Skip to main content

Advertisement

Log in

Climate change response in wintertime widespread fog conditions over the Indo-Gangetic Plains

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study investigates the influence of climate change on widespread fog conditions over the Indo-Gangetic Plains (IGP) of north India using observations, reanalysis data of atmospheric parameters, coupled model inter-comparison project 6 (CMIP6) projections following four future scenarios based on the shared socio-economic pathways (SSP126, SSP245, SSP370, SSP585), and advanced analysis techniques including machine learning. Two parameters fog fraction and widespread fog days (WFDs) are estimated in this study by functional mapping of fog observations with 8 atmospheric parameters for the period 1981–2018 using three empirical/machine learning approaches. Of these, we note that the deep learning convolutional neural network (CNN) exhibits superiority in performance by showing the mapping closer to the observed, and also offers promising potential for operational purposes to provide fog outlooks for the IGP region. Temporal evolution of fog fractions and WFDs is analyzed from the CMIP6 projections following the aforementioned four future scenarios using CNN for the future periods of the twenty-first century. It is noted that there is a substantial enhancement in the CMIP6 projected fog fractions as high as 57% during the period (2015–2045) relative to the historical (1981–2014) period, while the largest increase of 154% is seen in projected WFDs. It is also seen that the near-future period (2015–2045) witnesses a larger prevalence of WFDs, for all scenarios except SSP126, due to the combined effects of air pollution and greenhouse warming. The post-2046 periods, however, generally indicate signatures of decline in foggy days with widespread conditions relative to historical period in most of the scenarios except SSP370. The severity in fog conditions following the high-emission scenarios SSP370 and SSP585 during this period comes from the relative impact of mitigation strategies of pollutants. The findings provide insights into the possible future changes in widespread fog conditions suitable for the IGP region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Observational Source: India Meteorological Department)

Fig. 3

(Observational Source: India Meteorological Department)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The CMIP6 (https://esgf-data.dkrz.de/search/cmip6-dkrz/) model outputs and ERA5 reanalysis datasets (https://cds.climate.copernicus.eu) used in this study are publicly available online. The observational daily summaries used in the study can be obtained from the India Meteorological Department (IMD; http://dsp.imdpune.gov.in/) on request. The code and datasets generated during and/or analysed in this study are available from the corresponding author on reasonable request.

Code availability

On request.

Abbreviations

AO:

Arctic oscillation

AOD:

Aerosol optical depth

CMIP6:

Coupled Model Inter-comparison Project 6

CNN:

Convolutional neural network

CC:

Correlation coefficient

ECMWF:

European Centre for Medium-Range Weather Forecasts

ERA5:

Fifth-generation ECMWF atmospheric reanalysis

EU:

Eurasian pattern

IGP:

Indo-Gangetic Plains

IMD:

India Meteorological Department

IVS:

Inter-annual variability skill score

LR:

Linear regression

RE:

Relative error

SSP126:

Shared socioeconomic pathway 1(radiative forcing level by 2100 is 2.6 W m2)

SSP245:

Shared socioeconomic pathway 2 (radiative forcing level by 2100 is 4.5 W m2)

SSP370:

Shared socioeconomic pathway 3 (radiative forcing level by 2100 is 7.0 W m2)

SSP585:

Shared socioeconomic pathway 5 (radiative forcing level by 2100 is 8.5 W m2)

STCF:

Short-term climate forcers

SVR:

Support vector regression

TR:

Total Ranking Score

USH:

Zonal wind shear

RH:

Relative humidity

WFD:

Widespread fog days

WMO:

World Meteorological Organization

WS:

Wind speed

References

  • Aditi S, George JP, Iyengar GR (2018) Prediction of fog/visibility over India using NWP model. J Earth Syst Sci. https://doi.org/10.1007/s12040-018-0927-2

    Article  Google Scholar 

  • Ahmed R, Dey S, Mohan M (2015) A study to improve night time fog detection in the Indo-Gangetic Basin using satellite data and to investigate the connection to aerosols. Meteorol Appl 522:689–693. https://doi.org/10.1002/met.1468

