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Abstract
This study investigates the impact of sea ice and snow changes on surface air temperature (SAT) trends on the multidec-
adal time scale over the mid- and high-latitudes of Eurasia during boreal autumn, winter and spring based on a 30-member 
ensemble simulations of the Community Earth System Model (CESM). A dynamical adjustment method is used to remove 
the internal component of circulation-induced SAT trends. The leading mode of dynamically adjusted SAT trends is featured 
by same-sign anomalies extending from northern Europe to central Siberia and to the Russian Far East, respectively, during 
boreal spring and autumn, and confined to western Siberia during winter. The internally generated component of sea ice 
concentration trends over the Barents-Kara Seas contributes to the differences in the thermodynamic component of internal 
SAT trends across the ensemble over adjacent northern Siberia during all the three seasons. The sea ice effect is largest in 
autumn and smallest in winter. Eurasian snow changes contribute to the spread in dynamically adjusted SAT trends as well 
around the periphery of snow covered region by modulating surface heat flux changes. The snow effect is identified over 
northeast Europe-western Siberia in autumn, north of the Caspian Sea in winter, and over eastern Europe-northern Sibe-
ria in spring. The effects of sea ice and snow on the SAT trends are realized mainly by modulating upward shortwave and 
longwave radiation fluxes.
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1  Introduction

Changes in surface air temperature (SAT) exert important 
influences on agriculture, ecosystem, and human lives (Ben-
iston 2004; Feudale and Shukla 2011). Global coupled cli-
mate model simulations provide estimates of the climatic 
responses to anthropogenic and natural radiative forcings 

(IPCC 2013). However, there are large uncertainties in the 
simulated SAT changes on regional spatial scales over sev-
eral decade and longer periods due to the superposition of 
the external forcing-induced change and internal climate 
variability (Dai and Bloecker 2019; Deser et al. 2012a, b; 
Thompson et al. 2015).

Internal climate variability stems from processes within 
the atmosphere, ocean, land, and cryosphere, and coupled 
interactions among them (Deser et al. 2014). In most ter-
restrial regions, a large proportion of internal variability in 
surface climate change arises from variations in atmospheric 
circulation (Deser et al. 2014, 2017a, b; Hu et al. 2019; 
Thompson et al. 2015). Deser et al. (2016) estimated that 
atmospheric circulation variability accounts for approxi-
mately one-third of the observed winter SAT trends during 
1963–2012 over North America. Chen et al. (2019) showed 
that the projected spring SAT trends during 2006–2060 over 
the mid- and high-latitudes of Eurasia are subject to high 
uncertainty mainly arising from intrinsic atmospheric cir-
culation variability.
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One of the most robust ways to estimate the role of inter-
nal variability in simulated climate trends is to employ a 
large ensemble of simulations with a specific climate model 
in which each ensemble member is subject to the same exter-
nal forcing, but is initiated at a slightly different atmospheric 
condition (Kay et al. 2015; Wettstein and Deser 2014). Since 
the forcing and model are identical in all ensemble members, 
the spread in climate trends among the ensemble members 
derives entirely from the internal variability in the model 
(Kay et al. 2015; Thompson et al. 2015).

Several studies have found that in addition to the internal 
atmospheric variability, thermodynamic processes may also 
contribute to uncertainties in the SAT trends (Chen et al. 
2019; Deser et al. 2016; Ding and Wu 2020). Changes in the 
Arctic sea ice and Eurasian snow have been shown to exert 
important influences on Eurasian temperature variability 
(Chen et al. 2016; Chen and Wu 2018; Gao et al. 2014; Wu 
et al. 2014; Wu and Chen 2016; Ye et al. 2015). Ding and 
Wu (2020) suggested that, after the internal component of 
circulation-induced SAT trends has been removed, anoma-
lies in sea ice and snow may contribute to the diversity of 
residual boreal spring SAT trends over the mid- and high-
latitudes of Eurasia among the 30 ensemble members of 
the Community Earth System Model (CESM). However, 
Ding and Wu (2020) did not distinguish the cause and effect 
though there is a good correspondence between spring SAT 
trends and snow anomalies. While snow anomalies may 
induce SAT changes, changes in SAT may provide a favora-
ble thermal condition for the formation of snow anomalies. 
In addition, the contribution of changes in sea ice and snow 
to SAT anomalies in other seasons has not been addressed. 
Given the fact that the sea ice and snow coverage displays 
large seasonal changes (Stroeve et al. 2012; Wu and Chen 
2016), an issue worthy of investigation is whether the contri-
bution of sea ice and snow to the internal component of ther-
modynamically induced SAT trends varies with the season.

