MA et al (2010) Initialization for seasonal and decadal forecasts. In: Ocean Obs 09, European Space Agency, pp 19–26

  • Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139(674):1132–1161

    Article  Google Scholar 

  • Behringer DW, Ji M, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: the ocean data assimilation system. Mon Wea Rev 126:1013–1021

    Article  Google Scholar 

  • Blackport R, Screen JA, van der Wiel K, Bintanja R (2019) Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat Clim Change 9(9):697–704

    Article  Google Scholar 

  • Blankenship C, Case J, Zavodsky B, Jedlovec G (2014) Assimilation of SMOS retrieved soil moisture into the land information system. In EUMETSAT Conf. 2014, Geneva, Switzerland, EUMETSAT, 8 pp. Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150001376.pdf

  • Branković Č, Palmer TN, Molteni F, Tibaldi S, Cubasch U (1990) Extended-range predictions with ECMWF models: time-lagged ensemble forecasting. Q J R Meteorol Soc 116(494):867–912

    Article  Google Scholar 

  • Browne PA, de Rosnay P, Zuo H, Bennett A, Dawson A (2019) Weakly coupled ocean–atmosphere data assimilation in the ECMWF NWP system. Remote Sens 11(3):234

    Article  Google Scholar 

  • Charney JG (1951) Dynamic forecasting by numerical process. In: Compendium of meteorology. American Meteorological Society, pp 470–482

  • Chen M, Wang W, Kumar A (2010) Prediction of monthly-mean temperature: the roles of atmospheric and land initial conditions and sea surface temperature. J Clim 23(3):717–725

    Article  Google Scholar 

  • Day JJ, Hawkins E, Tietsche S (2014) Will Arctic sea ice thickness initialization improve seasonal forecast skill? Geophys Res Lett 41(21):7566–7575

    Article  Google Scholar 

  • Derome J, Lin H, Brunet G (2005) Seasonal forecasting with a simple general circulation model: Predictive skill in the AO and PNA. J Clim 15:597–609

    Article  Google Scholar 

  • Helgert S, Khodayar S (2020) Improvement of the soil-atmosphere interactions and subsequent heavy precipitation modelling by enhanced initialization using remotely sensed 1 km soil moisture information. Remote Sens Environ 246:111812

    Article  Google Scholar 

  • Huang XY (2000) Variational analysis using spatial filters. Mon Wea Rev 128:2588–2600

    Article  Google Scholar 

  • Hurrel J, Hack JJ, Boville BA, Williamson D, Kiehl JT (1998) The dynamical simulation of the NCAR community climate model version 3 (CCM3). J Clim 11:1207–1236

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007-the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 634, 647, 793–795.

  • Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus a: Dyn Meteorol Oceanogr 64(1):11595

    Article  Google Scholar 

  • Jo S, Ahn JB (2014) Improvement of CGCM prediction for wet season precipitation over Maritime Continent using a bias correction method. Int J Climatol 35(13):3721–3732

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Amer Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kharin VV, Zwiers FW, Gagnon N (2001) Skill of seasonal hindcasts as a function of the ensemble size. Clim Dyn 17:835–843

    Article  Google Scholar 

  • Kiehl JT, Hack JJ, Bonan GB, Boville BA, Briegleb BP, Williamson DL, Rasch PJ (1996) Description of the NCAR Community Climate Model (CCM3). NCAR Tech. Note. NCAR/TN-420+STR, 152 pp

  • Kim HJ, Ahn JB (2015) Improvement in prediction of the arctic oscillation with a realistic ocean initial condition in a CGCM. J Clim 28(22):8951–8967

    Article  Google Scholar 

  • Kim HM, Webster PJ, Curry JA (2012) Seasonal prediction skill of ECMWF System 4 and NCEP CFSv2 retrospective forecast for the Northern Hemisphere Winter. Clim Dyn 39(12):2957–2973

    Article  Google Scholar 

  • Kim BM et al (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun 5(1):1–8

    Google Scholar 

  • King RR, Lea DJ, Martin MJ, Mirouze I, Heming J (2020) The impact of Argo observations in a global weakly coupled ocean–atmosphere data assimilation and short-range prediction system. Q J R Meteorol Soc 146(726):401–414

    Article  Google Scholar 

  • Kolassa J et al (2017) Data assimilation to extract soil moisture information from SMAP observations. Remote Sens 9(11):1179