    Article  Google Scholar 

  • Allen RJ et al (2021) Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions. Environ Res Lett 16:034010. https://doi.org/10.1088/1748-9326/abe06b/pdf

    Article  Google Scholar 

  • Almazroui M et al (2020) Projections of precipitation and temperature over the south Asian countries in CMIP6. Earth Syst Environ 4:297–320

    Article  Google Scholar 

  • American Meteorological Society (2017) Fog. American Meteorological Society. http://glossary.ametsoc.org/wiki/Fog

  • Awad M, Khanna R (2015) Support vector regression. In: Efficient learning machines. Apress, Berkeley, pp 39–80. https://doi.org/10.1007/978-1-4302-5990-9_4

  • Badarinath KVS et al (2007) Black carbon aerosols and gaseous pollutants in an urban area in North India during a fog period. Atmos Res 85:209–216

    Article  Google Scholar 

  • Badarinath KVS et al (2009) Fog over Indo-Gangetic plains—a study using multi-satellite data and ground observations. IEEE J Select Top Appl Earth Observ Remote Sens 2:185–195

    Article  Google Scholar 

  • Behnke S (2003) Hierarchical neural networks for image interpretation. Lecture Notes in Computer Science book series, LNCS 2766. Springer

  • Bergot T, Koračin D (2021) Observation, simulation and predictability of fog: review and perspectives. Atmosphere. https://doi.org/10.3390/atmos12020235

    Article  Google Scholar 

  • Bergot T et al (2007) Intercomparison of single-column numerical models for the prediction of radiation fog. J Appl Meteorol Climatol 46:504–521

    Article  Google Scholar 

  • Bhowmik SR, Sud AM, Singh C (2004) Forecasting fog over Delhi—an objective method. Mausam 55:313–322

    Article  Google Scholar 

  • Bhushan B et al (2003) On the persistence of fog over northern parts of India. Mausam 54:851–860

    Article  Google Scholar 

  • Bi D et al (2020) Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J South Hemisphere Earth Syst Sci 70:225–251

    Article  Google Scholar 

  • Boorman P, Jenkins G, Murphy J (2010) Future changes in fog frequency from the UKCP09 ensemble of regional climate model projections. Met office Hadley Centre. http://cedadocs.ceda.ac.uk/1338/1/tech_note_on_fog_projections_from_11_member_RCM.pdf

  • Boutle I, Price J, Kudzotsa I, Kokkola H, Romakkaniemi S (2018) Aerosol–fog interaction and the transition to well-mixed radiation fog. Atmos Chem Phys 18(11):7827–7840

    Article  Google Scholar 

  • Calvin K et al (2017) The SSP4: a world of deepening inequality. Glob Environ Change 42:284–296

    Article  Google Scholar 

  • Chattopadhyay A, Hassanzadeh P, Pasha S (2020) Predicting clustered weather patterns: a test case for applications of convolutional neural networks to spatio-temporal climate data. Sci Rep 10:1–13

    Article  Google Scholar 

  • Chaudhuri C (2015) Climate change observed over the Indo-Gangetic Basin. J Earth Sci Clim Change. https://doi.org/10.4172/2157-7617.1000271

    Article  Google Scholar 

  • Chaudhuri S, Das D, Sarkar I, Goswami S (2015) Multilayer perceptron model for nowcasting visibility from surface observations: results and sensitivity to dissimilar station altitudes. Pure Appl Geophys 172:2813–2829

    Article  Google Scholar 

  • Chollet F et al (2015) Keras. https://github.com/fchollet/keras

  • Ciresan DC et al (2011) Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the 22nd international joint conference on artificial intelligence, Barcelona, July 16–22, 2011. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-210

  • Clark P, Harcourt S, Macpherson B et al (2008) Prediction of visibility and aerosol within the operational Met Office Unified Model. Part 1: model formulation and variational assimilation. Q J R Meteorol Soc 134:1801–1816