This work compares the contributions of sea ice and 
snow to the uncertainty in multi-decadal trends of SAT 
during boreal autumn, winter and spring over the mid- and 
high-latitudes of Eurasia based on a large initial-condition 
ensemble simulation. Since the snow effect in boreal sum-
mer is negligible over most parts of Eurasia, the present 
analysis excludes summer. The present analysis is conducted 
for CESM simulations for comparison with Ding and Wu 
(2020) with an extension of the time period of analysis. The 
remainder of the paper is structured as follows. Section 2 
describes the observational datasets, model simulations, 
and methods. In Sect. 3, the dynamical adjustment method 
is applied to remove the atmospheric circulation-induced 
internal variability from model simulations and observations 
and analyze the leading patterns of residual SAT trends in 
the three seasons. Section 4 investigates and compares the 
roles of sea ice and snow in the formation of residual SAT 

trends in the three seasons. Section 5 provides the conclu-
sions and discussions.

2 � Data and methods

2.1 � Data

The observational monthly mean SAT data were derived 
from the Climatic Research Unit of the University of East 
Anglia (CRUTS), version 4.04 (Harris et al. 2020), avail-
able from 1901 to 2019, on a regular grid of 0.5° latitude 
by 0.5° longitude. Other SAT datasets, such as the NOAA 
Merged Land Ocean Global Surface Temperature Analysis 
(NOAAGlobalTemp), version 5 (Smith et al. 2008; Vose 
et al. 2012) and the Climatic Research Unit Temperature, 
version 4 (CRUTEM4; Osborn and Jones 2014), give similar 
results. For conciseness, only results obtained with CRUTS 
data are presented in this study. Monthly mean sea level 
pressure (SLP) data used in this study are derived from the 
Twentieth Century Reanalysis, version 3 (20CR; Compo 
et al. 2011) on a 1° latitude × 1° longitude grid from 1901 to 
2015. The SLP data are extended to December 2019 by add-
ing monthly SLP anomalies during 2016–2019 from ERA5 
(Hersbach et al. 2020) of the European Centre for Medium-
Range Weather Forecasts (ECMWF) to the 1901–2015 SLP 
climatology of 20CR (Lehner et al. 2017). Monthly mean 
sea ice concentration data are derived from the Hadley Cen-
tre Sea Ice and Sea Surface Temperature dataset (HadISST), 
which are available from 1870 to the present with a horizon-
tal resolution of 1° × 1° (Rayner et al. 2003). The snow cover 
data are constructed from the Northern Hemisphere 25 km 
Equal-Area Scalable Earth Grid (EASE-Grid) 2.0 weekly 
Snow Cover and Sea Ice Extent, version 4 (Brodzik and 
Armstrong 2013). These EASE-Grid snow cover data are 
available from October 1966 to the present and are obtained 
from the National Snow and Ice Data Center (NSIDC). The 
raw weekly mean snow cover data have been converted to 
monthly mean on a regular 1° × 1° grid. In the conversion, 
the weekly snow cover value is first assigned to each day and 
then the monthly mean value is obtained as average of the 
daily snow cover values in the specific month. Monthly mean 
snow water equivalent data are obtained from the ERA5 at 
0.25° horizontal resolution for the time period from 1979 
to the present. In addition, a parallel analysis is performed 
to test the robustness of the results using snow cover and 
snow water equivalent datasets of the NOAA Snow Chart 
Climate Data Record (CDR; Estilow et al. 2015) and the 
NASA Modern-Era Retrospective Analysis for Research and 
Applications, version 2 (MERRA-2; Gelaro et al. 2017).

The primary model output employed in this analysis 
is a 30-member ensemble of the Community Earth Sys-
tem Model, version 1 (CESM1; Hurrell et al. 2013) at a 
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horizontal resolution of approximately 1° latitude and lon-
gitude, hereafter referred to as the CESM1 Large Ensemble 
(CESM-LE). Each of the 30 members of the CESM is forced 
by the same external forcing: the CMIP5-based (Taylor et al. 
2012) historical radiative forcing for 1920–2005 and repre-
sentative concentration pathway 8.5 (RCP8.5) radiative forc-
ing for 2006–2100. The first ensemble member was initial-
ized from a randomly selected date in a preindustrial (1850) 
control run of the CESM, and was then integrated forward 
from 1850 to 2100. Ensemble members 2–30 were all started 
on 1 January 1920 with slightly different initial conditions 
taken from ensemble member 1. A random round-off level 
difference was applied to the air temperature field for each 
ensemble member. The detail description of the simulations 
is given in Kay et al. (2015). An 1800-year preindustrial 
control integration of the CESM (PiCTL; Kay et al. 2015) 
is also used for the dynamical adjustment procedure. The 
model variables used in the present analysis include monthly 
mean SAT, SLP, sea ice concentration (SIC), snow cover 
fraction (SCF), snow water equivalent (SWE), shortwave 
radiation (SWR), longwave radiation (LWR), latent heat flux 
(LHF) and sensible heat flux (SHF).