    Article  Google Scholar 

  • Kug JS, Kang IS, Choi DH (2008) Seasonal climate predictability with tier-one and tier-two prediction system. Clim Dyn 31:403–416

    Article  Google Scholar 

  • Kug JS, Jeong JH, Jang YS, Kim BM, Folland CK, Min SK, Son SW (2015) Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat Geosci 8(10):759–762

    Article  Google Scholar 

  • Lee JL, Ahn JB (2015) Comparative study on the seasonal predictability dependency of boreal winter 2m temperature and sea surface temperature on CGCM initial conditions. Atm Kor Meteorol Soc 25(2):353–366 (in Korean with English abstract)

    Google Scholar 

  • Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–148

    Article  Google Scholar 

  • Min YM, Kryjov VN, Oh SM (2014) Assessment of APCC multimodel ensemble prediction in seasonal climate forecasting: Retrospective (1983–2003) and real-time forecasts (2008–2013). J Geophys Res 119:12132–12150

    Article  Google Scholar 

  • Molteni F, Stockdale T, Balmaseda MA, Balsamo G, Buizza R, Ferranti L, Magnusson L, Mogensen K, Palmer T, Vitart F (2011) The new ECMWF seasonal forecast system (System 4). ECMWF Technical Memorandum 656

  • Mori M, Watanabe M, Shiogama H, Inoue J, Kimoto M (2014) Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat Geosci 7(12):869–873

    Article  Google Scholar 

  • Mulholland DP, Laloyaux P, Haines K, Balmaseda MA (2015) Origin and impact of initialization shocks in coupled atmosphere–ocean forecasts. Mon Wea Rev 143(11):4631–4644

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1998) MOM 3.0 Manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton

  • Palmer T et al (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEME-TER). Bull Amer Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Polkova I, Köhl A, Stammer D (2014) Impact of initialization procedures on the predictive skill of a coupled ocean–atmosphere model. Clim Dyn 42(11–12):3151–3169

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  • Saha S et al (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208

    Article  Google Scholar 

  • Seneviratne SI et al (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4):125–161

    Article  Google Scholar 

  • Shukla RP, Huang B, Marx L, Kinter JL, Shin CS (2018) Predictability and prediction of Indian summer monsoon by CFSv2: implication of the initial shock effect. Clim Dyn 50(1–2):159–178

    Article  Google Scholar 

  • Stammer D, Balmaseda M, Heimbach P, Köhl A, Weaver A (2016) Ocean data assimilation in support of climate applications: status and perspectives. Ann Rev Mar Sci 8:491–518

    Article  Google Scholar 

  • Stensrud DJ, Brooks HE, Dun J, Tracton MS, Rogers E (1999) Using ensembles for short-range forecasting. Mon Wea Rev 127(4):433–446

    Article  Google Scholar 

  • Sun JQ, Ahn JB (2011) A GCM-based forecasting model for the landfall of tropical cyclones in China. Adv Atmos Sci 28:1049–1055

    Article  Google Scholar 

  • Sun JQ, Ahn JB (2015) Dynamical seasonal predictability of the arctic oscillation using a CGCM. Int J Climatol 35(7):1342–1353

    Article  Google Scholar 

  • Titchner HA, Rayner NA (2014) The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1 Sea Ice Concentrations. J Geophys Res 119(6):2864–2889

    Article  Google Scholar 

  • Wang G, Kleeman R, Smith N, Tseitkin F (2002) The BMRC coupled general circulation model ENSO forecast system. Mon Wea Rev 130:975–991

    Article  Google Scholar 

  • Wang C, Zhang L, Lee S-K, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205. https://doi.org/10.1038/nclimate2118

    Article  Google Scholar 

  • Yang F, Pan HL, Krueger SK, Moorthi S, Lord SJ (2006) Evaluation of the NCEP Global Forecast System at the ARM SGP site. Mon Wea Rev 134(12):3668–3690

    Article  Google Scholar 

  • Zhao M, Hendon HH, Alves O, Yin Y (2014) Impact of improved assimilation of temperature and salinity for coupled model seasonal forecasts. Clim Dyn 42(9–10):2565–2583

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant KMI2021-01211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myong-In Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3798 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, MI. & Ahn, JB. Importance of ocean initial conditions of late autumn on winter seasonal prediction skill in atmosphere–land–ocean–sea ice coupled forecast system. Clim Dyn 58, 3427–3440 (2022). https://doi.org/10.1007/s00382-021-06106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-06106-y

Keywords

Navigation