    Article  Google Scholar 

  • Cohen J et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637

    Article  Google Scholar 

  • Croft PJ, Ward B (2015) Fog. In: North GR, Pyle J, Zhang F (eds) Encyclopedia of atmospheric sciences. Academic Press, New York, pp 180–188

    Chapter  Google Scholar 

  • da Rocha RP, Gonçalves FL, Segalin B (2015) Fog events and local atmospheric features simulated by regional climate model for the metropolitan area of São Paulo, Brazil. Atmos Res 151:176–188

    Article  Google Scholar 

  • Danielson RE, Zhang M, Perrie WA (2020) Possible impacts of climate change on fog in the Arctic and subpolar North Atlantic. Adv Stat Climatol Meteorol Oceanogr 6:31–43

    Article  Google Scholar 

  • Dasgupta P et al (2020) Exploring the long-term changes in the Madden Julian Oscillation using machine learning. Sci Rep 10:1–13

    Article  Google Scholar 

  • Del Genio AD, Yao MS, Kovari W, Lo KK (1996) A prognostic cloud water parameterization for global climate models. J Clim 9(2):270–304

    Article  Google Scholar 

  • DiCapua G, Coumou D (2016) Changes in meandering of the Northern Hemisphere circulation. Environ Res Lett. https://doi.org/10.1088/1748-9326/11/9/094028

    Article  Google Scholar 

  • Dimri AP, Chevuturi A (2016) Western disturbances—an Indian meteorological perspective. Springer, New York

    Book  Google Scholar 

  • Dimri AP et al (2015) Western disturbances: a review. Rev Geophys 53:225–246

    Article  Google Scholar 

  • Dorman CE, Mejia JF, Koračin D, McEvoy DJ (2017) Worldwide marine fog occurrence and climatology. In: Koračin D, Dorman CE (eds) Marine fog challenges and advancements in observations, modeling, and forecasting. Springer, New York, pp 7–152

    Chapter  Google Scholar 

  • Dorman CE, Mejia J, Koračin D, McEvoy DJ (2020) World marine fog analysis based on 58-years of ship observations. Int J Climatol 40:145–168

    Article  Google Scholar 

  • Dutta D, Chaudhuri S (2015) Nowcasting visibility during wintertime fog over the airport of a metropolis of India: decision tree algorithm and artificial neural network approach. Nat Hazards 75:1349–1368

    Article  Google Scholar 

  • Dutta HN, Singh B, Kaushik A (2005) Characterizing atmospheric fog over northern India. In: Proceedings of the 2005 URSI General Assembly, New Delhi

  • Eyring V et al (2016) Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958

    Article  Google Scholar 

  • Fujimori S et al (2017) SSP3: AIM implementation of shared socioeconomic pathways. Glob Environ Change 42:268–283

    Article  Google Scholar 

  • Ganguly D et al (2006) Wintertime aerosol properties during foggy and non-foggy days over urban center Delhi and their implications for shortwave radiative forcing. J Geophys Res 111:D15217. https://doi.org/10.1029/2005JD007029

    Article  Google Scholar 

  • Gautam R, Singh MK (2018) Urban heat Island over Delhi punches holes in widespread fog in the Indo-Gangetic Plains. Geophys Res Lett 45:1114–1121

    Article  Google Scholar 

  • Gautam R, Hsu NC, Kafatos M, Tsay SC (2007) Influences of winter haze on fog/low cloud over the Indo-Gangetic plains. J Geophys Res 112:D05207. https://doi.org/10.1029/2005JD007036

    Article  Google Scholar 

  • Ghude SD et al (2017) Winter fog experiment over the Indo-Gangetic plains of India. Curr Sci 112:767–784

    Article  Google Scholar 

  • Gidden MJ et al (2019) Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci Model Dev 12:1443–1475

    Article  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    Google Scholar 

  • Goswami S et al (2020) Adaptive neuro-fuzzy inference system to estimate the predictability of visibility during fog over Delhi, India. Meteorol Appl. https://doi.org/10.1002/met.1900