The present analysis focuses on the period 1979–2019 
in each observational dataset and model simulation. This 
time period was chosen because satellite-based observations 
of snow and sea ice became available since 1979. Boreal 
autumn, winter and spring refer to the average of Septem-
ber–November (SON), December–February (DJF), and 
March–May (MAM), respectively.

2.2 � Methods

A dynamical adjustment method based on constructed cir-
culation analogs proposed by Deser et al. (2016) is used 
to remove the circulation-induced component of changes. 
Dynamical adjustment technique has been employed to 
assess the contribution of atmospheric circulation variabil-
ity to observed SAT trends over the Northern Hemisphere 
(Deser et al. 2016; Hu et al. 2019; Smoliak et al. 2015; Wal-
lace et al. 2012), land–atmosphere interaction in the cen-
tral United States (Merrifield et al. 2017), and attribution 
of the observed hydroclimate trends from the 1980s to the 
2010s over the United States Southwest (Lehner et al. 2018). 
Constructed circulation analogs (CCAs) are employed to 
dynamically adjust monthly SAT in the CESM-LE and 
observations. The method is summarized briefly below and 
the reader is referred to Deser et al. (2016) for a detailed 
description of the method. Note that there is uncertainty in 
searching the analogues due to limited samples (Van Den 
Dool 1994).

For each month and year in the CESM-LE members, a 
set of closest SLP analogs are selected from the PiCTL in 
terms of Euclidean distance from the target SLP field over 

the domain of 20°–90° N and 60° W–180° E. Then, the 
analogs are randomly subsampled and their optimal linear 
combinations are computed to reconstruct the target SLP 
field. The same set of optimal linear weights is applied to the 
corresponding SAT fields to derive the dynamically induced 
component of SAT anomalies. This random subsampling 
and optimal reconstruction procedure is repeated 50 times. 
Finally, the 50 reconstructed SLP patterns and associated 
SAT anomalies are averaged to provide a “best estimate” of 
the dynamical-induced component of SAT.

The forced dynamical component is obtained by averag-
ing the dynamical components in all CESM-LE members. 
The internal dynamical component in each ensemble mem-
ber is obtained by subtracting the forced dynamical compo-
nent from the total dynamical component. Thermodynamic 
components are obtained as residuals. Removing the inter-
nal component of dynamical-induced SAT trends from the 
total trends leaves the total forced component and internal 
thermodynamic component, referred to here as dynamically 
adjusted SAT trends.

In observations, the SLP pattern is constructed from 
the Twentieth Century Reanalysis (20CR) over the period 
1901–2019 (excluding the year in question). Prior to com-
puting the dynamically induced component, we apply a 
high-pass filter to the SAT data (removing a quadratic trend) 
to avoid potential influences from anthropogenically forced 
SAT following Deser et al. (2016). The internal dynamical 
component of observed SAT anomalies is obtained by con-
ducting a separate dynamical adjustment procedure on the 
internal component of the observed SLP anomalies, obtained 
by removing a quadratic trend. Removing the CESM-LE 
ensemble-mean SLP anomalies from the observed total SLP 
anomalies as a way of detrending yields slightly different 
results (figures not shown).

In this study, the statistical significance of trends is evalu-
ated based on a two-sided Student’s t test. Regression analy-
sis is used in the present study. The anomalies obtained by 
regression are estimated using the two-sided Student’s t test 
as well.

3 � Dominant modes of dynamically adjusted 
SAT trends

The observed SAT trends during 1979–2019 display obvi-
ous differences among the three seasons. The SON SAT 
trends are large positive over Eastern Europe and central 
Siberia-Russian Far East (Fig. 1a). The former region 
is within the high pressure system and the latter region 
lies between low and high pressure systems. The SON 
SAT trends are relatively small over western Siberia. The 
DJF SAT trends are positive over western Europe and the 
coastal regions of central Siberia, but are large negative 
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over central Eurasia (Fig. 1b). A region of large positive 
DJF SLP trends extends from the Arctic to Eurasia with 
the maximum magnitude of approximately 6 hPa/41 years 
(Fig. 1b). The MAM SAT trends are large positive almost 
everywhere with the largest warming (> 4 °C/41 years) 
over northern Siberia (Fig. 1c). The corresponding SLP 
trends feature a large cyclone over the Eurasian continent.