    Article  Google Scholar 

  • Gultepe I, Müller MD, Boybeyi Z (2006) A new visibility parameterization for warm-fog applications in numerical weather prediction models. J Appl Meteorol Climatol 45(11):1469–1480

    Article  Google Scholar 

  • Gultepe I et al (2007) Fog research: a review of past achievements and future perspectives. Pure Appl Geophys 164:1121–1159

    Article  Google Scholar 

  • Guo Y et al (2016) Deep learning for visual understanding: a review. Neuro-Computing 187:27–48

    Google Scholar 

  • Habib G et al (2006) Seasonal and inter-annual variability in absorbing aerosols over India derived from TOMS: relationship to regional meteorology and emissions. Atmos Environ 40:1909–1921

    Article  Google Scholar 

  • Haensler A, Cermak J, Hagemann S, Jacob D (2011) Will the southern African west coast fog be affected by future climate change? Results of an initial fog projection using a regional climate model. Erdkunde, pp 261–275

  • Hanesiak JM, Wang XL (2005) Adverse-weather trends in the Canadian Arctic. J Clim 18:3140–3156

    Article  Google Scholar 

  • Hashemi M (2021) Forecasting El Nino and La Nina using spatially and temporally structured predictors and a convolutional neural network. IEEE J Select Top Appl Earth Observ Remote Sens 14:3438–3446

    Article  Google Scholar 

  • Hawkins E, Osborne TM, Ho CK, Challinor AJ (2013) Calibration and bias correction of climate projections for crop modelling: an idealised case study over Europe. Agric for Meteorol 170:19–31

    Article  Google Scholar 

  • Hersbach H et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hingmire D, Vellore R, Krishnan R, Ashtikar NV, Singh BB, Sabade S, Madhura RK (2019) Widespread fog over the Indo-Gangetic Plains and possible links to boreal winter teleconnections. Clim Dyn 52:5477–5506

    Article  Google Scholar 

  • Ho CK et al (2012) Calibration strategies; a source of additional uncertainty in climate change projections. Bull Am Meteorol Soc 93:21–26

    Article  Google Scholar 

  • Hӧhlein K, Kern M, Hewson T, Westermann R (2020) A comparative study of convolutional network models for wind field downscaling. Meteorol Appl. https://doi.org/10.1002/met.1961

    Article  Google Scholar 

  • Houghton HG (1985) Physical meteorology. MIT Press, Cambridge

    Google Scholar 

  • Hsieh WW (2009) Machine learning methods in environmental sciences: neural networks and kernels. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jaswal AK, Narkhede NM, Rachel S (2014) Atmospheric data collection, processing and database management in India Meteorological Department. Proc Indian Natl Sci Acad 80:697–704

    Article  Google Scholar 

  • Jayakumar A et al (2018) An operational fog prediction system for Delhi using the 330 m Unified Model. Atmos Sci Lett 19:e796. https://doi.org/10.1002/asl.796

    Article  Google Scholar 

  • Jenamani RK (2012) Micro-climatic study and trend analysis of fog characteristics at IGI airport New Delhi using hourly data (1981–2005). Mausam 63:203–218

    Article  Google Scholar 

  • Johnstone JA, Dawson TE (2010) Climatic context and ecological implications of summer fog decline in the coast redwood region. Proc Natl Acad Sci 107:4533–4538

    Article  Google Scholar 

  • Kashyapi A et al (2019) Post-monsoon season (October–December 2018). Mausam 70:853–876

    Google Scholar 

  • Kashyapi A et al (2020) Winter season (January–February 2019). Mausam 71:159–174

    Google Scholar 

  • Kaskaoutis DG et al (2014) Synoptic weather conditions and aerosol episodes over Indo-Gangetic Plains, India. Clim Dyn 43:2313–2331

    Article  Google Scholar 

  • Kawai H, Koshiro T, Endo H, Arakawa O (2018) Changes in marine fog over the North Pacific under different climates in CMIP5 multimodel simulations. J Geophys Res Atmos 123:10–911

    Article  Google Scholar 

  • Kim MK et al (2020) Performance evaluation of CMIP5 and CMIP6 models on heatwaves in Korea and associated teleconnection patterns. J Geophy Res. https://doi.org/10.1029/2020JD032583

    Article  Google Scholar 

  • Klemm O, Lin NH (2016) What causes observed fog trends: air quality or climate change? Aerosol Air Qual Res 16:1131–1142

    Article  Google Scholar 

  • Kriegler E et al (2017) Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob Environ Change 42:297–315

    Article  Google Scholar 

  • Krishnan R et al (2019) Non-monsoonal precipitation response over the western Himalayas to climate change. Clim Dyn 52:4091–4109

    Article  Google Scholar 

  • Kulkarni S, Harman G (2011) An elementary introduction to statistical learning theory. Wiley, New York

    Book  Google Scholar 

  • Kulkarni R et al (2019) Loss to aviation economy due to winter fog in New Delhi during the winter of 2011–2016. Atmosphere 10:198. https://doi.org/10.3390/atmos10040198

    Article  Google Scholar 

  • Kutty SG, Dimri AP, Gultepe I (2020) Climatic trends in fog occurrence over the Indo-Gangetic plains. Int J Climatol 40:2048–2061

    Article  Google Scholar 

  • Lakshmanan V et al (2015) Machine learning and data mining approaches to climate science. In: Proceedings of the 4th international workshop on climate informatics. Springer

  • Laskar SI, Bhowmik SK, Sinha V (2013) Some statistical characteristics of occurrence of fog over Patna airport. Mausam 64:345–350

    Article  Google Scholar 

  • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2324

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  • Leung ACW, Gough WA, Butler KA (2020) Changes in fog, ice fog, and low visibility in the Hudson Bay region: impacts on aviation. Atmosphere. https://doi.org/10.3390/atmos11020186

    Article  Google Scholar 

  • Liu Y et al (2016) Application of deep convolutional neural networks for detecting extreme weather in climate datasets. In: Arabnia HR, Tinetti HG (eds) The 2016 WorldComp international conference proceedings, advances in big data analytics, pp 81–88.

  • Lurton T et al (2020) Implementation of the CMIP6 forcing data in the IPSL-CM6A-LR model. J Adv Model Earth Syst. https://doi.org/10.1029/2019MS001940

    Article  Google Scholar 

  • Madhura RK et al (2015) Changes in western disturbances over the Western Himalayas in a warming environment. Clim Dyn 44:1157–1168

    Article  Google Scholar 

  • Meinshausen M et al (2020) The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci Model Dev 13:3571–3605

    Article  Google Scholar 

  • Mohan M, Payra S (2008) Influence of aerosol spectrum and air pollutants on fog formation in urban environment of megacity Delhi, India. Environ Monit Assess 151:265–277

    Article  Google Scholar 

  • Mulcahy JP, Jones C, Sellar A, Johnson B, Boutle IA, Jones A, Andrews T, Rumbold ST, Mollard J, Bellouin N, Johnson CE (2018) Improved aerosol processes and effective radiative forcing in HadGEM3 and UKESM1. J Adv Model Earth Syst 10(11):2786–2805

    Article  Google Scholar 

  • Muraca G, MacIver DC, Urqizo N, Auld H (2001):The climatology of fog in Canada. In: Puxbaum H, Schemenauer RS (eds) 2nd international conference on fog and fog collection, North York, pp 513–516

  • Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th international conference on machine learning, Haifa, 21 June 2010, pp 807–814

  • Navarra A, Simoncini V (2010) A guide to empirical orthogonal functions for climate data analysis. Springer, New York

    Book  Google Scholar 

  • O’Neill BC et al (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482

    Article  Google Scholar 

  • Panagiotopoulos F et al (2005) Observed trends and teleconnections of the Siberian High: a recently declining center of action. J Clim 18:1411–1422