Removing the effects of internal atmospheric circula-
tion variability through CCAs considerably reduces the 
areas of large warming and cooling and nearly eliminates 
the SLP trends (Fig.  1d–f). In addition, the dynami-
cal adjustment improves the resemblance between the 
observed SAT trend patterns and those of externally forced 
component of the simulated SAT trends, in particular, in 
MAM (Fig. 1f versus Fig. 1i). The externally forced SAT 
trends, which are derived as the CESM ensemble-mean 
trends, tend to show large values (> 1.5 °C/41 years) over 
the coastal region of the Arctic Ocean and over the region 
around and to the north of the Caspian Sea (Fig. 1g–i). 
This warming pattern may be associated with reductions in 
sea ice and snow, which will be discussed later in Sect. 4. 
The ensemble-mean SLP trends are nearly zero throughout 
the Eurasia (Fig. 1g–i).

The simulated SAT trends during 1979–2019 vary widely 
in pattern and magnitude across the ensemble in all the three 
seasons (figures not shown). Dynamical adjustment greatly 
reduces the diversity of SAT trends within the CESM-LE 
(figures not shown). The remaining spread among the resid-
ual SAT trends is largely attributable to internal thermody-
namic process as the CCAs method removes more than 90% 
of the variance of internal SLP trends across the individual 
ensemble members in all the three seasons (Fig. S1). The 
method error is small given the length of the control run, the 
repeated random subsampling and averaging of the optimal 
linear combination of analogs (Deser et al. 2016).

The spatial distribution of standard deviation of dynami-
cally adjusted SAT trends in the three seasons is examined 
to understand what thermodynamic processes may contrib-
ute to the remaining spread among the residual SAT trends 
within the CESM-LE. Large variances in the dynamically 
adjusted SAT trends are observed over the coastal regions of 
the Arctic Ocean in all the three seasons (Fig. 2). In addition, 
the region north of the Caspian Sea displays large variance 
in winter and spring (Fig. 2b, c).

The spatial distribution of dynamically adjusted SAT 
trends is further illustrated by the leading patterns of residual 

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Fig. 1   Observed total (a–c) and dynamically adjusted (d–f) SAT 
(color shading; °C/41 years) and SLP (contours; hPa/41 years) trends 
during 1979–2019 for boreal autumn (a, d), winter (b, e) and spring 

(c, f). CESM-LE ensemble-mean SAT and SLP trends for autumn (g), 
winter (h) and spring (i). The SLP interval is 1  hPa/41  years, with 
negative values dashed
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SAT trends. An empirical orthogonal function (EOF) analy-
sis has been performed on the set of 30 dynamically adjusted 
SAT trend maps over the Eurasian continent (40°–70° N, 
0°–140° E) in the three seasons. Note that the EOF analy-
sis is applied in the ensemble domain rather than the tradi-
tional time domain and the ensemble-mean residual trends 
are removed before the EOF analysis (Deser et al. 2014; Hu 
et al. 2019).

The first EOF mode explains 29.3%, 32.3% and 32.5% 
of the total variance in autumn, winter and spring SAT 
trends across the ensemble, respectively. The EOF1 mode 
of SAT trends during autumn and spring is characterized 
by same-sign anomalies extending from northern Europe 
to the Russian Far East and to central Siberia, respectively 

(Fig. 3a, c), while same-sign anomalies are confined to 
western Siberia during winter (Fig. 3b). The second EOF 
mode explains 13.6%, 13.2% and 14.1% of the total variance 
during autumn, winter and spring, respectively. The spa-
tial distribution of EOF2 mode in the three seasons is very 
similar and features a southwest-northeast dipole pattern 
(Fig. 4a–c). In the positive EOF2 phase, positive SAT trend 
anomalies are located in northern Siberia and negative SAT 
trend anomalies lie around and north of the Caspian Sea. 
The corresponding principal components (PCs) exhibit clear 
member-to-member variations (Figs. 3d–f, 4d–f). These 
two modes are well separated from each other and from the 
other modes based on the criterion of North et al. (1982). An 
analysis of SAT trends is conducted corresponding to both 
EOF1 and EOF2 modes, and the signal associated with the 
EOF2 mode is weaker and covers a smaller region. Thus, 
only results corresponding to the EOF1 mode are presented 
in the following.

4 � Roles of sea ice and snow

This section investigates the contributions of sea ice and 
snow to the residual SAT trends. Widespread decline in sea 
ice extent (Stroeve and Notz 2018) and snow cover (Déry 
and Brown 2007) has occurred during the recent decades. 
Previous studies have demonstrated that sea ice plays an 
important role in the climate variability via the sea ice-
albedo feedback and through modulating exchange of energy 
between the ocean and atmosphere (Gao et al. 2014; Honda 
et al. 2009; Liu et al. 2012; Wu and Wang 2020). Changes in 
snow may exert significant influences on regional and global 
climate via the snow-albedo feedback and snow-hydrological 
effect (Barnett et al. 1989; Thackeray et al. 2019; Yasunari 
et al. 1991). For the sea ice-albedo or snow-albedo effect, 
the change in sea ice or snow cover influences surface tem-
perature through reflection of solar radiation back to the 
atmosphere due to high albedo. The snow-hydrological 
effect involves the demanding of heat for snow melting and 
moistening soil when it melts. Previous studies have demon-
strated the impacts of the Arctic sea ice and Eurasian snow 
on the Eurasian temperature variability (Gao et al. 2014; 
Petoukhov and Semenov 2010; Wu et al. 2014; Ye et al. 
2015). The effects of sea ice and snow tend to be large along 
the periphery of sea ice and snow covered region where the 
surface albedo change is large (Wu and Chen 2016; Wu and 
Wang 2020).

Here, climatological features of the Arctic sea ice and 
Eurasian snow cover are examined to provide a background 
for understanding the relationship between sea ice and snow 
changes and SAT anomalies. Figures 5a–c and 6a–c pre-
sent climatological mean (contours) and standard deviation 
(shading) of SIC and SCF, respectively, in the three seasons 

(a)

(b)

(c)

Fig. 2   Standard deviation of dynamically adjusted SAT trends 
(°C/41  years) during 1979–2019 across the CESM-LE for boreal 
autumn (a), winter (b) and spring (c)
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based on the CESM-LE ensemble mean. Arctic sea ice and 
Eurasian snow display substantial seasonal variations in 
spatial extent. The sea ice periphery (areas with an aver-
age SIC < 70%) shows a large southward advance from SON 
to DJF (Fig. 5a, b). The largest standard deviation of SIC 
occurs along the sea ice periphery (Fig. 5a–c). The snow 
covered region moves southwestward from SON to DJF 
and retreats northeastward from DJF to MAM (Fig. 6a–c). 
The region of large standard deviation of SCF displays a 
seasonal move following the southern boundary of snow 
covered region (Fig. 6a–c). The climatological mean and 

standard deviation of observed SIC (Fig. 5d–f) and SCF 
(Fig. 6d–f) display similar seasonal move though the loca-
tion of the periphery displays some differences between the 
model simulations and observations.

In the following, the SIC trend anomalies correspond-
ing to the leading EOF mode of dynamically adjusted SAT 
trends and associated surface heat flux anomalies are inves-
tigated to illustrate the effect of sea ice. Then, the SCF and 
SWE trend anomalies corresponding to the leading EOF 
mode of dynamically adjusted SAT trends are analyzed. 
After that, an analysis of surface heat flux anomalies is 

(a) (d)

(b) (e)

(c) (f)

Fig. 3   Regressions of dynamically adjusted SAT trends ( °C/41 years) 
across the ensemble members upon the standardized PC1 correspond-
ing to EOF1 of the residual SAT trends for boreal autumn (a), win-

ter (b) and spring (c). d–f Are the corresponding standardized PC1. 
Stippling denotes SAT trends significant at the 95% confidence level 
based on the Student’s t test
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conducted to explore whether snow anomalies contribute to 
the SAT trends. Note that the dynamical adjustment removes 
the signals in SIC, SCF and SWE trends that are related 
to Eurasian SAT trends through atmospheric circulation 
changes.

Notable SIC trend anomalies are detected in the Bar-
ents-Kara Sea in the three seasons with differences in the 
location and magnitude of anomalies. Figure 7 shows the 
SIC trend anomalies associated with EOF1 of the residual 
SAT trends obtained by regression upon the PC1. Signifi-
cant negative SIC anomalies are observed over the Bar-
ents-Kara Seas during autumn and spring (Fig. 7a, c), con-
sistent with significant positive SAT trends in the above 
regions (Fig. 7g, i). The EOF1-related SIC trends during 
winter also show a decrease over the Barents-Kara Seas 
but less significant (Fig. 7b), corresponding to less sig-
nificant SAT trends with smaller areal coverage (Fig. 7h). 
The CCAs have been applied to dynamically adjust the 

simulated SIC anomalies in the same way as for SAT. The 
spatial distribution of the thermodynamic component of 
SIC trends (Fig. 7d–f) resembles closely that of total SIC 
trends in all the three seasons (Fig. 7a–c). Note that the 
large signal of SIC trend anomalies tends to occur in the 
region of climatological mean sea ice periphery and large 
standard deviation in the model (Fig. 5a–c). The seasonal 
change in the location of large SIC trend anomalies also 
follows that of climatological mean and large standard 
deviation of SIC.