    Article  Google Scholar 

  • Payra S, Mohan M (2014) Multirule based diagnostic approach for the fog predictions using WRF modelling tool. Adv Meteorol. https://doi.org/10.1155/2014/456065

    Article  Google Scholar 

  • Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Pincus R, Forster PM, Stevens B (2016) The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6. Geosci Model Dev 9:3447–3460

    Article  Google Scholar 

  • Pithani P et al (2018) WRF model sensitivity to choice of PBL and microphysics parameterization for an advection fog event at Barkachha, rural site in the Indo-Gangetic basin, India. Theor Appl Climatol 136:1099–1113

    Article  Google Scholar 

  • Pithani P et al (2019) WRF model prediction of a dense fog event occurred during the winter fog experiment (WIFEX). Pure Appl Geophys 176:1827–1846

    Article  Google Scholar 

  • Pithani P et al (2020) Real-time forecast of dense fog events over Delhi: the performance of the WRF model during the WiFEX field campaign. Weather Forecast 35:739–756

    Article  Google Scholar 

  • Rao YP, Srinivasan, V (1969) Discussion of typical synoptic weather situations: winter western disturbances and their associated features. Forecasting Manual, IMD, India, part III, 1.1

  • Rao S et al (2017) Future air pollution the shared socio-economic pathways. Glob Environ Change 42:346–358

    Article  Google Scholar 

  • Reichstein M et al (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566:195–204

    Article  Google Scholar 

  • Riahi K et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168

    Article  Google Scholar 

  • Roach WT (1994) Back to basics: fog: part 1—definitions and basic physics. Weather 49:411

    Article  Google Scholar 

  • Roach WT (1995) Back to basics: fog: part 2—the formation and dissipation of land fog. Weather 50(1):7–11

    Article  Google Scholar 

  • Román-Cascón C et al (2019) Radiation and cloud-base lowering fog events: observational analysis and evaluation of WRF and HARMONIE. Atmos Res 229:190–207

    Article  Google Scholar 

  • Safai PD et al (2019) Two-way relationship between aerosols and fog: a case study at IGI Airport, New Delhi. Aerosol Atmos Chem 19:71–79

    Google Scholar 

  • Saraf AK et al (2011) Winter fog over the Indo-Gangetic Plains: mapping and modelling using remote sensing and GIS. Nat Hazards 58:199–220

    Article  Google Scholar 

  • Sathiyamoorthy V, Arya R, Kishtawal CM (2016) Radiative characteristics of fog over the Indo-Gangetic Plains during northern winter. Clim Dyn 47:1793–1806

    Article  Google Scholar 

  • Sawaisarje GK et al (2014) Study of winter fog over Indian subcontinent: climatological perspectives. Mausam 65:19–28

    Article  Google Scholar 

  • Sharma AR, Kharol SK, Badarinath KVS (2011) Variation in atmospheric aerosol properties over a tropical urban region associated with biomass-burning episodes—a study using satellite data and ground-based measurements. Int J Remote Sens 32:1945–1960

    Article  Google Scholar 

  • Singh C (2011) Unusual long and short spell of fog conditions over Delhi and northern plains of India during December–January, 2009–2010. Mausam 62:41–50

    Article  Google Scholar 

  • Singh A, Dey S (2012a) Influence of aerosol composition on visibility in megacity Delhi. Atmos Environ 62:367–373

    Article  Google Scholar 

  • Singh A, Dey S (2012b) Influence of aerosol composition on visibility in megacity Delhi. Atmos Environ 62:367–373

    Article  Google Scholar 

  • Singh J, Kant S (2006) Radiation fog over north India during winter from 1989 to 2004. Mausam 57:271–290

    Article  Google Scholar 

  • Singh A, Sood H (2017) A review of influence of fog on road crash. Int J Eng Res Technol 6:671–676. https://www.ijert.org/research/a-review-on-influence-of-fog-on-road-crash-IJERTV6IS060313.pdf

  • Singh J, Giri RK, Kant S (2007) Radiation fog viewed by INSAT-1 D and Kalpana Geo Stationary satellite. Mausam 58:251–260

    Article  Google Scholar 

  • Smola AJ (1996) Regression estimation with support vector learning machines. PhD Thesis, Master’s thesis, Technische Universität München

  • Srivatsava SK, Sharma AR, Sachdeva K (2016) Spatial and temporal variability of fog over the Indo-Gangetic Plains, India. Int J Environ Ecol Eng 10:1042–1057

    Google Scholar 

  • Steeneveld GJ, Ronda RJ, Holtslag AAM (2015) The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound Lay Meteorol 154:265–289

    Article  Google Scholar 

  • Syed FS, Körnich H, Tjernström M (2012) On the fog variability over south Asia. Clim Dyn 39:2993–3005

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Tudor M (2010) Impact of horizontal diffusion, radiation and cloudiness parametrization schemes on fog forecasting in valleys. Meteorol Atmos Phys 108:57–70

    Article  Google Scholar 

  • Turnock ST et al (2020) Historical and future changes in air pollutants from CMIP6 models. Atmos Chem Discuss. https://doi.org/10.5194/acp-2019-1211

  • Van der Velde IR, Steeneveld GJ, Schreur BW, Holtslag AA (2010) Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon Weather Rev 138(11):4237–4253

    Article  Google Scholar 

  • van Vuuren DP et al (2017) Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob Environ Change 42:237–250

    Article  Google Scholar 

  • Vapnik VN (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  • Vautard R, Yiou P, van Oldenborgh GJ (2009) Decline of fog, mist and haze in Europe over the past 30 years. Nat Geosci 2:115–119

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  • Wang N, Zhang Y (2015) Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China. Clim Dyn 44:1017–1028

    Article  Google Scholar 

  • Weyn JA, Durran DR, Caruana R (2020) Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. Preprints available from https://arxiv.org/pdf/2003.11927.pdf

  • Wilks D (2019) Statistical methods in atmospheric sciences, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • World Meteorological Organization (1992) International Meteorological Vocabulary, WMO No. 182, 2nd edn. Secretariat of the World Meteorological Organization, Geneva

  • World Meteorological Organization (2011) Guide to climatological practices. WMO-No. 100, 3rd edn. World Meteorological Organization, Geneva. https://library.wmo.int/pmb_ged/wmo_100_en.pdf

  • Yang W et al (2019) Deep learning for single image super-resolution: a brief review. IEEE Trans Multimed 21:3106–3121

    Article  Google Scholar 

  • Zhou B, Du J, Gultepe I, Dimego G (2012) Forecast of low visibility and fog from NCEP: current status and efforts. Pure Appl Geophys 169:895–909

    Article  Google Scholar 

Download references

Acknowledgements

Authors of this study acknowledge Director, Indian Institute of Tropical Meteorology (IITM) for encouraging this work. We acknowledge the India Meteorological Department (IMD), Pune, for providing the daily data summaries used in this study. The authors acknowledge the World Climate Research Programme for making the CMIP6 datasets available for research, and thank the Earth System Grid Federation (ESGF) for archiving and providing access to the CMIP6 datasets. ERA5 data obtained from the ECMWF server is acknowledged. Utilization of high performance computing facility at IITM, and open source packages Keras and Scikit-learn Python library for carrying out the analyses is acknowledged. Discussions with Mr. Panini Dasgupta, IITM, are acknowledged. We thank the anonymous reviewers for providing valuable comments. This work is carried out as part of the first author’s doctoral dissertation.

Funding

Indian Institute of Tropical Meteorology (IITM), Pune is an autonomous institute, fully funded by the Ministry of Earth Sciences (MoES), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Vellore.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4441 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hingmire, D., Vellore, R., Krishnan, R. et al. Climate change response in wintertime widespread fog conditions over the Indo-Gangetic Plains. Clim Dyn 58, 2745–2766 (2022). https://doi.org/10.1007/s00382-021-06030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-06030-1

Navigation