The forced dynamical component of SIC trends during 
autumn, winter and spring from the CESM-LE has nega-
tive values over the Barents-Kara Seas, but much smaller 
compared to the total forced SIC trends (Fig. S2). However, 
the dynamical component may contribute a substantial part 
to the total SIC trends in individual realizations during all 
three seasons (figures not shown). The observed SIC trends 
are negative over most of the Barents-Kara Seas with small 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4   The same as Fig. 3 except for EOF2
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contribution from dynamics in boreal autumn, winter and 
spring (Fig. S3).

Surface heat flux trend anomalies are analyzed corre-
sponding to EOF1 of the residual SAT trends to illustrate 
the effect of sea ice on the SAT trends. As noted above, 
the sea ice effects include modulation of surface albedo 
and heat conduction. The former affects upward SWR and 
LWR. The latter affects SHF and LHF. Less sea ice may 
lead to less upward SWR so that more SWR is absorbed 
by ocean surface, which raises ocean surface tempera-
ture. In turn, this results in more upward LWR, SHF and 

LHF, which contributes to SAT increase. Figure 8 displays 
anomalies of upward SWR, upward LWR, SHF and LHF 
obtained by regression upon the normalized PC1 of resid-
ual SAT trends. In all the three seasons, upward SWR is 
reduced while upward LWR, SHF and LHF increase in the 
Barents-Kara Sea. This confirms the effect of sea ice trends. 
In comparison, negative upward SWR anomalies are largest 
in spring and smaller in winter and located at higher lati-
tudes in autumn. The seasonal difference is partly related to 
the latitudinal and seasonal change of incoming SWR and 
the change in the location of sea ice reduction region. The 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5   The CESM-LE ensemble-mean (a–c) and observed (d–f) climatology (contours) and standard deviation (shading) of year-to-year varia-
tion of SIC for boreal autumn (a, d), winter (b, e) and spring (c, f) based on the period 1979–2019. Unit is %
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smallest upward SWR anomalies in winter are attributed to 
small incoming SWR and small sea ice trends. The posi-
tive upward LWR anomalies are larger and cover a broader 
area in autumn and spring and are smallest with a small 
areal extent in winter due to the small sea ice trends. The 
positive SHF and LHF anomalies are located at highest lati-
tudes in autumn, which is due to the effect of surface wind 
speed increase from coastal region to open ocean (Figure 
not shown).

SAT anomalies over the high latitudes of Eurasia are 
further examined based on regression upon the SIC trends 
averaged over the Barents-Kara Seas (70°–80° N, 30°–80° 
E). Pronounced negative SAT trends are observed over the 
northern coast of Eurasia in all the three seasons (Fig. 9a–c). 
In comparison, SAT anomalies are more confined to the 
coastline during winter than during autumn and spring. 
The above relationship is further illustrated by Fig. 9d–f 

that display scatter plots of the internal thermodynamic 
component of SAT trends averaged over northern Siberia 
(65°-80°N, 30°-120°E) against the internally-generated SIC 
trends averaged over the Barents-Kara Seas (70°-80°N, 30°-
80°E). It is clear that the SAT trends over northern Siberia 
have a significant negative relation with the SIC trends over 
the Barents-Kara Seas across the 30 ensemble members dur-
ing autumn, winter and spring (Fig. 9d–f). The correlation 
coefficient in autumn, winter and spring is − 0.74, − 0.40 
and − 0.59, respectively, all of which are significant at the 
99% confidence level according to Student’s t test. The 
results indicate that the internally-generated SIC variability 
over the Barents-Kara Seas contributes partly to the uncer-
tainties of SAT trends over northern Siberia.

Obvious signals are detected in snow variations over 
the mid- and high-latitudes of Eurasia in the three sea-
sons with notable seasonal variation in the location and 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6   The same as Fig. 5 except for SCF (%)
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magnitude. Figure 10 displays SCF anomalies associated 
with EOF1 of the dynamically adjusted SAT trends in the 
three seasons obtained by regression on the PC1. Negative 
SCF anomalies are located at higher latitudes and have a 
larger areal coverage but with a smaller magnitude dur-
ing autumn (Fig. 10a), confined to lower latitudes with 
a larger magnitude during winter (Fig. 10b), and located 
over Eastern Europe and western Siberia during spring 
(Fig. 10c). The spatial distribution of the thermodynamic 
component of SCF trends (Fig. 10d–f) obtained using the 
CCAs resembles closely that of total SCF trends in all 
the three seasons (Fig. 10a–c). The distribution of SWE 
trend anomalies (Fig. S4) bears resemblance to that of 
SCF anomalies (Fig. 10). In comparison, negative SWE 
anomalies cover smaller areas than negative SCF anoma-
lies. Significant negative SCF anomalies over Eastern 
Europe and west Siberia (Fig. 10a–c) correspond to posi-
tive SAT trends (Fig. 3a–c). The large signal of SCF trend 
anomalies tends to coincide with large standard deviation 
of SCF located at the southern boundary of climatological 
mean snow covered region in the model (Fig. 6a–c). The 

seasonal change in the location and magnitude of large 
SCF trend anomalies also follows that of large standard 
deviation of SCF.

The forced dynamical component of simulated SCF 
trends is small compared to the CESM-LE ensemble-mean 
SCF trends over most of the mid- and high-latitude Eurasia 
during all the three seasons (Fig. S5). The fraction of the 
dynamical component of SCF trends during autumn, win-
ter and spring shows large values in individual members 
with scattered features (Figures not shown). The dynamical 
contribution of SCF and SWE trends is small based on the 
point-wise partial least-square regression (PLSR) used in 
Smoliak et al. (2015) over most of Eurasia (Figs. S6 and S7). 
Consistent results are obtained using CDR and MERRA-2 
datasets (figures not shown).

The correspondence between snow and SAT anomalies 
suggests a connection between snow changes and dynami-
cally adjusted SAT trends. Surface heat fluxes changes are 
analyzed to illustrate the cause and effect in this connec-
tion. As noted earlier, changes in snow may affect surface 
heat fluxes in two ways. One is modulation of upward SWR 

(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Fig. 7   Regressions of total (a–c) and thermodynamic (d–f) SIC 
trends (%/41 years) and SAT trends (g–i °C/41 years) upon the nor-
malized PC1 of residual SAT trends in the CESM-LE for boreal 

autumn (a, d, g), winter (b, e, h) and spring (c, f, i). Stippling denotes 
anomalies reaching the 95% confidence level
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through alteration in surface albedo. The other is turbulent 
heat exchange between the land and air. Less snow cover 
is followed by less upward SWR and thus more gain of net 
SWR by land surface, which leads to increase in land surface 
temperature. This induces increase in upward LWR, result-
ing in SAT increase. During snow accumulation seasons 
(boreal autumn and winter in the Northern Hemisphere), less 
snow amount increases SHF and upward LWR from land 
surface to the air, leading to an increase in SAT. However, 
in deep snow region, this effect is weak as heat conductivity 
of snow is low. During snow melting seasons (boreal spring 
in the Northern Hemisphere), less snow amount increases 
the part of heat consumed for warming the land surface, 
followed by more SHF and upward LWR, and thus result-
ing in an increase in SAT. In addition, less snow reduces 
the soil moisture when snow melts, leading to a decrease in 
upward LHF. It should be noted that changes in SAT and air 
humidity induced by atmosphere processes may contribute 
to variations in SHF and LHF.

The effects of snow on SAT trends are illustrated by 
surface heat flux anomalies corresponding to EOF1 of 
the dynamically adjusted SAT trends. Figure 11 displays 
anomalies of upward SWR, upward LWR, SHF and LHF 
obtained by regression upon the normalized PC1 of residual 
SAT trends. Corresponding to EOF1, autumn upward SWR 
decreases over the northeastern European Plain and west 

Siberia (Fig. 11a) where SCF is reduced (Fig. 10a). Dur-
ing winter, a significant decrease in upward SWR around 
and north of the Caspian Sea corresponds to reduced SCF 
(Figs. 10b, 11b). Significant decreases in spring upward 
SWR are observed from the eastern European Plain to 
northern Siberia (Fig. 11c), and are related to a decrease in 
SCF (Fig. 10c). The above correspondence between upward 
SWR and SCF anomalies confirms the effect of snow albedo 
change. The spatial pattern of upward LWR anomalies 
(Fig. 11d–f) bears close resemblance to that of SAT trends 
during all the three seasons (Fig. 3a–c). Over most regions 
of the Eurasian continent, the change in SHF is weak and 
insignificant in all the three seasons (Fig. 11g–i). A signifi-
cant increase in LHF is observed over central Siberia during 
autumn (Fig. 11j) and to the north of the Caspian Sea during 
winter and spring (Fig. 11k, l). These LHF changes can-
not be explained by SCF decrease (Fig. 10a–c). The above 
results verify the contributions of snow changes to SAT 
trends through modulating upward SWR and upward LWR.

5 � Conclusions and discussions

The present study investigates the contributions of sea ice 
and snow to the multi-decadal trends of SAT during autumn, 
winter and spring over the mid- and high-latitudes of Eurasia 

(a) (d) (g) (j)

(b) (e) (h) (k)

(c) (f) (i) (l)

Fig. 8   Regressions of surface heat flux (upward: positive) for boreal 
autumn (a, d, g, j), winter (b, e, h, k) and spring (c, f, i, l) upon the 
normalized PC1 of dynamically adjusted SAT trends in the CESM-

LE. SWR (a–c), LWR (d–f), SHF (g–i) and LHF (j–l) anomalies are 
all measured in W/m2/41 years. Stippling denotes anomalies reaching 
the 95% confidence level
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based on a 30-member ensemble of simulations by CESM. 
A dynamical adjustment technique is used to remove the 
internal component of atmospheric circulation-induced SAT 
trends. During all the three seasons, dynamical adjustment 
greatly reduces the diversity of SAT trends among ensemble 
members and brings observed trends closer to the ensemble 
mean. The remaining differences in dynamically adjusted 
SAT trends are largely attributed to internal thermodynamic 
processes.

An EOF analysis is applied to obtain the dominant pat-
terns of residual SAT trends. The first mode features a broad 
pattern of the same sign loading that extends eastward from 
northern Europe to the Russian Far East in autumn and to 
central Siberia in spring, respectively, whereas the same-
sign loading is confined to western Siberia in winter. The 
second modes are very similar in the three seasons and dis-
play a dipole structure with same-sign loading over northern 

Fig. 9   Regression of dynami-
cally adjusted SAT trends 
(°C/41 years) onto the 
normalized SIC trends aver-
aged over the Barents-Kara 
Seas (70°–80°N, 30°–80°E) 
for boreal autumn (a), winter 
(b) and spring (c). Stippling 
denotes anomalies reaching the 
95% confidence level. Scatter-
plots of the internal thermo-
dynamic component of SAT 
trends (°C/41 years) averaged 
over northern Siberia (65°–
80°N, 30°–120°E) against the 
internally-generated SIC trends 
(%/41 years) averaged over the 
Barents-Kara Seas (70°–80°N, 
30°–80°E) in CESM 30 mem-
bers for boreal autumn (d), 
winter (e) and spring (f)

(a)

(b)

(c)

(d)

(e)

(f)
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Siberia and opposite-sign loading around and north of the 
Caspian Sea.

Analysis shows that the internal component of SIC trends 
over the Barents-Kara Seas feeds back onto SAT locally 
and over adjacent northern Siberia via thermodynamic pro-
cesses, contributing partly to the spread in the thermody-
namic component of internal SAT trends within the CESM-
LE. The SIC-induced SAT trends extend inland in autumn 
and spring and are confined to the coastal regions in winter. 
The SIC effects and their seasonal changes are confirmed by 
upward SWR and upward LWR anomalies.

Eurasian snow changes contribute to the spread in dynam-
ically adjusted SAT trends around the periphery of snow 
covered region where the SCF anomalies are large mainly 

by modulating surface albedo. The region of snow effects 
displays a change with the season following the change of 
snow anomalies and associated upward SWR and upward 
LWR anomalies. The snow effect is identified over north-
eastern European Plain-western Siberia in autumn, over the 
region north of the Caspian Sea in winter, and over eastern 
Europe-northern Siberia in spring.

The present study assesses the roles of dynamics and 
thermodynamics in the SAT trends separately. However, pro-
nounced feedbacks may exist between dynamic and thermo-
dynamic effects (Fischer et al. 2007; Hoerling et al. 2014). 
Outputs from large ensemble simulations with models other 
than CESM need to be examined to address the above issue 
in the future.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10   Regressions of total (a–c) and thermodynamic (d–f) SCF trends (%/41 years) upon the normalized PC1 of dynamically adjusted SAT 
trends in the CESM-LE for boreal autumn (a, d), winter (b, e) and spring (c, f). Stippling denotes anomalies reaching the 95% confidence level
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